1
|
Pan C, Xu S, Zhang W, Zhao Y, Zhao J, Song M. Expression of TLR7/8 in canine sperm and evaluation of the effect of ligand R848 on the sorting of canine X/Y sperm. Theriogenology 2024; 231:127-132. [PMID: 39447373 DOI: 10.1016/j.theriogenology.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
The aim of this study was to analyze the expression pattern of Toll receptor 7/8 (TLR7/8) in canine sperm, and explore the feasibility of using TLR7/8 ligand resiquimod(R848)to separate canine X and Y sperm. In this study, cellular immunofluorescence was used to analyze the expression of TLR7/8 in canine sperm, real-time fluorescence quantitative PCR was used to calculate the proportion of X sperm in the lower layer of the incubation solution with R848 to evaluate the sorting effect of R848 on canine X/Y sperm, and sperm quality detection system was used to analyze the effect of R848 on the motility of canine sperm. The mechanism of effect of R848 on canine sperm motility was analyzed by Western blot. The results showed that TLR8 was not expressed in all canine sperm, while TLR7 was expressed in all canine sperm and was localized in the head and tail of sperm. When 0.4 μM R848 was incubated with canine sperm for 1 h, the total motility, average path velocity (VAP), average straight-line velocity (VSL), and average curved-line velocity (VCL) of canine sperm were significantly decreased(P < 0.05). There was no significant difference between the lower and upper layers of the R848 treatment group and the control group(P > 0.05), and the proportion of X sperm was nearly half. The levels of NF-κB and GSK3α/β phosphorylation of sperm in R848 treatment group were significantly increased compared with control group(P < 0.05). The above results showed that TLR7/8 was not differentially expressed in canine X and Y sperm. R848 could decrease the motility of canine spermatozoa and inhibit sperm motility by the GSK3α/β-hexokinase pathway through the phosphorylation of NFκB and GSK3α/β, while could not separate X and Y spermatozoa. The method of sorting X/Y sperm based on TLR7/8 is not feasible for dogs.
Collapse
Affiliation(s)
- Caixia Pan
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China.
| | - Shu Xu
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| | - Wencai Zhang
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| | - Yu Zhao
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| | - Jianli Zhao
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| | - Mingqiang Song
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, 110000, China
| |
Collapse
|
2
|
Yotov S, Abadjieva D, Atanasov A, Ivanova B, Taushanova P, Fasulkov I, Kistanova E. In vitro characteristics of X- and Y-bearing ram spermatozoa sorted by bovine serum albumin (BSA) column and TLR7/8 ligand R848. Anim Reprod Sci 2024; 263:107450. [PMID: 38461673 DOI: 10.1016/j.anireprosci.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
The quality of the separated fractions in sex-sorted semen is very important for the success of the artificial insemination. This study aimed to evaluate some in vitro characteristics (DNA quantity, kinematic parameters and enzymes activity) of X- and Y-bearing ram spermatozoa sorted by bovine serum albumin (BSA) column and toll-like receptors (TLR)7/8 ligand R848. The ejaculates from six rams were collected by artificial vagina and subjected to a computer-assisted semen analysis (CASA). Total motility and percentage of the sperms with rapid and medium progressivity or non-progressivity in whole ejaculates and in X and Y fractions were analyzed. Activity of the enzymes ALP, GGT, CK, LDH and accumulation of lactate in the seminal plasma of ejaculates and in the environmental fluid of sexed spermatozoa were measured by biochemical analyzer. DNA was isolated from precipitated spermatozoa, and its quantity was measured. For both protocols the DNA mass from X-bearing fractions was higher, than from Y-bearing fractions. The high total motility of X- and Y-bearing spermatozoa as well as greater percent sperms with progressive motility were observed after use of BSA protocol. The application of TLR7/8 ligand R848 protocol led to reducing of Y-sperm motility and enhancement of non-progressivity in both fractions, which corresponded to the determined high amount of the extracellular lactate. For both methods, the significantly reduced activity of enzymes in the X and Y spermatozoa environmental fluids was established. Both protocols produce X- and Y-sperm fractions with satisfactory quality (over 80% total motility and over 50% rapid and medium progressive spermatozoa in each fraction).
Collapse
Affiliation(s)
- Stanimir Yotov
- Department of Obstetrics, Reproduction and Reproductive Disorders, Trakia University, Stara Zagora 6000, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Anatoli Atanasov
- Department of Obstetrics, Reproduction and Reproductive Disorders, Trakia University, Stara Zagora 6000, Bulgaria
| | - Boyana Ivanova
- Department of Obstetrics, Reproduction and Reproductive Disorders, Trakia University, Stara Zagora 6000, Bulgaria
| | - Paulina Taushanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ivan Fasulkov
- Department of Obstetrics, Reproduction and Reproductive Disorders, Trakia University, Stara Zagora 6000, Bulgaria
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| |
Collapse
|
3
|
Hou Y, Peng J, Hong L, Wu Z, Zheng E, Li Z. Gender Control of Mouse Embryos by Activation of TLR7/8 on X Sperm via Ligands dsRNA-40 and dsRNA-DR. Molecules 2024; 29:262. [PMID: 38202845 PMCID: PMC10780660 DOI: 10.3390/molecules29010262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Gender control technologies are promising for enhancing the production efficiency of the farm animal industry, and preventing sex-linked hereditary diseases in humans. It has been shown that the X sperm of mammalian animals specifically expresses X-chromosome-derived toll-like receptor 7/8 (TLR7/8), and the activation of TLR7/8 on the X sperm by their agonist, R848, can separate X and Y sperm via the specific inhibition of X sperm motility. The use of R848-preselected sperm for fertilization resulted in sex-ratio-skewed embryos or offspring. In this study, we aimed to investigate whether two other TLR7/8 ligands, double-stranded RNA-40 (dsRNA-40) and double-stranded RNA-DR (dsRNA-DR), are also effective in the separation of mouse X and Y sperm and the subsequent generation of gender-ratio-skewed in vitro fertilization (IVF) embryos. Our results indicated that cholesterol modification significantly enhances the transfection of dsRNA-40 and dsRNA-DR into sperm cells. dsRNA-40 and dsRNA-DR incubation with mouse sperm could separate X and Y sperm by the specific suppression of X sperm motility by decreasing its ATP level and mitochondrial activity. The use of a dsRNA-40- or dsRNA-DR-preselected upper layer of sperm, which predominantly contains high-motility Y sperm, for IVF caused a male-biased sex ratio shift in resulting embryos (with 65.90-74.93% of embryos being male). This study develops a simple new method for the efficient separation of mammalian X and Y sperm, enabling the selective production of male or female progenies.
Collapse
Affiliation(s)
- Yunfei Hou
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jingfeng Peng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| |
Collapse
|
4
|
Muñoz E, Castro M, Aguila L, Contreras MJ, Fuentes F, Arias ME, Felmer R. Standardization of a Sex-Sorting Protocol for Stallion Spermatozoa by Means of Absolute RT-qPCR. Int J Mol Sci 2023; 24:11947. [PMID: 37569324 PMCID: PMC10419253 DOI: 10.3390/ijms241511947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Sperm sexing is a technology that can generate great economic benefits in the animal production sector. Techniques such as sex-sorting promise over 90% accuracy in sperm sexing. However, for the correct standardization of the technique, some laboratory methodologies are required. The present manuscript describes in detail a standardized equine sperm sex-sorting protocol using an absolute qPCR-based methodology. Furthermore, the results of absolute qPCR were implemented and validated by generating equine/bovine heterologous embryos by intracytoplasmic sperm injection (ICSI) of presumably sexed equine spermatozoa into bovine oocytes using a piezoelectric system (Piezo-ICSI). Our results indicated that equine sex-sorting spermatozoa had a 97% and 94% certainty for X and Y sperm, respectively, while presumptive female and male equine/bovine hybrid embryos, generated by Piezo-ICSI, had an accuracy of 92% with respect to the desired sex. Therefore, it is concluded that the presented methodology is a reliable, cost-effective, and relatively simple option for standardizing sex-sorting of equine spermatozoa. This is supported by the results of the correct sexing of Piezo-ICSI heterologous embryos generated with the sexed spermatozoa, validating the correct sexing and viability of these gametes.
Collapse
Affiliation(s)
- Erwin Muñoz
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, P.O. Box 54-D, Chile; (E.M.); (M.C.); (L.A.); (M.J.C.); (F.F.); (M.E.A.)
- Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Macarena Castro
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, P.O. Box 54-D, Chile; (E.M.); (M.C.); (L.A.); (M.J.C.); (F.F.); (M.E.A.)
- Master of Science Program with Mention in Biology of Reproduction, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, P.O. Box 54-D, Chile; (E.M.); (M.C.); (L.A.); (M.J.C.); (F.F.); (M.E.A.)
| | - María José Contreras
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, P.O. Box 54-D, Chile; (E.M.); (M.C.); (L.A.); (M.J.C.); (F.F.); (M.E.A.)
- Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, P.O. Box 54-D, Chile; (E.M.); (M.C.); (L.A.); (M.J.C.); (F.F.); (M.E.A.)
- Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, P.O. Box 54-D, Chile; (E.M.); (M.C.); (L.A.); (M.J.C.); (F.F.); (M.E.A.)
- Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, P.O. Box 54-D, Chile; (E.M.); (M.C.); (L.A.); (M.J.C.); (F.F.); (M.E.A.)
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco P.O. Box 54-D, Chile
| |
Collapse
|
5
|
Pozdyshev DV, Kombarova NA, Muronetz VI. Biochemical Features of X or Y Chromosome-Bearing Spermatozoa for Sperm Sexing. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:655-666. [PMID: 37331711 DOI: 10.1134/s0006297923050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/20/2023]
Abstract
This review presents information on biochemical features of spermatozoa bearing X or Y chromosome, enabling production of a sperm fraction with pre-defined sex chromosome. The almost only technology currently used for such separation (called sexing) is based on the fluorescence-activated cell sorting of sperm depending on DNA content. In addition to the applied aspects, this technology made it possible to analyze properties of the isolated populations of spermatozoa bearing X or Y chromosome. In recent years, existence of the differences between these populations at the transcriptome and proteome level have been reported in a number of studies. It is noteworthy that these differences are primarily related to the energy metabolism and flagellar structural proteins. New methods of sperm enrichment with X or Y chromosome cells are based on the differences in motility between the spermatozoa with different sex chromosomes. Sperm sexing is a part of the widespread protocol of artificial insemination of cows with cryopreserved semen, it allows to increase proportion of the offspring with the required sex. In addition, advances in the separation of X and Y spermatozoa may allow this approach to be applied in clinical practice to avoid sex-linked diseases.
Collapse
Affiliation(s)
- Denis V Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Nina A Kombarova
- Head Center for Reproduction of Agricultural Animals, 142143 Bykovo, Moscow Region, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
He Q, Wu S, Gao F, Xu X, Wang S, Xu Z, Huang M, Zhang K, Zhang Y, Quan F. Diluent pH affects sperm motility via GSK3 α/β-hexokinase pathway for the efficient enrichment of X-sperm to increase the female kids rate of dairy goats. Theriogenology 2023; 201:1-11. [PMID: 36801817 DOI: 10.1016/j.theriogenology.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/20/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Dairy goats are the goats bred with the ability to produce large quantities of milk, and the increase of the female kid rate of breeding dairy goats is beneficial for milk production and economic benefits of dairy goat farms. Our previous study revealed that regulating the pH of dairy goat semen diluent to 6.2 or 7.4 respectively, the proportion of X chromosome bearing sperm (X-sperm) in the up and down layers of the tube after incubation was significantly higher than that of Y chromosome bearing sperm (Y-sperm) i.e. enriched X-sperm. In this study, fresh dairy goat semen collected in different seasons was diluted in different pH solutions to calculate the number and rate of X-sperm and to measure the functional parameters of enriched sperm. The artificial insemination experiments were performed with enriched X-sperm. The mechanisms of regulating the pH of diluent affecting sperm enrichment were further studied. The results showed that the proportion of enriched X-sperm in pH 6.2 and 7.4 diluents of sperm collected in different seasons showed no significantly different, but were significantly higher than that of the control group (pH 6.8). The in vitro functional parameters of X-sperm enriched in pH 6.2 and 7.4 diluent solution were not significantly different from those of the control group (P > 0.05). After artificial insemination with X-sperm enriched in pH7.4 diluent, the proportion of female offspring was significantly higher than that of the control group. It was found that the regulating pH of the diluent affected sperm mitochondrial activity and glucose uptake capacity via phosphorylating NF-κB and GSK3α/β proteins. The motility activity of X-sperm was enhanced under acidic conditions and weakened under alkaline conditions, which was conducive to the effective enrichment of X-sperm. This study demonstrated that the number and proportion of X-sperm enriched using pH 7.4 diluent were elevated, and the proportion of female kids was increased. This technology can be used for the reproduction and production of dairy goats in farms at large scales.
Collapse
Affiliation(s)
- Qifu He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Shenghui Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Feng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xuerui Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Shaowen Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Zhiming Xu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Min Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Kang Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China.
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Northwest A&F University, Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Huang M, Cao X, He Q, Yang H, Chen Y, Zhao J, Ma H, Kang J, Liu J, Quang F. Alkaline semen diluent combined with R848 for separation and enrichment of dairy goat X-sperm. J Dairy Sci 2022; 105:10020-10032. [DOI: 10.3168/jds.2022-22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
|
8
|
Ren F, Xi H, Qiao P, Li Y, Xian M, Zhu D, Hu J. Single-cell transcriptomics reveals male germ cells and Sertoli cells developmental patterns in dairy goats. Front Cell Dev Biol 2022; 10:944325. [PMID: 35938151 PMCID: PMC9355508 DOI: 10.3389/fcell.2022.944325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis holds considerable promise for human-assisted reproduction and livestock breeding based on stem cells. It occurs in seminiferous tubules within the testis, which mainly comprise male germ cells and Sertoli cells. While the developmental progression of male germ cells and Sertoli cells has been widely reported in mice, much less is known in other large animal species, including dairy goats. In this study, we present the data of single cell RNA sequencing (scRNA-seq) for 25,373 cells from 45 (pre-puberty), 90 (puberty), and 180-day-old (post-puberty) dairy goat testes. We aimed to identify genes that are associated with key developmental events in male germ cells and Sertoli cells. We examined the development of spermatogenic cells and seminiferous tubules from 15, 30, 45, 60, 75, 90, 180, and 240-day-old buck goat testes. scRNA-seq clustering analysis of testicular cells from pre-puberty, puberty, and post-puberty goat testes revealed several cell types, including cell populations with characteristics of spermatogonia, early spermatocytes, spermatocytes, spermatids, Sertoli cells, Leydig cells, macrophages, and endothelial cells. We mapped the timeline for male germ cells development from spermatogonia to spermatids and identified gene signatures that define spermatogenic cell populations, such as AMH, SOHLH1, INHA, and ACTA2. Importantly, using immunofluorescence staining for different marker proteins (UCHL1, C-KIT, VASA, SOX9, AMH, and PCNA), we explored the proliferative activity and development of male germ cells and Sertoli cells. Moreover, we identified the expression patterns of potential key genes associated with the niche-related key pathways in male germ cells of dairy goats, including testosterone, retinoic acid, PDGF, FGF, and WNT pathways. In summary, our study systematically investigated the elaborate male germ cells and Sertoli cells developmental patterns in dairy goats that have so far remained largely unknown. This information represents a valuable resource for the establishment of goat male reproductive stem cells lines, induction of germ cell differentiation in vitro, and the exploration of sequential cell fate transition for spermatogenesis and testicular development at single-cell resolution.
Collapse
Affiliation(s)
- Fa Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huaming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dawei Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Jianhong Hu,
| |
Collapse
|
9
|
High-Efficiency Bovine Sperm Sexing Used Magnetic-Activated Cell Sorting by Coupling scFv Antibodies Specific to Y-Chromosome-Bearing Sperm on Magnetic Microbeads. BIOLOGY 2022; 11:biology11050715. [PMID: 35625442 PMCID: PMC9138659 DOI: 10.3390/biology11050715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Sperm sexing technique is favored in the dairy industry. This research focuses on the efficiency of bovine sperm sexing using magnetic-activated cell sorting (MACS) by scFv antibody against Y-chromosome-bearing sperm (Y-scFv) coupled to magnetic microbeads and its effects on kinematic variables, sperm quality, and X/Y-sperm ratio. In this study, the optimal concentration of Y-scFv antibody coupling to the surface of magnetic microbeads was 2–4 mg/mL. PY-microbeads revealed significantly enriched Y-chromosome-bearing sperm (Y-sperm) in the eluted fraction (78.01–81.43%) and X-chromosome-bearing sperm (X-sperm) in the supernatant fraction (79.04–82.65%). The quality of frozen–thawed sexed sperm was analyzed by CASA and imaging flow cytometer, which showed that PY-microbeads did not have a negative effect on X-sperm motility, viability, or acrosome integrity. However, sexed Y-sperm had significantly decreased motility and viability. The X/Y-sperm ratio was determined using an imaging flow cytometer and real-time PCR. PY-microbeads produced sperm with up to 82.65% X-sperm in the X-enriched fraction and up to 81.43% Y-sperm in the Y-enriched fraction. Bovine sperm sexing by PY-microbeads showed high efficiency in separating Y-sperm from X-sperm and acceptable sperm quality. This initial technique is feasible for bovine sperm sexing, which increases the number of heifers in dairy herds while lowering production expenses.
Collapse
|
10
|
Atli MO, Hitit M, Özbek M, Köse M, Bozkaya F. Cell-Specific Expression Pattern of Toll-Like Receptors and Their Roles in Animal Reproduction. Handb Exp Pharmacol 2022; 276:65-93. [PMID: 35434748 DOI: 10.1007/164_2022_584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Toll-like receptors (TLRs), a part of the innate immune system, have critical roles in protection against infections and involve in basic pathology and physiology. Secreted molecules from the body or pathogens could be a ligand for induction of the TLR system. There are many immune and non-immune types of cells that express at a least single TLR on their surface or cytoplasm. Those cells may be a player in a defense system or in the physiological regulation mechanisms. Reproductive tract and organs contain different types of cells that have essential functions such as hormone production, providing an environment for embryo/fetus, germ cell production, etc. Although lower parts of reproductive organs are in a relationship with outsider contaminants (bacteria, viruses, etc.), upper parts should be sterile to provide a healthy pregnancy and germ cell production. In those areas, TLRs bear controller or regulator roles. In this chapter, we will provide current information about physiological functions of TLR in the cells of the reproductive organs and tract, and especially about their roles in follicle selection, maturation, follicular atresia, ovulation, corpus luteum (CL) formation and regression, establishment and maintenance of pregnancy, sperm production, maturation, capacitation as well as the relationship between TLR polymorphism and reproduction in domestic animals. We will also discuss pathogen-associated molecular patterns (PAMPs)-induced TLRs that involve in reproductive inflammation/pathology.
Collapse
Affiliation(s)
- Mehmet Osman Atli
- Department of Reproduction, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mehmet Köse
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Faruk Bozkaya
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanlıurfa, Turkey
| |
Collapse
|