1
|
Strickland JM, Leite de Campos J, Gandy J, Mavangira V, Ruegg PL, Sordillo L. A randomized control trial to test the effect of pegbovigrastim treatment at dry-off on plasma and milk oxylipid profiles during early mammary gland involution and the postparturient period. J Dairy Sci 2024; 107:5070-5089. [PMID: 38246537 DOI: 10.3168/jds.2023-23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The early period of mammary gland involution is a critical juncture in the lactation cycle that can have significant effects on milk production and mammary gland health. Pegbovigrastim (PEG) administered 1 wk prior and on the day of parturition can enhance immune function and reduce the incidence of mastitis in the early postpartum period. Oxylipids are potent metabolites of polyunsaturated fatty acids (PUFA) and are important mediators of inflammation. The objective of this study was to evaluate effects of PEG given 1 wk before and at the day of dry-off (D0) on concentrations of oxylipids in plasma and milk from 7 d before D0 to 14 d after, as well as the effects during the first 14 d of the subsequent lactation. We hypothesized that both pro- and anti-inflammatory oxylipids would vary based on initiation of mammary gland involution and that pegbovigrastim would affect oxylipid concentrations, particularly those related to leukocytes. A complete randomized blocked design was used to enroll cows into either a PEG treatment group (n = 10) or control group (n = 10; CON). Blood samples were collected -7, -2, -1, 0, 1, 2, 4, 7, and 14 d relative to dry-off and 5, 10, and 14 d postcalving. Samples were analyzed for PUFA and oxylipids in milk and plasma by ultra-performance mass spectrometry and liquid chromatography tandem quadrupole mass spectrometry, respectively. Overall, 30 lipid mediators were measured in both milk and plasma. Repeated measures analyses revealed a significant interaction of treatment by time for milk 8-iso-keto-15-prostaglandin E2, prostaglandin F2α, plasma 8,12-iso-prostaglandin Fα-VI, 11-hydroxyeicosatetraenoic acid, and 12-hydroxyheptadecatienoic acid. The majority of milk PUFA and oxylipids differed significantly during early mammary gland involution and into the early postpartum period. This study demonstrated changes in oxylipids in milk secretions and plasma during early involution, and further investigation may illuminate multiple complex processes and reveal targets for optimization of mammary gland involution.
Collapse
Affiliation(s)
- Jaimie M Strickland
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824.
| | - Juliana Leite de Campos
- College of Agriculture and Natural Resources, Animal Science, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Vengai Mavangira
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pamela L Ruegg
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Lorraine Sordillo
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
2
|
Chang N, Wei Wei, Wang S, Hou S, Sui Y, Taoyang, He J, Ren Y, Chen G, Bu C. The metabolomics analysis of cecal contents elucidates significant metabolites involved in the therapeutic effects of total flavonoids derived from Sonchus arvensis L. in male C57BL/6 mice with ulcerative colitis. Heliyon 2024; 10:e32790. [PMID: 39005925 PMCID: PMC11239596 DOI: 10.1016/j.heliyon.2024.e32790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Ulcerative colitis (UC), an inflammatory disease affecting the colon and rectal mucosa, is characterized by chronic and heterogeneous behavior of unknown origin. The primary cause of UC is chronic inflammation, which is closely linked to the development of colorectal cancer. Sonchus arvensis L. (SAL), a plant consumed worldwide for its nutritional and medicinal properties, holds significance in this context. In this study, we employed the total flavone in SAL as a treatment for male C57BL/6 mice with UC. The cecal contents metabolic profile of C57BL/6 mice in different groups, including UC (group ML; n = 5), UC treated with aspirin (group AN; n = 5), UC treated with the total flavone in SAL (group FE; n = 5), and healthy male C57BL/6 mice (group CL; n = 5), was examined using UHPLC-Triple-TOF-MS. Through the identification of variations in key metabolites associated with UC and the exploration of their underlying biological mechanisms, our understanding of the pathological processes underlying this condition has been enhanced. This study identified a total of seventy-three metabolites that have a significant impact on UC. Notably, the composition of total flavone in SAL, a medication used for UC treatment, differs from that of aspirin due to the presence of four distinct metabolites (13,14-Dihydro-15-keto-PGE2, Prostaglandin I2 (PGI2), (20R,22R)-20,22-dihydroxycholesterol, and PS (18:1(9Z)/0:0)). These metabolites possess unique characteristics that set them apart. Moreover, the study identified a total of eleven pathways that were significantly enriched in mice with UC, including Aminoacyl-tRNA biosynthesis, Valine, leucine and isoleucine biosynthesis, Linoleic acid metabolism, PPAR signaling pathway, mTOR signaling pathway, Valine, leucine and isoleucine degradation, Lysine degradation, VEGF signaling pathway, Melanogenesis, Endocrine and other factor-regulated calcium reabsorption, and Cocaine addiction. These findings contribute to a better understanding of the metabolic variations in UC following total flavonoids of SAL therapy and provide valuable insights for the treatment of UC.Keywords: Ulcerative colitis; Total flavonoids of Sonchus arvensis L.; Key metabolites; Metabonomics; Cecal contents of male C57BL/6 mice.
Collapse
Affiliation(s)
| | - Wei Wei
- Daqing Oilfield Genaral Hospital, Daqing, 163319, China
| | | | | | - Yilei Sui
- Harbin Medical University 163319, China
| | - Taoyang
- Harbin Medical University 163319, China
| | - Jing He
- Harbin Medical University 163319, China
| | - Yachao Ren
- Harbin Medical University 163319, China
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300000, China
| | | | - Chunlei Bu
- Harbin Medical University 163319, China
- Fifth Affiliated Hospital, Harbin Medical University, Daqing, 163319, China
| |
Collapse
|
3
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
4
|
Cohen S, Foss E, Beths T, Musk GC. An Exploration of Analgesia Options for Australian Sheep. Animals (Basel) 2024; 14:990. [PMID: 38612229 PMCID: PMC11011129 DOI: 10.3390/ani14070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
During their lifetime, sheep undergo many painful husbandry and disease processes. Procedures undertaken on the farm, such as tail docking, castration, and mulesing, all cause considerable pain. In addition, sheep may experience painful diseases and injuries that require treatment by veterinary practitioners, and in biomedical research, sheep may undergo painful experimental procedures or conditions. It is important due to ethics, animal welfare, social licence, and, at times, legal requirements for farmers, veterinary practitioners, and researchers to provide pain relief for animals in their care. While there is a heightened awareness of and a greater interest in animal welfare, there remain few licensed and known analgesia options for sheep within Australia. A literature review was undertaken to identify currently known and potential future options for analgesic agents in sheep in farm and biomedical settings. Non-steroidal anti-inflammatories, opioids, local anaesthetics, α2 adrenoreceptor agonists, and NMDA receptor antagonists are some of the more common classes of analgesic drugs referred to in the literature, but few drugs are registered for use in sheep, with even fewer proven to be effective. Only six analgesic product formulations, namely, lignocaine (e.g., Numocaine®), Tri-Solfen®, ketamine, xylazine, and meloxicam (oral transmucosal and injectable formulations), are currently registered in Australia and known to be efficacious in some types of painful conditions in sheep. The gap in knowledge and availability of analgesia in sheep can pose risks to animal welfare, social licence, and research outcomes. This article presents a summary of analgesic agents that have been used in sheep on farms and in clinical veterinary and biomedical research settings along with details on whether their efficacy was assessed, doses, routes of administration, indication for use, and pain assessment techniques (if any) used. The outcome of this research highlights the challenges, gaps, and opportunities for better analgesia options in sheep.
Collapse
Affiliation(s)
- Shari Cohen
- Animal Welfare Science Centre, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Emily Foss
- Melbourne Veterinary School, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (E.F.); (T.B.)
| | - Thierry Beths
- Melbourne Veterinary School, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; (E.F.); (T.B.)
| | - Gabrielle C. Musk
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|
5
|
Oxylipins as Potential Regulators of Inflammatory Conditions of Human Lactation. Metabolites 2022; 12:metabo12100994. [PMID: 36295896 PMCID: PMC9610648 DOI: 10.3390/metabo12100994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic low-grade inflammation can be associated with obesity or subclinical mastitis (SCM), which is associated with poor infant growth in low- to middle-income country settings. It is unknown what physiological mechanisms are involved in low milk supply, but our research group has shown that mothers with low milk supply have higher inflammatory markers. Studies investigating oxylipin signaling have the potential to help explain mechanisms that mediate the impacts of inflammation on milk production. Animal studies have reported various elevated oxylipins during postpartum inflammation, mastitis, and mammary involution in ruminant models. Several investigations have quantified oxylipins in human milk, but very few studies have reported circulating oxylipin concentrations during lactation. In addition, there are technical considerations that must be addressed when reporting oxylipin concentrations in human milk. First, the majority of milk oxylipins are esterified in the triglyceride pool, which is not routinely measured. Second, total milk fat should be considered as a covariate when using milk oxylipins to predict outcomes. Finally, storage and handling conditions of milk samples must be carefully controlled to ensure accurate milk oxylipin quantitation, which may be affected by highly active lipases in human milk.
Collapse
|
6
|
Wiebe M, Pfarrer C, Górriz Martín L, Schmicke M, Hoedemaker M, Bollwein H, Heppelmann M. In vitro effects of lipopolysaccharides on bovine uterine contractility. Reprod Domest Anim 2020; 56:172-182. [PMID: 33170981 DOI: 10.1111/rda.13862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
Abstract
Metritis is an important disorder in dairy cows during the early postpartum period. Myometrial contractility is a prerequisite for uterine involution; however, very scanty literature is available about the effect of metritis on this process and endocrine responsiveness. This study was aimed to evaluate the effect of inflammation on uterine contractility in vitro, and the inflammation was induced by incubating myometrial strips with lipopolysaccharides (LPS). Myometrial samples were collected from 17 healthy Holstein Friesian cows during caesarean section. Eight longitudinal strips from each cow were incubated in organ baths with LPS concentrations of 0 (LPS0 ), 0.1 (LPS0.1 ), 1 (LPS1 ) and 10 µg/ml (LPS10 ). Spontaneous contractility and contractility induced by increasing concentrations of oxytocin (10-10 - 10-7 mol/L) were recorded during nine 30-min intervals (T1 to T9). The minimum amplitude (minA), maximum amplitude (maxA), mean amplitude (meanA) and area under the curve (AUC) were calculated for each time interval. LPS had an effect (p ≤ .05) on maxA, meanA and AUC. In T1, myometrial strips incubated with LPS0.1 and LPS1 had higher (p ≤ .05) maxA, meanA and AUC than the strips incubated with LPS0 . In T9 without oxytocin, LPS0 led to higher (p ≤ .05) maxA, meanA and AUC than LPS0.1 and LPS1 . In T8 and T9 with oxytocin, LPS1 had lower (p ≤ .05) maxA, meanA and AUC than the other LPS concentrations. Interestingly, the results show that LPS has a transient positive effect on myometrial contractility in vitro and that this effect is dependent on LPS concentration and duration of incubation.
Collapse
Affiliation(s)
- Maraike Wiebe
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Christiane Pfarrer
- Institute of Anatomy, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Lara Górriz Martín
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Marion Schmicke
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Heiner Bollwein
- Clinic for Animal Reproduction Medicine, University of Zurich, Zurich, Switzerland
| | - Maike Heppelmann
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|