1
|
Ou X, Gao G, Habaz IA, Wang Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm (Beijing) 2024; 5:e694. [PMID: 39184861 PMCID: PMC11344283 DOI: 10.1002/mco2.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Tyrosine kinase inhibitor (TKI)-targeted therapy has revolutionized cancer treatment by selectively blocking specific signaling pathways crucial for tumor growth, offering improved outcomes with fewer side effects compared with conventional chemotherapy. However, despite their initial effectiveness, resistance to TKIs remains a significant challenge in clinical practice. Understanding the mechanisms underlying TKI resistance is paramount for improving patient outcomes and developing more effective treatment strategies. In this review, we explored various mechanisms contributing to TKI resistance, including on-target mechanisms and off-target mechanisms, as well as changes in the tumor histology and tumor microenvironment (intrinsic mechanisms). Additionally, we summarized current therapeutic approaches aiming at circumventing TKI resistance, including the development of next-generation TKIs and combination therapies. We also discussed emerging strategies such as the use of dual-targeted antibodies and PROteolysis Targeting Chimeras. Furthermore, we explored future directions in TKI-targeted therapy, including the methods for detecting and monitoring drug resistance during treatment, identification of novel targets, exploration of dual-acting kinase inhibitors, application of nanotechnologies in targeted therapy, and so on. Overall, this review provides a comprehensive overview of the challenges and opportunities in TKI-targeted therapy, aiming to advance our understanding of resistance mechanisms and guide the development of more effective therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Xuejin Ou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China HospitalSichuan UniversityChengduChina
| | - Inbar A. Habaz
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Dorighi KM, Zhu A, Fortin JP, Hung-Hao Lo J, Sudhamsu J, Wendorff TJ, Durinck S, Callow M, Foster SA, Haley B. Accelerated drug-resistant variant discovery with an enhanced, scalable mutagenic base editor platform. Cell Rep 2024; 43:114313. [PMID: 38838224 DOI: 10.1016/j.celrep.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anqi Zhu
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jean-Philippe Fortin
- Department of Data Science and Statistical Computing, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jerry Hung-Hao Lo
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Marinella Callow
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Scott A Foster
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
3
|
Ferro A, Marinato GM, Mulargiu C, Marino M, Pasello G, Guarneri V, Bonanno L. The study of primary and acquired resistance to first-line osimertinib to improve the outcome of EGFR-mutated advanced Non-small cell lung cancer patients: the challenge is open for new therapeutic strategies. Crit Rev Oncol Hematol 2024; 196:104295. [PMID: 38382773 DOI: 10.1016/j.critrevonc.2024.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
The development of targeted therapy in epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) patients has radically changed their clinical perspectives. Current first-line standard treatment for advanced disease is commonly considered third-generation tyrosine kinase inhibitors (TKI), osimertinib. The study of primary and acquired resistance to front-line osimertinib is one of the main burning issues to further improve patients' outcome. Great heterogeneity has been depicted in terms of duration of clinical benefit and pattern of progression and this might be related to molecular factors including subtypes of EGFR mutations and concomitant genetic alterations. Acquired resistance can be categorized into two main classes: EGFR-dependent and EGFR-independent mechanisms and specific pattern of progression to first-line osimertinib have been demonstrated. The purpose of the manuscript is to provide a comprehensive overview of literature about molecular resistance mechanisms to first-line osimertinib, from a clinical perspective and therefore in relationship to emerging therapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Ferro
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Gian Marco Marinato
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Cristiana Mulargiu
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Monica Marino
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy.
| |
Collapse
|
4
|
Shen J, Chen L, Liu J, Li A, Zheng L, Chen S, Li Y. EGFR degraders in non-small-cell lung cancer: Breakthrough and unresolved issue. Chem Biol Drug Des 2024; 103:e14517. [PMID: 38610074 DOI: 10.1111/cbdd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
The epidermal growth factor receptor (EGFR) has been well validated as a therapeutic target for anticancer drug discovery. Osimertinib has become the first globally accessible third-generation EGFR inhibitor, representing one of the most advanced developments in non-small-cell lung cancer (NSCLC) therapy. However, a tertiary Cys797 to Ser797 (C797S) point mutation has hampered osimertinib treatment in patients with advanced EGFR-mutated NSCLC. Several classes of fourth-generation EGFR inhibitors were consequently discovered with the aim of overcoming the EGFRC797S mutation-mediated resistance. However, no clinical efficacy data of the fourth-generation EGFR inhibitors were reported to date, and EGFRC797S mutation-mediated resistance remains an "unmet clinical need." Proteolysis-targeting chimeric molecules (PROTACs) obtained from EGFR-TKIs have been developed to target drug resistance EGFR in NSCLC. Some PROTACs are from nature products. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition, and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the resistance, and mutations of EGFR, and then mainly focus on the recent advances of EGFR-targeting degraders along with its advantages and outstanding challenges.
Collapse
Affiliation(s)
- Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jihu Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Anzhi Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lüyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Sheng Chen
- Jiangxi Chiralsyn Biological Medicine Co., Ltd, Ganzhou, Jiangxi, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
5
|
Li Y, Mao T, Wang J, Zheng H, Hu Z, Cao P, Yang S, Zhu L, Guo S, Zhao X, Tian Y, Shen H, Lin F. Toward the next generation EGFR inhibitors: an overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun Signal 2023; 21:71. [PMID: 37041601 PMCID: PMC10088170 DOI: 10.1186/s12964-023-01082-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/13/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is currently the standard first-line therapy for EGFR-mutated advanced non-small cell lung cancer (NSCLC). The life quality and survival of this subgroup of patients were constantly improving owing to the continuous iteration and optimization of EGFR-TKI. Osimertinib, an oral, third-generation, irreversible EGFR-TKI, was initially approved for the treatment of NSCLC patients carrying EGFR T790M mutations, and has currently become the dominant first-line targeted therapy for most EGFR mutant lung cancer. Unfortunately, resistance to osimertinib inevitably develops during the treatment and therefore limits its long-term effectiveness. For both fundamental and clinical researchers, it stands for a major challenge to reveal the mechanism, and a dire need to develop novel therapeutics to overcome the resistance. In this article, we focus on the acquired resistance to osimertinib caused by EGFR mutations which account for approximately 1/3 of all reported resistance mechanisms. We also review the proposed therapeutic strategies for each type of mutation conferring resistance to osimertinib and give an outlook to the development of the next generation EGFR inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
| | - Tianyu Mao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hongrui Zheng
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Ziyi Hu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Pingping Cao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Suisui Yang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingyun Zhu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Shunyao Guo
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinfei Zhao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yue Tian
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hua Shen
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China.
| | - Fan Lin
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
6
|
Guerin N, Feichtner A, Stefan E, Kaserer T, Donald BR. Resistor: An algorithm for predicting resistance mutations via Pareto optimization over multistate protein design and mutational signatures. Cell Syst 2022; 13:830-843.e3. [PMID: 36265469 PMCID: PMC9589925 DOI: 10.1016/j.cels.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 01/26/2023]
Abstract
Resistance to pharmacological treatments is a major public health challenge. Here, we introduce Resistor-a structure- and sequence-based algorithm that prospectively predicts resistance mutations for drug design. Resistor computes the Pareto frontier of four resistance-causing criteria: the change in binding affinity (ΔKa) of the (1) drug and (2) endogenous ligand upon a protein's mutation; (3) the probability a mutation will occur based on empirically derived mutational signatures; and (4) the cardinality of mutations comprising a hotspot. For validation, we applied Resistor to EGFR and BRAF kinase inhibitors treating lung adenocarcinoma and melanoma. Resistor correctly identified eight clinically significant EGFR resistance mutations, including the erlotinib and gefitinib "gatekeeper" T790M mutation and five known osimertinib resistance mutations. Furthermore, Resistor predictions are consistent with BRAF inhibitor sensitivity data from both retrospective and prospective experiments using KinCon biosensors. Resistor is available in the open-source protein design software OSPREY.
Collapse
Affiliation(s)
- Nathan Guerin
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, 6020 Tyrol, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, 6020 Tyrol, Austria; Tyrolean Cancer Research Institute, Innsbruck, 6020 Tyrol, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, 6020 Tyrol, Austria.
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC 27708, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA; Department of Mathematics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Acquired Mechanisms of Resistance to Osimertinib-The Next Challenge. Cancers (Basel) 2022; 14:cancers14081931. [PMID: 35454838 PMCID: PMC9027936 DOI: 10.3390/cancers14081931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Osimertinib has revolutionized the treatment of EGFR-mutated tumors. Its current applications include the first-line setting, second-line setting, as well as the adjuvant setting. Although it represents a milestone in the context of targeted therapy, inevitably all tumors develop an acquired resistance, some mechanisms involve EGFR, others do so through alternative pathways leading to a bypass in osimertinib inhibition. It is key to understand these acquired mechanisms of resistance, both in the clinical setting, as well as in preclinical models, in order to develop and contribute to the identification of possible therapeutic strategies to overcome this acquired resistance. Abstract EGFR-mutated tumors represent a significant percentage of non-small cell lung cancer. Despite the increasing use of osimertinib, a treatment that has demonstrated an outstanding clinical benefit with a tolerable toxicity profile, EGFR tumors eventually acquire mechanisms of resistance. In the last years, multiple mechanisms of resistance have been identified; however, after progressing on osimertinib, treatment options remain bleak. In this review, we cover the most frequent alterations and potential therapeutic strategies to overcome them.
Collapse
|
8
|
Metzenmacher M, Hegedüs B, Forster J, Schramm A, Horn PA, Klein CA, Bielefeld N, Ploenes T, Aigner C, Theegarten D, Schildhaus HU, Siveke JT, Schuler M, Lueong SS. Combined multimodal ctDNA analysis and radiological imaging for tumor surveillance in Non-small cell lung cancer. Transl Oncol 2021; 15:101279. [PMID: 34800919 PMCID: PMC8605355 DOI: 10.1016/j.tranon.2021.101279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Radiology is the current standard for monitoring treatment responses in lung cancer. Limited sensitivity, exposure to ionizing radiations and related sequelae constitute some of its major limitation. Non-invasive and highly sensitive methods for early detection of treatment failures and resistance-associated disease progression would have additional clinical utility. METHODS We analyzed serially collected plasma and paired tumor samples from lung cancer patients (61 with stage IV, 48 with stages I-III disease) and 61 healthy samples by means of next-generation sequencing, radiological imaging and droplet digital polymerase chain reaction (ddPCR) mutation and methylation assays. RESULTS A 62% variant concordance between tumor-reported and circulating-free DNA (cfDNA) sequencing was observed between baseline liquid and tissue biopsies in stage IV patients. Interestingly, ctDNA sequencing allowed for the identification of resistance-mediating p.T790M mutations in baseline plasma samples for which no such mutation was observed in the corresponding tissue. Serial circulating tumor DNA (ctDNA) mutation analysis by means of ddPCR revealed a general decrease in ctDNA loads between baseline and first reassessment. Additionally, serial ctDNA analyses only recapitulated computed tomography (CT) -monitored tumor dynamics of some, but not all lesions within the same patient. To complement ctDNA variant analysis we devised a ctDNA methylation assay (methcfDNA) based on methylation-sensitive restriction enzymes. cfDNA methylation showed and area under the curve (AUC) of > 0.90 in early and late stage cases. A decrease in methcfDNA between baseline and first reassessment was reflected by a decrease in CT-derive tumor surface area, irrespective of tumor mutational status. CONCLUSION Taken together, our data support the use of cfDNA sequencing for unbiased characterization of the molecular tumor architecture, highlights the impact of tumor architectural heterogeneity on ctDNA-based tumor surveillance and the added value of complementary approaches such as cfDNA methylation for early detection and monitoring.
Collapse
Affiliation(s)
- Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany; Division of Thoracic Oncology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, Tüschener Weg 40, Essen 45239, Germany.
| | - Balazs Hegedüs
- Department of Thoracic Surgery, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen D-45239, Germany.
| | - Jan Forster
- German Cancer Consortium (DKTK), Partner site University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany; Chair for Genome Informatics, Department of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany.
| | - Alexander Schramm
- Laboratory for Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany.
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen 45122, Germany.
| | - Christoph A Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg 93053, Germany; Fraunhofer-Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg 93053, Germany.
| | - Nicola Bielefeld
- German Cancer Consortium (DKTK), Partner site University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany; Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen 45122, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.
| | - Till Ploenes
- Department of Thoracic Surgery, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen D-45239, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen D-45239, Germany.
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | | | - Jens T Siveke
- German Cancer Consortium (DKTK), Partner site University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany; Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen 45122, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany; Division of Thoracic Oncology, West German Cancer Center, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, Tüschener Weg 40, Essen 45239, Germany; German Cancer Consortium (DKTK), Partner site University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany.
| | - Smiths S Lueong
- German Cancer Consortium (DKTK), Partner site University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany; Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen 45122, Germany; Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.
| |
Collapse
|
9
|
Shaikh M, Shinde Y, Pawara R, Noolvi M, Surana S, Ahmad I, Patel H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J Med Chem 2021; 65:1008-1046. [PMID: 34323489 DOI: 10.1021/acs.jmedchem.1c00876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.
Collapse
Affiliation(s)
- Matin Shaikh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Yashodeep Shinde
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Rahul Pawara
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Malleshappa Noolvi
- Shree Dhanvantari College of Pharmacy, Kim, Surat, Gujarat, India 394111
| | - Sanjay Surana
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Iqrar Ahmad
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| | - Harun Patel
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India 425405
| |
Collapse
|
10
|
Fahim AM, Ismael EHI, Elsayed GH, Farag AM. Synthesis, antimicrobial, anti-proliferative activities, molecular docking and DFT studies of novel pyrazolo[5,1-c][1, 2, 4]triazine-3-carboxamide derivatives. J Biomol Struct Dyn 2021; 40:9177-9193. [PMID: 34106038 DOI: 10.1080/07391102.2021.1930582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this investigation, we studied the reactivity of 5-aminouracil (1) with ethyl cyanoacetate (2) utilizing microwave irradiation to afford the corresponding 2-cyano-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)acetamide (3) in excellent yield. The electrophilic azo-coupling reaction of acetamide 3 with aromatic diazonium salts afforded the corresponding hydrazone derivatives 4a-d. The Michael addition cyclization of hydrazone in pyridine to give pyrazolo[5,1-c][1, 2, 4]triazine-3-carboxamide 5a-d derivatives. The obtained compounds were elucidated against antimicrobial activity and antitumor activity breast cancer cells (MCF-7) and liver cancer cells (HepG2) utilized MTT assay. Compounds 5b, 5c and 5d revealed more inhibitory influence on MCF7 and HepG2 growth than the reference drug doxorubicin (Dox) after 48 h incubation. Furthermore, molecular docking studies were carried out on one of the most effective compound 4-amino-N-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-7-(4-fluorophenyl) pyrazole [5,1-c][1, 2, 4]triazine-3-carboxamide (5c) (TFC) with (PDB: 3t88), (PDB: 2wje) , (PDB: 4ynt), (PDB: 1tgh), (PDB: 4hdq) and (PDB: 3pxe) which attached with different proteins with different energies and shortage bond distance. Also; the comprehensive theoretical and experimental mechanical studies of compound TFC and TMC were compatible with FTIR and 1H NMR spectral data. The optimized molecular structure of TFC with FTIR was examined via DFT/ B3LYP/6-31G (d) level.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Asmaa M Fahim
- Department of Green Chemistry, National Research Center, Dokki, Cairo, Egypt
| | - Eman H I Ismael
- Department of Organometallic and Organ Metalloid Chemistry, National Research Centre, Dokki, Cairo, Egypt
| | - Ghada H Elsayed
- Hormones Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmad M Farag
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| |
Collapse
|
11
|
Chen D, Zhang L, Liu Y, Song J, Guo J, Wang L, Xia Q, Zheng X, Cai Y, Hong C. Insight into the impact of EGFR L792Y/F/H mutations on sensitivity to osimertinib: an in silico study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05570k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
EGFR L792Y/F/H mutation makes it difficult for Osimertinib to recognize ATP pockets.
Collapse
Affiliation(s)
- Daoxing Chen
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Liting Zhang
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Yanan Liu
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Jiali Song
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Jingwen Guo
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Longxin Wang
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Qinqin Xia
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou
- China
| | - Chenglv Hong
- Department of Cardiology
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
12
|
Tumbrink HL, Heimsoeth A, Sos ML. The next tier of EGFR resistance mutations in lung cancer. Oncogene 2020; 40:1-11. [PMID: 33060857 DOI: 10.1038/s41388-020-01510-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
EGFR mutations account for the majority of druggable targets in lung adenocarcinoma. Over the past decades the optimization of EGFR inhibitors revolutionized the treatment options for patients suffering from this disease. The pace of this development was largely dictated by the inevitable emergence of resistance mutations during drug treatment. As a result, a rapid understanding of the structural and molecular biology of the individual mutations is the key for the development of next-generation inhibitors. Currently, the field faces an unprecedented number of combinations of activating mutations with distinct resistance mutations in parallel to the approval of osimertinib as a first-line drug for EGFR-mutant lung cancer. In this review, we present a survey of the diverse landscape of EGFR resistance mechanisms with a focus on new insights into on-target EGFR kinase mutations. We discuss array of mutations, their structural effects on the EGFR kinase domain as well as the most promising strategies to overcome the individual resistance profiles found in lung cancer patients.
Collapse
Affiliation(s)
- Hannah L Tumbrink
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne‑Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Alena Heimsoeth
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne‑Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany. .,Department of Translational Genomics, Center of Integrated Oncology Cologne‑Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|