1
|
Iram S, Akash A, Kathera CS, Park KW, Cho YS, Kim J. Serum markers for beef meat quality: Potential media supplement for cell-cultured meat production. Curr Res Food Sci 2024; 10:100943. [PMID: 39760013 PMCID: PMC11696856 DOI: 10.1016/j.crfs.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
As the global population continues to grow and food demands increase, the food industry faces mounting pressure to develop innovative solutions. Cell-cultured meat involves cultivating cells from live animals through self-renewal methods or scaffolding and presents a promising alternative to traditional meat production by generating nutritionally rich biomass. However, significant research is still needed to overcome challenges such as developing serum-free media, identifying suitable additives to support cell growth, and ensuring the quality of cell-cultured meat closely resembles that of traditional meat. Meat quality, which is influenced by various sensorial factors (color, texture, and taste), tenderness, and nutritional values, is determined by the level of intramuscular fat deposition, which significantly influences both meat yield and quality. This paper offers a concise overview of serum markers used to assess beef quality and yield and potential additives currently used in culture media for cell-cultured meat production. We also proposed the potential of using serum markers as additives in the culture media to enhance production of cell-cultured meat. Overall, this review highlights the significance of cell-cultured meat production as a viable solution to address the challenges posed by increasing food demands.
Collapse
Affiliation(s)
- Sana Iram
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Amar Akash
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Chandra Sekhar Kathera
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jihoe Kim
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
2
|
Zhang W, Raza SHA, Li B, Yang W, Khan R, Aloufi BH, Zhang G, Zuo F, Zan L. LncBNIP3 Inhibits Bovine Intramuscular Preadipocyte Differentiation via the PI3K-Akt and PPAR Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24260-24271. [PMID: 39453846 DOI: 10.1021/acs.jafc.4c05383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Intramuscular fat (IMF) content is an economic trait in beef cattle that improves the meat quality. Studies have highlighted the correlation between long noncoding RNAs (lncRNAs) and IMF development. In this study, lncBNIP3 knockdown promoted bovine intramuscular preadipocyte differentiation. RNA-seq analysis of intramuscular preadipocytes with lncBNIP3 knockdown identified 230 differentially expressed genes. The PI3K-Akt and PPAR signaling pathways were enriched. lncBNIP3 interference promoted mRNA and protein expression of key genes in PI3K-Akt signaling pathway. LncBNIP3 interference reversed the effects of an AKT-inhibitor MK-2206 on Akt protein expression and lipid droplet accumulation, promoted mRNA and protein expression of essential genes in the PPAR signaling pathway, and ameliorated the inhibitory effects of a PPARg antagonist GW9662 on lipid accumulation. Therefore, lncBNIP3 inhibition of bovine intramuscular preadipocyte differentiation is likely mediated via the PI3K-Akt and PPAR signaling pathways. This study identified a valuable lncRNA with functional roles in IMF accumulation and revealed new strategies to improve beef quality.
Collapse
Affiliation(s)
- Wenzhen Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, P.R. China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculturer, Peshawar 25130, Pakistan
| | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha'il 2440, Saudi Arabia
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
3
|
Rosell-Moll E, My NTK, Balbuena-Pecino S, Montblanch M, Rodríguez I, Gutiérrez J, Garcia de la Serrana D, Capilla E, Navarro I. Morphofunctional characterization of the three main adipose tissue depots in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111039. [PMID: 39396638 DOI: 10.1016/j.cbpb.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Visceral adipose tissue (VAT) is the primary fat reservoir and energy source in fish. Other relevant fat depots include subcutaneous adipose tissue (SAT), located under epithelial layers, and intramuscular adipose tissue (IMAT), found between the myotomes. The present study investigates the morphological, gene expression and functional characteristics of these different depots in rainbow trout (Oncorhynchus mykiss). Commercial rainbow trout of two different average weights were sampled for histology, lipid quantification and fatty acids profile. Mature adipocytes were isolated for gene expression analyses of lipid metabolic markers. Both VAT and SAT showed large adipocytes, and high total lipid content, suggesting hypertrophic growth. Adipocytes in IMAT were consistently smaller regardless of fish size. While fatty acid composition was similar across depots, SAT had lower levels of palmitic acid and higher levels of polyunsaturated fatty acids that act as precursors of phospholipids and eicosanoids such as eicosapentaenoic acid, compared to VAT and IMAT. Gene expression analyses revealed higher levels of fatty acid transporters, lipolysis and β-oxidation markers in VAT and SAT compared to IMAT, suggesting a more active lipid metabolism. These data support the role of VAT as the main energy depot, while SAT may act as a secondary reservoir, and IMAT potentially serves as an occasional energy source for muscles. This study provides valuable insights into the distinct properties of the different fat depots in fish, which may help to optimize strategies to modulate adiposity for improved health, metabolism, and product quality.
Collapse
Affiliation(s)
- E Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - N T K My
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - M Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Rodríguez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - D Garcia de la Serrana
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - E Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Bai H, Wang L, Lambo MT, Li Y, Zhang Y. Effect of changing the proportion of C16:0 and cis-9 C18:1 in fat supplements on rumen fermentation, glucose and lipid metabolism, antioxidation capacity, and visceral fatty acid profile in finishing Angus bulls. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:39-48. [PMID: 39026601 PMCID: PMC11254535 DOI: 10.1016/j.aninu.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 07/20/2024]
Abstract
This study evaluated the effects of different proportions of palmitic (C16:0) and oleic (cis-9 C18:1) acids in fat supplements on rumen fermentation, glucose (GLU) and lipid metabolism, antioxidant function, and visceral fat fatty acid (FA) composition in Angus bulls. The design of the experiment was a randomized block design with 3 treatments of 10 animals each. A total of 30 finishing Angus bulls (21 ± 0.5 months) with an initial body weight of 626 ± 69 kg were blocked by weight into 10 blocks, with 3 bulls per block. The bulls in each block were randomly assigned to one of three experimental diets: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic calcium salt (PA; 90% C16:0), (3) CON + 2.5% mixed FA calcium salts (MA; 60% C16:0 + 30% cis-9 C18:1). Both fat supplements increased C18:0 and cis-9 C18:1 in visceral fat (P < 0.05) and up-regulated the expression of liver FA transport protein 5 (FATP5; P < 0.001). PA increased the insulin concentration (P < 0.001) and aspartate aminotransferase activity (AST; P = 0.030) in bull's blood while reducing the GLU concentration (P = 0.009). PA increased the content of triglycerides (TG; P = 0.014) in the liver, the content of the C16:0 in visceral fat (P = 0.004), and weight gain (P = 0.032), and up-regulated the expression of liver diacylglycerol acyltransferase 2 (DGAT2; P < 0.001) and stearoyl-CoA desaturase 1 (SCD1; P < 0.05). MA increased plasma superoxide dismutase activity (SOD; P = 0.011), reduced the concentration of acetate and total volatile FA (VFA) in rumen fluid (P < 0.05), and tended to increase plasma non-esterified FA (NEFA; P = 0.069) concentrations. Generally, high C16:0 fat supplementation increased weight gain in Angus bulls and triggered the risk of fatty liver, insulin resistance, and reduced antioxidant function. These adverse effects were alleviated by partially replacing C16:0 with cis-9 C18:1.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Lubo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Tan Z, Jiang H. Molecular and Cellular Mechanisms of Intramuscular Fat Development and Growth in Cattle. Int J Mol Sci 2024; 25:2520. [PMID: 38473768 DOI: 10.3390/ijms25052520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Intramuscular fat, also referred to as marbling fat, is the white fat deposited within skeletal muscle tissue. The content of intramuscular fat in the skeletal muscle, particularly the longissimus dorsi muscle, of cattle is a critical determinant of beef quality and value. In this review, we summarize the process of intramuscular fat development and growth, the factors that affect this process, and the molecular and epigenetic mechanisms that mediate this process in cattle. Compared to other species, cattle have a remarkable ability to accumulate intramuscular fat, partly attributed to the abundance of sources of fatty acids for synthesizing triglycerides. Compared to other adipose depots such as subcutaneous fat, intramuscular fat develops later and grows more slowly. The commitment and differentiation of adipose precursor cells into adipocytes as well as the maturation of adipocytes are crucial steps in intramuscular fat development and growth in cattle. Each of these steps is controlled by various factors, underscoring the complexity of the regulatory network governing adipogenesis in the skeletal muscle. These factors include genetics, epigenetics, nutrition (including maternal nutrition), rumen microbiome, vitamins, hormones, weaning age, slaughter age, slaughter weight, and stress. Many of these factors seem to affect intramuscular fat deposition through the transcriptional or epigenetic regulation of genes directly involved in the development and growth of intramuscular fat. A better understanding of the molecular and cellular mechanisms by which intramuscular fat develops and grows in cattle will help us develop more effective strategies to optimize intramuscular fat deposition in cattle, thereby maximizing the quality and value of beef meat.
Collapse
Affiliation(s)
- Zhendong Tan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Li W, Wang F, Sun F, Qu Y, Liu C, Han Y, Wang H, Jiang B, Zhong P, Wang J, Song X, Huang M, Ding D. Effects of vitamin A on intramuscular fat development in beef cattle: A meta-analysis. Front Vet Sci 2023; 10:1105754. [PMID: 37008352 PMCID: PMC10050684 DOI: 10.3389/fvets.2023.1105754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 03/17/2023] Open
Abstract
Vitamin A, a fat-soluble vitamin, is the basic substance required to maintain healthy vision and the main physiological functions of cattle. The results from previous studies regarding the effect of vitamin A on intramuscular fat varied. This meta-analysis aimed to generate a more comprehensive understanding of the relationship between vitamin A and intramuscular fat content and to provide potential clues for future research and commercial practice. Electronic databases such as MEDLINE and Ovid were systematically searched, and studies investigating the relationship between vitamin A and intramuscular fat content were included. Standardized mean differences (SMDs) in intramuscular fat percentage and intramuscular fat score, with their respective 95% confidence intervals (CIs), were calculated. The heterogeneity and publication bias were evaluated. A total of 152 articles were identified through searches of databases. Seven articles were confirmed for inclusion in this meta-analysis. The SMD of IMF percentage derived from the analysis was−0.78 (-2.68, 1.12) (Q = 246.84, p < 0.01). The SMD of the IMF score was 1.25 (-2.75, 5.25) (Q = 87.20, p < 0.01). Our meta-analysis indicates that the addition of vitamin A could decrease intramuscular fat in cattle steers.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| | - Fang Wang
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, College of Life Sciences and Agroforestry, Qiqihar University, Qiqihar, Heilongjiang, China
- *Correspondence: Fang Wang
| | - Fang Sun
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yongli Qu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunhai Liu
- Liaoning FEEDIG Feedstuff Technology Co., Ltd., Xingcheng, Liaoning, China
| | - Yongsheng Han
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| | - Hongbao Wang
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| | - Botao Jiang
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| | - Peng Zhong
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| | - Jiahui Wang
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| | - Xueying Song
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| | - Meng Huang
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| | - Deli Ding
- Heilongjiang Academy of Agricultural Sciences Livestock Veterinary Branch, Qiqihar, Heilongjiang, China
| |
Collapse
|
7
|
Zhang W, Wang J, Li B, Sun B, Yu S, Wang X, Zan L. Long Non-Coding RNA BNIP3 Inhibited the Proliferation of Bovine Intramuscular Preadipocytes via Cell Cycle. Int J Mol Sci 2023; 24:4234. [PMID: 36835645 PMCID: PMC9962175 DOI: 10.3390/ijms24044234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
The intramuscular fat (or marbling fat) content is an essential economic trait of beef cattle and improves the flavor and palatability of meat. Several studies have highlighted the correlation between long non-coding RNAs (lncRNAs) and intramuscular fat development; however, the precise molecular mechanism remains unknown. Previously, through a high-throughput sequencing analysis, we found a lncRNA and named it a long non-coding RNA BNIP3 (lncBNIP3). The 5' RACE and 3' RACE explored 1945 bp total length of lncBNIP3, including 1621 bp of 5'RACE, and 464 bp of 3'RACE. The nucleoplasmic separation and FISH results explored the nuclear localization of lncBNIP3. Moreover, the tissue expression of lncBNIP3 was higher in the longissimus dorsi muscle, followed by intramuscular fat. Furthermore, down-regulation of lncBNIP3 increased the 5-Ethynyl-2'- deoxyuridine (EdU)-EdU-positive cells. The flow cytometry results showed that the number of cells in the S phase was significantly higher in preadipocytes transfected with si-lncBNIP3 than in the control group (si-NC). Similarly, CCK8 results showed that the number of cells after transfection of si-lncBNIP3 was significantly higher than in the control group. In addition, the mRNA expressions of proliferative marker genes CyclinB1 (CCNB1) and Proliferating Cell Nuclear Antigen (PCNA) in the si-lncBNIP3 group were significantly higher than in the control group. The Western Blot (WB) results also showed that the protein expression level of PCNA transfection of si-lncBNIP3 was significantly higher than in the control group. Similarly, the enrichment of lncBNIP3 significantly decreased the EdU-positive cells in the bovine preadipocytes. The results of flow cytometry and CCK8 assay also showed that overexpression of lncBNIP3 inhibited the proliferation of bovine preadipocytes. In addition, the overexpression of lncBNIP3 significantly inhibited the mRNA expressions of CCNB1 and PCNA. The WB results showed that the overexpression of lncBNIP3 significantly inhibited the expression of the CCNB1 protein level. To further explore the mechanism of lncBNIP3 on the proliferation of intramuscular preadipocytes, RNA-seq was performed after interference with si-lncBNIP3, and 660 differentially expressed genes (DEGs) were found, including 417 up-regulated DEGs and 243 down-regulated DEGs. The KEGG pathway analysis showed that the cell cycle was the most significant pathway for the functional enrichment of DEGs, followed by the DNA replication pathway. The RT-qPCR quantified the expression of twenty DEGs in the cell cycle. Therefore, we speculated that lncBNIP3 regulated intramuscular preadipocyte proliferation through the cell cycle and DNA replication pathways. To further confirm this hypothesis, the cell cycle inhibitor Ara-C was used to inhibit DNA replication of the S phase in intramuscular preadipocytes. Herein, Ara-C and si-lncBNIP3 were simultaneously added to the preadipocytes, and the CCK8, flow cytometry, and EdU assays were performed. The results showed that the si-lncBNIP3 could rescue the inhibitory effect of Ara-C in the bovine preadipocyte proliferation. In addition, lncBNIP3 could bind to the promoter of cell division control protein 6 (CDC6), and down-regulation of lncBNIP3 promoted the transcription activity and the expression of CDC6. Therefore, the inhibitory effect of lncBNIP3 on cell proliferation might be understood through the cell cycle pathway and CDC6 expression. This study provided a valuable lncRNA with functional roles in intramuscular fat accumulation and revealed new strategies for improving beef quality.
Collapse
Affiliation(s)
- Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bing Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shengchen Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Discovering novel clues of natural selection on four worldwide goat breeds. Sci Rep 2023; 13:2110. [PMID: 36747064 PMCID: PMC9902602 DOI: 10.1038/s41598-023-27490-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/03/2023] [Indexed: 02/08/2023] Open
Abstract
In goat breeds, the domestication followed by artificial selection for economically important traits have shaped genetic variation within populations, leading to the fixation of specific alleles for specific traits. This led to the formation and evolution of many different breeds specialised and raised for a particular purpose. However, and despite the intensity of artificial selection, natural selection continues acting, possibly leaving a more diluted contribution over time, whose traces may be more difficult to capture. In order to explore selection footprints as response of environmental adaptation, we analysed a total of 993 goats from four transboundary goats breeds (Angora, Boer, Nubian and Saanen) genotyped with the SNP chip 50 K using outlier detection, runs of homozygosity and haplotype-based detection methods. Our results showed that all methods identified footprints on chromosome 6 (from 30 to 49 Mb) for two specific populations of Nubian goats sampled in Egypt. In Angora and Saanen breeds, we detected two selective sweeps using HapFLK, on chromosome 21 (from 52 to 55 Mb) and chromosome 25 (from 1 to 5 Mb) respectively. The analysis of runs of homozygosity showed some hotspots in all breeds. The overall investigation of the selected regions detected combining the different approaches and the gene ontology exploration revealed both novel and well-known loci related to adaptation, especially for heat stress. Our findings can help to better understand the balance between the two selective pressures in commercial goat breeds providing new insights on the molecular mechanisms of adaptation.
Collapse
|
9
|
Lee JH, Peng DQ, Jin XC, Smith SB, Lee HG. Vitamin D3 decreases myoblast fusion during the growth and increases myogenic gene expression during the differentiation phase in muscle satellite cells from Korean native beef cattle. J Anim Sci 2023; 101:skad192. [PMID: 37313716 PMCID: PMC10424720 DOI: 10.1093/jas/skad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
The process of myogenesis, which involves the growth and differentiation of muscle cells, is a crucial determinant of meat yield and quality in beef cattle. Essential nutrients, such as vitamins D and A, play vital roles in the development and maintenance of various tissues, including muscle. However, limited knowledge exists regarding the specific effects of vitamins A and D in bovine muscle. Therefore, the aim of this study was to investigate the impact of vitamins A and D treatment on myogenic fusion and differentiation in bovine satellite cells (BSC). BSC were isolated from Korean native beef cattle, specifically from four female cows approximately 30 mo old. These individual cows were used as biological replicates (n = 3 or 4), and we examined the effects of varying concentrations of vitamins A (All-trans retinoic acid; 100 nM) and D (1,25-dihydroxy-vitamin D3; 1 nM, 10 nM, and 100 nM), both individually and in combination, on myoblast fusion and myogenic differentiation during the growth phase (48 h) or differentiation phase (6 d). The results were statistically analyzed using GLM procedure of SAS with Tukey's test and t-tests or one-way ANOVA where appropriate. The findings revealed that vitamin A enhanced the myoblast fusion index, while vitamin D treatment decreased the myoblast fusion index during the growth phase. Furthermore, vitamin A treatment during the differentiation phase promoted terminal differentiation by regulating the expression of myogenic regulatory factors (Myf5, MyoD, MyoG, and Myf6) and inducing myotube hypertrophy compared to the control satellite cells (P < 0.01). In contrast, vitamin D treatment during the differentiation phase enhanced myogenic differentiation by increasing the mRNA expression of MyoG and Myf6 (P < 0.01). Moreover, the combined treatment of vitamins A and D during the growth phase increased myoblast fusion and further promoted myogenic differentiation and hypertrophy of myotubes during the differentiation phase (P < 0.01). These results suggest that vitamin A and D supplementation may have differential effects on muscle development in Korean native beef cattle during the feeding process.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dong Qiao Peng
- College of Animal Sciences, Jilin University, Jilin Provincial key laboratory of livestock and poultry feed and feeding in northeastern frigid area, Changchun, China
| | - Xue Cheng Jin
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Stephen B Smith
- Department of Animal Science, A&M University, College Station, TX, USA
| | - Hong Gu Lee
- †Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
10
|
Konnai M, Takahashi K, Machida Y, Michishita M, Ohkusu-Tsukada K. Intrahepatic eosinophilic proliferative phlebitis in Japanese black cattle indicate allergies involving mast cell tryptase-dependent activation. Front Vet Sci 2022; 9:972180. [PMID: 36605763 PMCID: PMC9807620 DOI: 10.3389/fvets.2022.972180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Cow-specific feature hepatic lesion, termed as eosinophilic proliferative phlebitis (EPP), has been mainly detected in Japanese black cattle and identified histologically eosinophilic infiltration and endothelial hyperplasia in portal areas. We previously proposed EPP as a food allergy from the pathological characteristics and a significant increase of serum immunoglobulin E specific to curly dock (Rumex crispus) in allergens testing, however, first report had regarded EPP an atypical type of bovine fascioliasis. In EPP lesions, eosinophilic infiltration was observed to the hypertrophic endothelium and not to the intrahepatic bile duct, and that was related to eotaxin-1 expression. In EPP, the mast cells increased as well as in fascioliasis, and the mast cells producing tryptase without chymase increased with interleukin-4 production. In this context, hyperplasia of periendothelium expressing proteinase-activated receptor-2 (PAR-2) and not angiotensin II was observed. Contrastably, in fascioliasis, unique mast cells producing neither tryptase nor chymase infiltrated, and the periendothelium expressed neither PAR-2 nor angiotensin II. Interestingly, EPP had not occurred liver injury with raised hepatic enzymes like fascioliasis, and suggested to a correlation with severe serum hypo-vitamin A. Overall, this study suggests that EPP is an allergic disease by main difference between adaptive immunity to allergens and innate immunity to parasites.
Collapse
|
11
|
Jin XC, Peng DQ, Kim SJ, Kim NY, Nejad JG, Kim D, Smith SB, Lee HG. Vitamin A supplementation downregulates ADH1C and ALDH1A1 mRNA expression in weaned beef calves. ANIMAL NUTRITION 2022; 10:372-381. [PMID: 35949197 PMCID: PMC9356019 DOI: 10.1016/j.aninu.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Our previous studies demonstrated that oral vitamin A supplementation during late-stage pregnancy and the neonatal stage enhances birth weight, growth performance, and mRNA expression related to muscle and preadipocyte development in beef cattle. The alcohol dehydrogenase 1C (ADH1C) c.-64T > C genotype also correlated with vitamin A concentration in beef production. This study aimed to investigate the effects of vitamin A supplementation on the muscle development and vitamin A metabolism in weaned beef calves with different ADH1C genotypes. Twenty male calves (90 d of age; initial BW: 89.03 kg [SD 8.60]) were stratified according to ADH1C genotype and vitamin A treatment (duration: 3 months) and randomly assigned to 4 groups with a 2 × 2 factorial arrangement. Vitamin A treatments included the following: control (10,000 IU/kg of as-fed, a. TT type; b. TC type); treatment (40,000 IU/kg of as-fed, c. TT type; and d. TC type). Parameters including BW, FI, blood, longissimus dorsi muscle, and liver status during the experimental period were analyzed using the generalized linear model (GLM) procedure and Tukey's test by SAS 9.4 program. Serum vitamin A was significantly increased (P < 0.05) in the vitamin A treatment group at 4 and 6 months of age. TT type calves showed higher serum vitamin A concentration (P < 0.05) than the TC type calves. Serum triglyceride and non-esterified fatty acid (NEFA) levels increased (P < 0.05) in the treatment group compared with the control at 6 months of age. However, BW, ADG and FI showed no differences between the groups. In addition, mRNA expression in longissimus dorsi muscle revealed upregulation of paired box 7 (PAX7) (P < 0.05) after the vitamin A treatment period based on biopsy results. Both ADH1C and aldehyde dehydrogenase (ALDH) 1A1 mRNA expression was downregulated (P < 0.01) by vitamin A supplementation. The TC type of ADH1C showed higher mRNA expression than the TT type. However, no effect was observed on adipogenic mRNA expression (preadipocyte factor-1 [PREF-1], peroxisome proliferator-activated receptor gamma [PPARγ], fatty acid binding protein 4 [FABP4]) in all groups. Our findings suggest that weaned calves treated with vitamin A may promote the storage of satellite cells by elevating PAX7 gene expression in the muscle. The TC type calves may show increased capacity for vitamin A metabolism, which can be used in genetically customizing feed management to maximize beef production in the calves.
Collapse
|
12
|
Haq ZU, Saleem A, Khan AA, Dar MA, Ganaie AM, Beigh YA, Hamadani H, Ahmad SM. Nutrigenomics in livestock sector and its human-animal interface-a review. Vet Anim Sci 2022; 17:100262. [PMID: 35856004 PMCID: PMC9287789 DOI: 10.1016/j.vas.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nutrigenomics unfolds the link between nutrition and gene expression for productivity.expression profile of intramuscular. Nutrigenomics helps scientists discover genes and DNA in each animal's cell or tissue by assisting them in selecting nutrients. It brings out the importance of micronutrition for increasing animal production. Nutrigenomics integrates nutrition, molecular biology, genomics, bioinformatics, molecular medicine, and epidemiology.
Noncommunicable diseases such as cardiovascular disease, obesity, diabetes, and cancer now outnumber all other health ailments in humans globally due to abrupt changes in lifestyle following the industrial revolution. The industrial revolution has also intensified livestock farming, resulting in an increased demand for productivity and stressed animals. The livestock industry faces significant challenges from a projected sharp increase in global food and high animal protein demand. Nutrition genomics holds great promise for the future as its advances have opened up a whole new world of disease understanding and prevention. Nutrigenomics is the study of the interactions between genes and diet. It investigates molecular relationships between nutrients and genes to identify how even minor modifications could potentially alter animal and human health/performance by using techniques like proteomics, transcriptomics, metabolomics, and lipidomics. Dietary modifications mostly studied in livestock focus mainly on health and production traits through protein, fat, mineral, and vitamin supplementation changes. Nutrigenomics meticulously selects nutrients for fine-tuning the expression of genes that match animal/human genotypes for better health, productivity, and the environment. As a step forward, nutrigenomics integrates nutrition, molecular biology, genomics, bioinformatics, molecular medicine, and epidemiology to better understand the role of food as an epigenetic factor in the occurrence of these diseases. This review aims to provide a comprehensive overview of the fundamental concepts, latest advances, and studies in the field of nutrigenomics, emphasizing the interaction of diet with gene expression, and how it relates to human and animal health along with its human-animal interphase.
Collapse
|
13
|
Nguyen DV, Nguyen OC, Malau-Aduli AE. Main regulatory factors of marbling level in beef cattle. Vet Anim Sci 2021; 14:100219. [PMID: 34877434 PMCID: PMC8633366 DOI: 10.1016/j.vas.2021.100219] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The content of intramuscular fat (IMF), that determines marbling levels is considered as one of the vital factors influencing beef sensory quality including tenderness, juiciness, flavour and colour. The IMF formation in cattle commences around six months after conception, and continuously grows throughout the life of the animal. The accumulation of marbling is remarkably affected by genetic, sexual, nutritional and management factors. In this review, the adipogenesis and lipogenesis process regulated by various factors and genes during fetal and growing stages is briefly presented. We also discuss the findings of recent studies on the effects of breed, gene, heritability and gender on the marbling accumulation. Various research reported that feeding during pregnancy, concentrate to roughage ratios and the supplementation or restriction of vitamin A, C, and D are crucial nutritional factors affecting the formation and development of IMF. Castration and early weaning combined with high energy feeding are effective management strategies for improving the accumulation of IMF. Furthermore, age and weight at slaughter are also reviewed because they have significant effects on marbling levels. The combination of several factors could positively affect the improvement of the IMF deposition. Therefore, advanced strategies that simultaneously apply genetic, sexual, nutritional and management factors to achieve desired IMF content without detrimental impacts on feed efficiency in high-marbling beef production are essential.
Collapse
Affiliation(s)
- Don V. Nguyen
- National Institute of Animal Science, Bac Tu Liem, Hanoi 29909, Vietnam
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Oanh C. Nguyen
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Aduli E.O. Malau-Aduli
- Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
14
|
Genome-Wide Identification, Characterization and Expression Profiling of myosin Family Genes in Sebastes schlegelii. Genes (Basel) 2021; 12:genes12060808. [PMID: 34070681 PMCID: PMC8228858 DOI: 10.3390/genes12060808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Myosins are important eukaryotic motor proteins that bind actin and utilize the energy of ATP hydrolysis to perform a broad range of functions such as muscle contraction, cell migration, cytokinesis, and intracellular trafficking. However, the characterization and function of myosin is poorly studied in teleost fish. In this study, we identified 60 myosin family genes in a marine teleost, black rockfish (Sebastes schlegelii), and further characterized their expression patterns. myosin showed divergent expression patterns in adult tissues, indicating they are involved in different types and compositions of muscle fibers. Among 12 subfamilies, S. schlegelii myo2 subfamily was significantly expanded, which was driven by tandem duplication events. The up-regulation of five representative genes of myo2 in the skeletal muscle during fast-growth stages of juvenile and adult S. schlegelii revealed their active role in skeletal muscle fiber synthesis. Moreover, the expression regulation of myosin during the process of myoblast differentiation in vitro suggested that they contribute to skeletal muscle growth by involvement of both myoblast proliferation and differentiation. Taken together, our work characterized myosin genes systemically and demonstrated their diverse functions in a marine teleost species. This lays foundation for the further studies of muscle growth regulation and molecular mechanisms of indeterminate skeletal muscle growth of large teleost fishes.
Collapse
|