1
|
Sarkar A, Das T, Das G, Ghosh Z. MicroRNA mediated gene regulatory circuits leads to machine learning based preliminary detection of Acute Myeloid Leukemia. Comput Biol Chem 2023; 104:107859. [PMID: 37031648 DOI: 10.1016/j.compbiolchem.2023.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Acute Myeloid Leukemia (AML) can be detected based on morphology, cytochemistry, immunological markers, and cytogenetics. MicroRNAs (miRNAs) influence key biological pathways in multiple haematological malignancies including AML. In this work, we have analysed the miRNome and the transcriptome of normal and AML samples and have identified the significant set of miRNA-target mRNA pairs present within AML- Peripheral Blood and AML- Bone Marrow samples from both tissue and cell lines. The miRNA target genes are further filtered based on their functional significance in AML system. These filtered genes constitute the set of selected miRNA target features, which have been finally used for developing machine learning based prediction tool, 'TbAMLPred' for preliminary detection of AML. This model implements both unsupervised clustering and supervised classification algorithms that would increase the reliability of prediction. Our results show that the selected miRNA target-based features can separate the control and disease samples linearly. Overall, we put forward 'TbAMLPred' for a non-invasive mode of preliminary AML diagnosis in future. Github link for accessing TbAMLPred: https://github.com/zglabDIB/TbAMLPred.
Collapse
Affiliation(s)
- Arijita Sarkar
- Division of Bioinformatics, Bose Institute, P-1/12, C.I.T. Scheme-VII M, Kolkata 700 054, India; Present Affiliation: Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, P-1/12, C.I.T. Scheme-VII M, Kolkata 700 054, India
| | - Gourab Das
- Division of Bioinformatics, Bose Institute, P-1/12, C.I.T. Scheme-VII M, Kolkata 700 054, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, P-1/12, C.I.T. Scheme-VII M, Kolkata 700 054, India.
| |
Collapse
|
2
|
Zhang X, Han Y, Hu X, Wang H, Tian Z, Zhang Y, Wang X. Competing endogenous RNA networks related to prognosis in chronic lymphocytic leukemia: comprehensive analyses and construction of a novel risk score model. Biomark Res 2022; 10:75. [PMID: 36271413 PMCID: PMC9585723 DOI: 10.1186/s40364-022-00423-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell malignancy that lacks specific biomarkers and drug targets. Competing endogenous RNAs (ceRNAs) play vital roles in oncogenesis and tumor progression by sponging microRNAs (miRNAs). Nevertheless, the regulatory mechanisms of survival-related ceRNA networks in CLL remain to be uncovered. METHODS We included 865 de novo CLL patients to investigate RNA expression profiles and Illumina sequencing was performed on four CLL patients, two CLL cell lines and six healthy donors in our center. According to univariate Cox regression, LASSO regression as well as multivariate Cox regression analyses, we established a novel risk score model in CLL patients. Immune signatures were compared between the low- and high-risk groups with CIBERSORT and ESTIMATE program. Afterwards, we analyzed the relationship between differentially expressed miRNAs (DEmiRNAs) and IGHV mutational status, p53 mutation status and del17p. Based on the survival analyses and differentially expressed RNAs with targeting relationships, the lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed. In addition, the circRNA circ_0002078/miR-185-3p/TCF7L1 axis was verified and their interrelations were delineated by dual-luciferase reporter gene assay. RESULTS Totally, 57 differentially expressed mRNAs (DEmRNAs) and 335 DEmiRNAs were identified between CLL patient specimens and normal B cells. A novel risk score model consisting of HTN3, IL3RA and NCK1 was established and validated. The concordance indexes of the model were 0.825, 0.719 and 0.773 in the training, test and total sets, respectively. The high-risk group was related to del(13q14) as well as shorter overall survival (OS). Moreover, we identified DEmiRNAs that related to cytogenetic abnormality of CLL patients, which revealed that miR-324-3p was associated with IGHV mutation, p53 mutation and del17p. The survival-related lncRNA/circRNA-miRNA-mRNA ceRNA networks were constructed to further facilitate the development of potential predictive biomarkers. Besides, the expression of circ_0002078 and TCF7L1 were significantly elevated and miR-185-3p was obviously decreased in CLL patients. Circ_0002078 regulated TCF7L1 expression by competing with TCF7L1 for miR-185-3p. CONCLUSIONS The comprehensive analyses of RNA expression profiles provide pioneering insights into the molecular mechanisms of CLL. The novel risk score model and survival-related ceRNA networks promote the development of prognostic biomarkers and potential therapeutic vulnerabilities for CLL.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Yang Han
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Hua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Zheng Tian
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
3
|
Liu S, Sun Z, Zhu M, Liu M, Wei M, Pan X, Huang S. Prognostic value and potential mechanism of long non-coding RNA Lnc-SMIM20-1 in acute myeloid leukemia. Expert Rev Anticancer Ther 2022; 22:875-885. [PMID: 35894677 DOI: 10.1080/14737140.2022.2093720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a common hematologic malignancy with high heterogeneity and poor prognosis. Although long non-coding RNAs (lncRNAs) have been used as biomarkers for tumors, the clinical relevance of numerous lncRNAs in AML remains to be investigated. RESEARCH DESIGN AND METHODS Differentially expressed lncRNAs between AML and normal peripheral blood samples were identified using DESeq2. Pan-cancer analysis was performed by GEPIA tool. Kaplan-Meier survival curve was applied for prognosis analysis. KEGG pathway analysis and GSEA were used for functional enrichment. The ceRNA network was constructed by GDCRNAtools. RESULTS Lnc-SMIM20-1 was most highly expressed in AML and up-regulated in the TCGA-AML cohort compared to normal tissues. Patients with high expression of Lnc-SMIM20-1 had poor overall prognosis both in the TCGA adult AML cohort and the TARGET pediatric AML cohort, no matter whether they were treated with chemotherapy or allo-HSCT. Lnc-SMIM20-1 might participate in cancer-associated signaling pathways and immune-related signaling pathways by interacting with four microRNAs and 20 mRNAs. CONCLUSION Lnc-SMIM20-1 was up-regulated in AML acting as a stable poor prognostic factor. The prognostic impact of Lnc-SMIM20-1 cannot be overcome by allo-HSCT. Our findings provide insight into the clinical relevance of Lnc-SMIM20-1 in AML; aiming to progress the development of novel therapeutics.
Collapse
Affiliation(s)
- Sha Liu
- Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| | - Ziyi Sun
- Department of Oncology, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, China
| | - Mengyuan Zhu
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Minling Liu
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Wei
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaofen Pan
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shan Huang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Kelesoglu N, Kori M, Turanli B, Arga KY, Yilmaz BK, Duru OA. Acute Myeloid Leukemia: New Multiomics Molecular Signatures and Implications for Systems Medicine Diagnostics and Therapeutics Innovation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:392-403. [PMID: 35763314 DOI: 10.1089/omi.2022.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute myeloid leukemia (AML) is a common, complex, and multifactorial malignancy of the hematopoietic system. AML diagnosis and treatment outcomes display marked heterogeneity and patient-to-patient variations. To date, AML-related biomarker discovery research has employed single omics inquiries. Multiomics analyses that reconcile and integrate the data streams from multiple levels of the cellular hierarchy, from genes to proteins to metabolites, offer much promise for innovation in AML diagnostics and therapeutics. We report, in this study, a systems medicine and multiomics approach to integrate the AML transcriptome data and reporter biomolecules at the RNA, protein, and metabolite levels using genome-scale biological networks. We utilized two independent transcriptome datasets (GSE5122, GSE8970) in the Gene Expression Omnibus database. We identified new multiomics molecular signatures of relevance to AML: miRNAs (e.g., mir-484 and miR-519d-3p), receptors (ACVR1 and PTPRG), transcription factors (PRDM14 and GATA3), and metabolites (in particular, amino acid derivatives). The differential expression profiles of all reporter biomolecules were crossvalidated in independent RNA-Seq and miRNA-Seq datasets. Notably, we found that PTPRG holds important prognostication potential as evaluated by Kaplan-Meier survival analyses. The multiomics relationships unraveled in this analysis point toward the genomic pathogenesis of AML. These multiomics molecular leads warrant further research and development as potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Nurdan Kelesoglu
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Medi Kori
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Betul Karademir Yilmaz
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Ozlem Ates Duru
- Department of Nutrition and Dietetics, School of Health Sciences, Nişantaşı University, Istanbul, Turkey
| |
Collapse
|
5
|
Davis AG, Johnson DT, Zheng D, Wang R, Jayne ND, Liu M, Shin J, Wang L, Stoner SA, Zhou JH, Ball ED, Tian B, Zhang DE. Alternative polyadenylation dysregulation contributes to the differentiation block of acute myeloid leukemia. Blood 2022; 139:424-438. [PMID: 34482400 PMCID: PMC8777198 DOI: 10.1182/blood.2020005693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/16/2021] [Indexed: 01/22/2023] Open
Abstract
Posttranscriptional regulation has emerged as a driver for leukemia development and an avenue for therapeutic targeting. Among posttranscriptional processes, alternative polyadenylation (APA) is globally dysregulated across cancer types. However, limited studies have focused on the prevalence and role of APA in myeloid leukemia. Furthermore, it is poorly understood how altered poly(A) site usage of individual genes contributes to malignancy or whether targeting global APA patterns might alter oncogenic potential. In this study, we examined global APA dysregulation in patients with acute myeloid leukemia (AML) by performing 3' region extraction and deep sequencing (3'READS) on a subset of AML patient samples along with healthy hematopoietic stem and progenitor cells (HSPCs) and by analyzing publicly available data from a broad AML patient cohort. We show that patient cells exhibit global 3' untranslated region (UTR) shortening and coding sequence lengthening due to differences in poly(A) site (PAS) usage. Among APA regulators, expression of FIP1L1, one of the core cleavage and polyadenylation factors, correlated with the degree of APA dysregulation in our 3'READS data set. Targeting global APA by FIP1L1 knockdown reversed the global trends seen in patients. Importantly, FIP1L1 knockdown induced differentiation of t(8;21) cells by promoting 3'UTR lengthening and downregulation of the fusion oncoprotein AML1-ETO. In non-t(8;21) cells, FIP1L1 knockdown also promoted differentiation by attenuating mechanistic target of rapamycin complex 1 (mTORC1) signaling and reducing MYC protein levels. Our study provides mechanistic insights into the role of APA in AML pathogenesis and indicates that targeting global APA patterns can overcome the differentiation block in patients with AML.
Collapse
Affiliation(s)
- Amanda G Davis
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Daniel T Johnson
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Ruijia Wang
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Nathan D Jayne
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Mengdan Liu
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Jihae Shin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
| | - Luyang Wang
- Program in Gene Expression and Regulation, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA
| | | | - Jie-Hua Zhou
- Division of Blood and Marrow Transplantation, Department of Medicine; and
| | - Edward D Ball
- Division of Blood and Marrow Transplantation, Department of Medicine; and
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ
- Program in Gene Expression and Regulation, Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA
| | - Dong-Er Zhang
- Moores Cancer Center and
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
- Department of Pathology, University of California San Diego, La Jolla, CA
| |
Collapse
|