1
|
Liang Y, Fu W, Tang Y, Ye H, Wang Y, Sun C, Xiang Y, Xiong W, Cui M, Chen Y, Wang T, Deng Y. Selective Activation of G Protein-Coupled Estrogen Receptor 1 (GPER1) Reduces ER Stress and Pyroptosis via AMPK Signaling Pathway in Experimental Subarachnoid Hemorrhage. Mol Neurobiol 2024:10.1007/s12035-024-04312-3. [PMID: 38935231 DOI: 10.1007/s12035-024-04312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Neuroinflammation is a critical pathogenic event following hemorrhagic stroke. Endoplasmic reticulum (ER) stress-induced apoptosis and nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3(NLRP3)-associated pyroptosis can contribute to the escalation of neuroinflammatory responses, leading to increased brain damage. G protein-coupled estrogen receptor 1(GPER1), as the most extensively characterized brain-derived estrogen, was reported to trigger neuroprotective effects. However, the anti-apoptotic and anti-pyroptotic effect of GPER1 activation and the underlying mechanism has not been fully elucidated. We established the experimental SAH model by intravascular perforation. The GPER1 selective agonist G1 was intravenously administered 1 h following SAH. For mechanistic exploration, the selective inhibitor of adenosine monophosphate-activated protein kinase (AMPK), dorsomorphin, was administered via intracerebroventricular injection 30 min prior to SAH induction. Post-SAH assessments included SAH grade, the short-term and long-term neurological outcomes, brain edema, cerebral blood flow, transmission electron microscopy (TEM), western blot (WB), ELISA, TUNEL staining, Fluoro-Jade C staining (FJC), and immunofluorescence staining. The expression of GPER1 was observed to elevate at 6 h and peaked at 24 h subsequent to SAH, predominantly co-localized with neurons. Post-treatment with G1 markedly ameliorated both the short-term and long-term neurological deficits of SAH mouse, as well as inhibiting the expression of neuronal ER stress-associated apoptotic proteins (i.e., CHOP, GRP78, Caspase-12, Cleaved Caspase-3, Bax, Bcl2) and pyroptosis-associated proteins (i.e., NLRP3, ASC, Cleaved Caspase-1). Additionally, our research revealed that inhibition of AMPK with dorsomorphin attenuated the neuroprotective effects of G1. This was accompanied by modifications in the molecular pathways associated with ER stress-induced apoptosis and pyroptosis. These data herein elucidated that GPER1 exerted neuroprotective effects by mitigating neuroinflammation in an AMPK-dependent manner, which modulates neuronal ER stress-associated apoptosis and pyroptosis. Boosting the anti-apoptotic and anti-pyroptotic effect by activating GPER1 may be an efficient treatment strategy for SAH patients.
Collapse
Affiliation(s)
- Yidan Liang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400016, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400016, China
| | - Wenqiao Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yin Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongjiang Ye
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanglingxi Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400016, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400016, China
| | - Chao Sun
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400016, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400016, China
| | - Yi Xiang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400016, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400016, China
| | - Weiming Xiong
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400016, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400016, China
| | - Min Cui
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400016, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400016, China
| | - Yuanlin Chen
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Wang
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400016, China.
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400016, China.
| |
Collapse
|
2
|
Torcasio R, Gallo Cantafio ME, Veneziano C, De Marco C, Ganino L, Valentino I, Occhiuzzi MA, Perrotta ID, Mancuso T, Conforti F, Rizzuti B, Martino EA, Gentile M, Neri A, Viglietto G, Grande F, Amodio N. Targeting of mitochondrial fission through natural flavanones elicits anti-myeloma activity. J Transl Med 2024; 22:208. [PMID: 38413989 PMCID: PMC10898065 DOI: 10.1186/s12967-024-05013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Cosenza, Italy
| | | | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Ilenia Valentino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | - Teresa Mancuso
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Bruno Rizzuti
- SS Rende (CS), Department of Physics, CNR-NANOTEC, University of Calabria, Via Pietro Bucci, 87036, Rende, CS, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018, Saragossa, Spain
| | | | - Massimo Gentile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
- Annunziata" Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Antonino Neri
- Scientific Directorate, IRCCS Di Reggio Emilia, Emilia Romagna, Reggio Emilia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
3
|
Marchese E, Gallo Cantafio ME, Ambrosio FA, Torcasio R, Valentino I, Trapasso F, Viglietto G, Alcaro S, Costa G, Amodio N. New Insights for Polyphenolic Compounds as Naturally Inspired Proteasome Inhibitors. Pharmaceuticals (Basel) 2023; 16:1712. [PMID: 38139838 PMCID: PMC10747119 DOI: 10.3390/ph16121712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Polyphenols, an important class of natural products, are widely distributed in plant-based foods. These compounds are endowed with several biological activities and exert protective effects in various physiopathological contexts, including cancer. We herein investigated novel potential mechanisms of action of polyphenols, focusing on the proteasome, which has emerged as an attractive therapeutic target in cancers such as multiple myeloma. We carried out a structure-based virtual screening study using the DrugBank database as a repository of FDA-approved polyphenolic molecules. Starting from 86 polyphenolic compounds, based on the theoretical binding affinity and the interactions established with key residues of the chymotrypsin binding site, we selected 2 promising candidates, namely Hesperidin and Diosmin. The further assessment of the biologic activity highlighted, for the first time, the capability of these two molecules to inhibit the β5-proteasome activity and to exert anti-tumor activity against proteasome inhibitor-sensitive or resistant multiple myeloma cell lines.
Collapse
Affiliation(s)
- Emanuela Marchese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (E.M.); (S.A.); (G.C.)
| | - Maria Eugenia Gallo Cantafio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Francesca Alessandra Ambrosio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Roberta Torcasio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Ilenia Valentino
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (E.M.); (S.A.); (G.C.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy; (E.M.); (S.A.); (G.C.)
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (I.V.); (F.T.); (G.V.)
| |
Collapse
|
4
|
Gallo Cantafio ME, Torcasio R, Scionti F, Mesuraca M, Ronchetti D, Pistoni M, Bellizzi D, Passarino G, Morelli E, Neri A, Viglietto G, Amodio N. GPER1 Activation Exerts Anti-Tumor Activity in Multiple Myeloma. Cells 2023; 12:2226. [PMID: 37759449 PMCID: PMC10526814 DOI: 10.3390/cells12182226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1) activation is emerging as a promising therapeutic strategy against several cancer types. While GPER targeting has been widely studied in the context of solid tumors, its effect on hematological malignancies remains to be fully understood. Here, we show that GPER1 mRNA is down-regulated in plasma cells from overt multiple myeloma (MM) and plasma cell leukemia patients as compared to normal donors or pre-malignant conditions (monoclonal gammopathy of undetermined significance and smoldering MM); moreover, lower GPER1 expression associates with worse overall survival of MM patients. Using the clinically applicable GPER1-selective agonist G-1, we demonstrate that the pharmacological activation of GPER1 triggered in vitro anti-MM activity through apoptosis induction, also overcoming the protective effects exerted by bone marrow stromal cells. Noteworthy, G-1 treatment reduced in vivo MM growth in two distinct xenograft models, even bearing bortezomib-resistant MM cells. Mechanistically, G-1 upregulated the miR-29b oncosuppressive network, blunting an established miR-29b-Sp1 feedback loop operative in MM cells. Overall, this study highlights the druggability of GPER1 in MM, providing the first preclinical framework for further development of GPER1 agonists to treat this malignancy.
Collapse
Affiliation(s)
- Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca Scionti
- Department of Medical and Surgical Science, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Maria Mesuraca
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy;
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.B.); (G.P.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (D.B.); (G.P.)
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (M.E.G.C.); (R.T.); (M.M.); (G.V.)
| |
Collapse
|
5
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|