1
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zhang M, Zha X, Ma X, La Y, Guo X, Chu M, Bao P, Yan P, Wu X, Liang C. Polymorphisms of ITGA9 Gene and Their Correlation with Milk Quality Traits in Yak ( Bos grunniens). Foods 2024; 13:1613. [PMID: 38890842 PMCID: PMC11172211 DOI: 10.3390/foods13111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
A single-nucleotide polymorphism (SNP) is a genome-level trait that arises from a variation in a single nucleotide, leading to diversity in DNA sequences. SNP screening is commonly used to provide candidate genes for yak breeding efforts. Integrin Subunit Alpha 9 (ITGA9) is an integrin protein. It plays an important role in cell adhesion, signalling, and other processes. The aim of this study was to discuss the association between genetic polymorphisms in the ITGA9 gene and milk quality traits and to identify potential molecular marker loci for yak breeding quality. We genotyped 162 yaks using an Illumina Yak cGPS 7K liquid chip and identified the presence of polymorphisms at nine SNP loci in the ITGA9 gene of yaks. The results showed that the mutant genotypes in the loci g.285,808T>A, g.306,600T>C, and g.315,413C>T were positively correlated with the contents of casein, protein, total solids (TS), and solid nonfat (SNF) in yak milk. In other loci, heterozygous genotypes had a positive correlation with nutrient content in yak milk. Then, two ITGA9 haplotype blocks were constructed based on linkage disequilibrium, which facilitated a more accurate screening of ITGA9 as a candidate gene for yak milk quality improvement. In conclusion, we identified SNPs and haplotype blocks related to yak milk quality traits and provided genetic resources for marker-assisted selection in yak breeding.
Collapse
Affiliation(s)
- Mengfan Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xita Zha
- Qinghai Province Qilian County Animal Husbandry and Veterinary Workstation, Qilian 810400, China;
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (M.Z.); (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
3
|
Ren W, Wang J, Zeng Y, Wang T, Meng J, Yao X. Transcriptome identification of differential mammary genes of Kazakh horses during early pregnancy. Gene 2024; 902:148189. [PMID: 38246578 DOI: 10.1016/j.gene.2024.148189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Kazakh mares have attracted widespread attention with their outstanding lactation traits. Lactation is a complex dynamic process regulated by multiple factors. The extensive application of transcriptome sequencing technology enables researchers to further explore this biological issue. This study selected three pregnant and three non-pregnant Kazakh mares as the research subject. Their mammary glands were taken for transcriptome sequencing. The results show that there are 9 lncRNAs and 122 mRNAs differentially expressed between the two groups. GO enrichment analysis shows that there are 175 molecular functions, 59 cellular components, and 555 biological processes, including cellular hormone metabolic process, hormone catabolic process, and I-kappaB kinase/NF-kappaB signaling. KEGG enrichment analysis exhibits that these differential genes are mainly enriched in the NF-kappa B signaling pathway, steroid hormone biosynthesis, breast cancer, ECM-receptor interaction, and MAPK signaling pathway. WNT4, DPP4, and NFKBIA are key nodes regulating breast activation. Conclusions: Through the comparative analysis of the transcriptome data of mammary tissues of pregnant and non-pregnant mares, relevant differentially expressed genes are screened and analyzed. This study provides valuable fundamental data for investigating candidate genes related to the lactation regulation and mammogenesis of Kazakh horses.
Collapse
Affiliation(s)
- Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tongliang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China.
| |
Collapse
|
4
|
Naser IH, Hamza AA, Alhili A, Faisal AN, Ali MS, Kadhim NA, Suliman M, Alshahrani MY, Alawadi A. Atypical chemokine receptor 4 (ACKR4/CCX-CKR): A comprehensive exploration across physiological and pathological landscapes in contemporary research. Cell Biochem Funct 2024; 42:e4009. [PMID: 38597217 DOI: 10.1002/cbf.4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Atypical chemokine receptor 4 (ACKR4), also known as CCX-CKR, is a member of the chemokine receptor family that lacks typical G protein signaling activity. Instead, ACKR4 functions as a scavenger receptor that can bind and internalize a wide range of chemokines, influencing their availability and activity in the body. ACKR4 is involved in various physiological processes, such as immune cell trafficking and the development of thymus, spleen, and lymph nodes. Moreover, ACKR4 has been implicated in several pathological conditions, including cancer, heart and lung diseases. In cancer, ACKR4 plays a complex role, acting as a tumor suppressor or promoter depending on the type of cancer and the stage of the disease. For instance, ACKR4 may inhibit the growth and metastasis of breast cancer, but it may also promote the progression of hepatocellular carcinoma and gastric cancer. In inflammatory situations, ACKR4 has been found to modulate the recruitment and activation of immune cells, contributing to the pathogenesis of diseases such as myocardial infraction and pulmonary sarcoidosis. The study of ACKR4 is still ongoing, and further research is needed to fully understand its role in different physiological and pathological contexts. Nonetheless, ACKR4 represents a promising target for the development of novel therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University College, Hillah, Babil, Iraq
| | - Asia Ali Hamza
- Department of Pharmaceutics, Faculty of pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|