1
|
Ohya S, Kito H, Kajikuri J, Yamaguchi Y, Matsui M. Transcriptional Up-Regulation of FBXW7 by K Ca1.1 K + Channel Inhibition through the Nrf2 Signaling Pathway in Human Prostate Cancer LNCaP Cell Spheroid Model. Int J Mol Sci 2024; 25:6019. [PMID: 38892210 PMCID: PMC11172474 DOI: 10.3390/ijms25116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The tumor suppressor gene F-box and WD repeat domain-containing (FBXW) 7 reduces cancer stemness properties by promoting the protein degradation of pluripotent stem cell markers. We recently demonstrated the transcriptional repression of FBXW7 by the three-dimensional (3D) spheroid formation of several cancer cells. In the present study, we found that the transcriptional activity of FBXW7 was promoted by the inhibition of the Ca2+-activated K+ channel, KCa1.1, in a 3D spheroid model of human prostate cancer LNCaP cells through the Akt-Nrf2 signaling pathway. The transcriptional activity of FBXW7 was reduced by the siRNA-mediated inhibition of the CCAAT-enhancer-binding protein C/EBP δ (CEBPD) after the transfection of miR223 mimics in the LNCaP spheroid model, suggesting the transcriptional regulation of FBXW7 through the Akt-Nrf2-CEBPD-miR223 transcriptional axis in the LNCaP spheroid model. Furthermore, the KCa1.1 inhibition-induced activation of FBXW7 reduced (1) KCa1.1 activity and protein levels in the plasma membrane and (2) the protein level of the cancer stem cell (CSC) markers, c-Myc, which is a molecule degraded by FBXW7, in the LNCaP spheroid model, indicating that KCa1.1 inhibition-induced FBXW7 activation suppressed CSC conversion in KCa1.1-positive cancer cells.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (H.K.); (J.K.); (Y.Y.); (M.M.)
| | | | | | | | | |
Collapse
|
2
|
Ibrahim M, Grochowska E, Lázár B, Várkonyi E, Bednarczyk M, Stadnicka K. The Effect of Short- and Long-Term Cryopreservation on Chicken Primordial Germ Cells. Genes (Basel) 2024; 15:624. [PMID: 38790253 PMCID: PMC11121574 DOI: 10.3390/genes15050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Primordial germ cells (PGCs) are the precursors of functional gametes and the only cell type capable of transmitting genetic and epigenetic information from generation to generation. These cells offer valuable starting material for cell-based genetic engineering and genetic preservation, as well as epigenetic studies. While chicken PGCs have demonstrated resilience in maintaining their germness characteristics during both culturing and cryopreservation, their handling remains a complex challenge requiring further refinement. Herein, the study aimed to compare the effects of different conditions (freezing-thawing and in vitro cultivation) on the expression of PGC-specific marker genes. Embryonic blood containing circulating PGCs was isolated from purebred Green-legged Partridgelike chicken embryos at 14-16 Hamburger-Hamilton (HH) embryonic development stage. The blood was pooled separately for males and females following sex determination. The conditions applied to the blood containing PGCs were as follows: (1) fresh isolation; (2) cryopreservation for a short term (2 days); and (3) in vitro culture (3 months) with long-term cryopreservation of purified PGCs (~2 years). To characterize PGCs, RNA isolation was carried out, followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the expression levels of specific germ cell markers (SSEA1, CVH, and DAZL), as well as pluripotency markers (OCT4 and NANOG). The investigated genes exhibited consistent expression among PGCs maintained under diverse conditions, with no discernible differences observed between males and females. Notably, the analyzed markers demonstrated higher expression levels in PGCs when subjected to freezing than in their freshly isolated counterparts.
Collapse
Affiliation(s)
- Mariam Ibrahim
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
- PBS Doctoral School, Bydgoszcz University of Science and Technology, Aleje Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Ewa Grochowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Bence Lázár
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, Isaszegi Street 200, 2100 Godollo, Hungary
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Godollo, Hungary
| | - Eszter Várkonyi
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, Isaszegi Street 200, 2100 Godollo, Hungary
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Katarzyna Stadnicka
- Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
| |
Collapse
|
3
|
Ichikawa K, Horiuchi H. Fate Decisions of Chicken Primordial Germ Cells (PGCs): Development, Integrity, Sex Determination, and Self-Renewal Mechanisms. Genes (Basel) 2023; 14:genes14030612. [PMID: 36980885 PMCID: PMC10048776 DOI: 10.3390/genes14030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Primordial germ cells (PGCs) are precursor cells of sperm and eggs. The fate decisions of chicken PGCs in terms of their development, integrity, and sex determination have unique features, thereby providing insights into evolutionary developmental biology. Additionally, fate decisions in the context of a self-renewal mechanism have been applied to establish culture protocols for chicken PGCs, enabling the production of genome-edited chickens and the conservation of genetic resources. Thus, studies on the fate decisions of chicken PGCs have significantly contributed to both academic and industrial development. Furthermore, studies on fate decisions have rapidly advanced owing to the recent development of essential research technologies, such as genome editing and RNA sequencing. Here, we reviewed the status of fate decisions of chicken PGCs and provided insight into other important research issues that require attention.
Collapse
Affiliation(s)
- Kennosuke Ichikawa
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- Correspondence:
| | - Hiroyuki Horiuchi
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Hiroshima, Japan
| |
Collapse
|
4
|
Liao L, Yao Z, Kong J, Zhang X, Li H, Chen W, Xie Q. Transcriptomic analysis reveals the dynamic changes of transcription factors during early development of chicken embryo. BMC Genomics 2022; 23:825. [PMID: 36513979 PMCID: PMC9746114 DOI: 10.1186/s12864-022-09054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The transition from fertilized egg to embryo in chicken requires activation of hundreds of genes that were mostly inactivated before fertilization, which is accompanied with various biological processes. Undoubtedly, transcription factors (TFs) play important roles in regulating the changes in gene expression pattern observed at early development. However, the contribution of TFs during early embryo development of chicken still remains largely unknown that need to be investigated. Therefore, an understanding of the development of vertebrates would be greatly facilitated by study of the dynamic changes in transcription factors during early chicken embryo. RESULTS In the current study, we selected five early developmental stages in White Leghorn chicken, gallus gallus, for transcriptome analysis, cover 17,478 genes with about 807 million clean reads of RNA-sequencing. We have compared global gene expression patterns of consecutive stages and noted the differences. Comparative analysis of differentially expressed TFs (FDR < 0.05) profiles between neighboring developmental timepoints revealed significantly enriched biological categories associated with differentiation, development and morphogenesis. We also found that Zf-C2H2, Homeobox and bHLH were three dominant transcription factor families that appeared in early embryogenesis. More importantly, a TFs co-expression network was constructed and 16 critical TFs were identified. CONCLUSION Our findings provide a comprehensive regulatory framework of TFs in chicken early embryo, revealing new insights into alterations of chicken embryonic TF expression and broadening better understanding of TF function in chicken embryogenesis.
Collapse
Affiliation(s)
- Liqin Liao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Ziqi Yao
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China
| | - Jie Kong
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Xinheng Zhang
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Hongxin Li
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| | - Weiguo Chen
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China
| | - Qingmei Xie
- grid.20561.300000 0000 9546 5767Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China ,grid.484195.5Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642 China ,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, 510642 P. R. China ,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 P. R. China
| |
Collapse
|
5
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
6
|
Stoczynska-Fidelus E, Węgierska M, Kierasińska A, Ciunowicz D, Rieske P. Role of Senescence in Tumorigenesis and Anticancer Therapy. JOURNAL OF ONCOLOGY 2022; 2022:5969536. [PMID: 35342397 PMCID: PMC8956409 DOI: 10.1155/2022/5969536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
Although the role of senescence in many physiological and pathological processes is becoming more identifiable, many aspects of senescence are still enigmatic. A special attention is paid to the role of this phenomenon in tumor development and therapy. This review mainly deals with a large spectrum of oncological issues, beginning with therapy-induced senescence and ending with oncogene-induced senescence. Moreover, the role of senescence in experimental approaches, such as primary cancer cell culture or reprogramming into stem cells, is also beginning to receive further consideration. Additional focus is made on senescence resulting from mitotic catastrophe processes triggered by events occurring during mitosis and jeopardizing chromosomal stability. It has to be also realized that based on recent findings, the basics of senescent cell property interpretation, such as irreversibility of proliferation blockade, can be undermined. It shows that the definition of senescence probably requires updating. Finally, the role of senescence is lately more understandable in the immune system, especially since senescence can diminish the effectiveness of the chimeric antigen receptor T-cell (CAR-T) therapy. In this review, we summarize the current knowledge regarding all these issues.
Collapse
Affiliation(s)
- Ewelina Stoczynska-Fidelus
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Marta Węgierska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Damian Ciunowicz
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| |
Collapse
|
7
|
Lu Y, Wang H, Cao H, Chen X, Li D, Yu D, Yu M. Ascorbic acid and all-trans retinoic acid promote proliferation of chicken blastoderm cells (cBCs) by mediating DNA demethylation. In Vitro Cell Dev Biol Anim 2022; 58:199-209. [PMID: 35288810 DOI: 10.1007/s11626-022-00659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/11/2022] [Indexed: 11/05/2022]
Abstract
Chicken blastoderm cells (cBCs) obtained from stage X (EG&K) embryos are easily available materials for the study of cell development. However, cBCs are not widely used because they are hard to maintain in long-term culture in vitro. To solve this problem, ascorbic acid (AA; also known as vitamin C (VC)) and all-trans retinoic acid (ATRA) were added into basic culture medium to promote cell growth. Results suggested that cultured cBCs possessed strongly proliferative activity and maintained their pluripotency on the support of chicken embryonic fibroblast (CEF) feeder. Moreover, when VC or/and ATRA was added, the number and area of cBC colonies increased significantly compared with the control group. The expression of pluripotency genes (Sox2 and Nanog) and cell cycle-regulated genes (CCND1 and CDK6) was upregulated obviously. Furthermore, results showed that 5hmC levels in VC and RA groups increased significantly by DNA dot blot and immunofluorescence staining. These results provide strong evidence that VC and ATRA induced DNA demethylation and enhanced 5hmC level. The level of H3K27me3 was raised, while the level of H3K9me2 was reduced by addition of VC and ATRA. Finally, the expression of Tet1 and Dnmt3b was upregulated remarkably. Therefore, these results indicated that VC and ATRA enhanced DNA demethylation and then promoted cBC survival and proliferation in vitro.
Collapse
Affiliation(s)
- Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Haobin Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Heng Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiaolu Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Dongfeng Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Chicken blastoderms and primordial germ cells possess a higher expression of DNA repair genes and lower expression of apoptosis genes to preserve their genome stability. Sci Rep 2022; 12:49. [PMID: 34997179 PMCID: PMC8741993 DOI: 10.1038/s41598-021-04417-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
DNA is susceptible to damage by various sources. When the DNA is damaged, the cell repairs the damage through an appropriate DNA repair pathway. When the cell fails to repair DNA damage, apoptosis is initiated. Although several genes are involved in five major DNA repair pathways and two major apoptosis pathways, a comprehensive understanding of those gene expression is not well-understood in chicken tissues. We performed whole-transcriptome sequencing (WTS) analysis in the chicken embryonic fibroblasts (CEFs), stage X blastoderms, and primordial germ cells (PGCs) to uncover this deficiency. Stage X blastoderms mostly consist of undifferentiated progenitor (pluripotent) cells that have the potency to differentiate into all cell types. PGCs are also undifferentiated progenitor cells that later differentiate into male and female germ cells. CEFs are differentiated and abundant somatic cells. Through WTS analysis, we identified that the DNA repair pathway genes were expressed more highly in blastoderms and high in PGCs than CEFs. Besides, the apoptosis pathway genes were expressed low in blastoderms and PGCs than CEFs. We have also examined the WTS-based expression profiling of candidate pluripotency regulating genes due to the conserved properties of blastoderms and PGCs. In the results, a limited number of pluripotency genes, especially the core transcriptional network, were detected higher in both blastoderms and PGCs than CEFs. Next, we treated the CEFs, blastoderm cells, and PGCs with hydrogen peroxide (H2O2) for 1 h to induce DNA damage. Then, the H2O2 treated cells were incubated in fresh media for 3–12 h to observe DNA repair. Subsequent analyses in treated cells found that blastoderm cells and PGCs were more likely to undergo apoptosis along with the loss of pluripotency and less likely to undergo DNA repair, contrasting with CEFs. These properties of blastoderms and PGCs should be necessary to preserve genome stability during the development of early embryos and germ cells, respectively.
Collapse
|