Pando A, Fast L, Dubielecka PM, Chorzalska A, Wen S, Reagan J. Murine Leukemia-Derived Extracellular Vesicles Elicit Antitumor Immune Response.
J Blood Med 2021;
12:277-285. [PMID:
34040472 PMCID:
PMC8139718 DOI:
10.2147/jbm.s308861]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background
Extracellular vesicles (EVs) are heterogeneous lipid bilayer particles secreted by cells. EVs contain proteins, RNA, DNA and other cargo that can have immunomodulatory effects. Cancer-derived EVs have been described as having immunomodulating effects in vivo with immunosuppressive and pro-tumor growth capabilities. However, cancer-derived EVs have also been harnessed and utilized for anti-cancer potential.
Methods
To assess the immunomodulatory effect of EVs produced by acute myeloid leukemia (AML) cells, we isolated vesicles secreted by the murine AML cell line, C1498, and investigated their effect on in vitro and in vivo immune responses.
Results
These leukemia-derived EVs were found to induce increased proliferation of CD3+ cells and enhanced cytolytic activity of CD3+ cells directed toward leukemic cells in vitro. Injection of leukemia-derived EVs into syngeneic naïve mice induced T cell responses in vivo and resulted in enhanced immune responses upon T cell re-stimulation in vitro.
Conclusion
These findings indicate that C1498-derived EVs have immunomodulatory effects on cell-mediated immune responses that could potentially be utilized to facilitate anti-leukemia immune responses.
Collapse