1
|
Zhang S, Cai S, Ye L, Shen L, Zhu C, Huang J, Wang Z, Chen H. METTL3 mediates m6A modification of hsa_circ_0072380 to regulate the progression of gestational diabetes mellitus. Gene 2024; 931:148894. [PMID: 39191355 DOI: 10.1016/j.gene.2024.148894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND m6A modification plays a vital role in gestational diabetes mellitus (GDM) progression. However, the role of METTL3 and differential m6A-modified circRNAs in GDMremainsto be investigated. METHODS Placental tissue samples from GDM patients and normal controls (NC) were collected to measure changes in m6A modification levels. MeRIP-seq on placental tissue was performed to detect differential m6A-modified circRNAs.High glucose (HG)-treated JEG3 cells were used to establish the GDM cell model. Differentially expressed circRNAs levels in GDM and NC groups were measured by qRT-PCR. We knocked down METTL3 to study its function. Additionally, we conducted functional recovery experiments. Dot blot assay was utilized to assess changes in m6A levels. MeRIP-qPCR was performed to evaluate the effect of knocking down METTL3 on m6A modification of hsa_circ_0072380 in JEG3 cells. RESULTS Compared with the NC group, the GDM group exhibited increased levels of m6A modification and METTL3 expression. Differences in m6A modification of circRNAs exist between the GDM and NC groups. Hsa_circ_0000994, hsa_circ_0058733, and hsa_circ_0072380 were significantly down-regulated in the GDM group while hsa_circ_0036376, hsa_circ_0000471, and hsa_circ_0001173 showed no significant differences between two groups. HG treatment promoted METTL3 expression and m6A level of JEG3 cells, and inhibited cell proliferation, migration, and invasion abilities. Knocking down METTL3 reversed these effects. After HG treatment, hsa_circ_0072380 was significantly down-regulated. Knocking down METTL3 led to up-regulation of hsa_circ_0072380, while knocking down hsa_circ_0072380 restored the function of SiMETTL3. Additionally, knocking down METTL3 significantly reduced the m6A modification of hsa_circ_0072380. CONCLUSION METTL3 mediated m6A modification of hsa_circ_0072380 to regulate GDM progression.
Collapse
Affiliation(s)
- Shaofeng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Shiqin Cai
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Lisha Ye
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Lixia Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Caixia Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Jingwan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China.
| | - Haitian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China.
| |
Collapse
|
2
|
Jiang TQ, Wang H, Cheng WX, Xie C. Modulation of host N6-methyladenosine modification by gut microbiota in colorectal cancer. World J Gastroenterol 2024; 30:4175-4193. [DOI: 10.3748/wjg.v30.i38.4175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
As a research hotspot in the field of molecular biology, N6-methyladenosine (m6A) modification has made progress in the treatment of colorectal cancer (CRC), leukemia and other cancers. Numerous studies have demonstrated that the tumour microenvironment (TME) regulates the level of m6A modification in the host and activates a series of complex epigenetic signalling pathways through interactions with CRC cells, thus affecting the progression and prognosis of CRC. However, with the diversity in the composition of TME factors, this action is reciprocal and complex. Encouragingly, some studies have experimentally revealed that the intestinal flora can alter CRC cell proliferation by directly acting on m6A and thereby altering CRC cell proliferation. This review summarizes the data, supporting the idea that the intestinal flora can influence host m6A levels through pathways such as methyl donor metabolism and thus affect the progression of CRC. We also review the role of m6A modification in the diagnosis, treatment, and prognostic assessment of CRC and discuss the current status, limitations, and potential clinical value of m6A modification in this field. We propose that additional in-depth research on m6A alterations in CRC patients and their TME-related targeted therapeutic issues will lead to better therapeutic outcomes for CRC patients.
Collapse
Affiliation(s)
- Tian-Qi Jiang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hao Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wang-XinJun Cheng
- Queen Mary College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Zhang Y, Wu Y, Shi X, Ding H, Zhou Y, Chen H, Shen F, Chen Y, Zhou J, Zhou D, Wang J. M6A-mediated hsa_circ_0061179 inhibits DNA damage in ovarian cancer cells via miR-143-3p/TIMELESS. Mol Carcinog 2024; 63:1542-1558. [PMID: 38751015 DOI: 10.1002/mc.23744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 07/10/2024]
Abstract
Ovarian cancer (OC) is among the most common and deadly solid malignancies in women. Despite many advances in OC research, the incidence of OC continues to rise, and its pathogenesis remains largely unknown. Herein, we elucidated the function of hsa_circ_0061179 in OC. The levels of hsa_circ_0061179, miR-143-3p, TIMELESS, and DNA damage repair-related proteins in OC or normal ovarian tissues and cells were measured using real-time quantitative polymerase chain reaction and immunoblotting. The biological effects of hsa_circ_0061179 and miR-143-3p on proliferation, clone formation, DNA damage, and apoptosis of OC cells were detected by the cell counting kit-8 assay, 5-methylethyl-2'-deoxyuridine, flow cytometry, the comet assay, and immunofluorescence staining combined with the confocal microscopy. The interaction among hsa_circ_0061179, miR-143-3p, and TIMELESS was validated by the luciferase reporter assay. Mice tumor xenograft models were used to evaluate the influence of hsa_circ_0061179 on OC growth in vivo. We found that human OC biospecimens expressed higher levels of hsa_circ_0061179 and lower levels of miR-143-3p. Hsa_circ_0061179 was found to bind with miR-143-3p, which directly targets TIMELESS. Hsa_circ_0061179 knockdown or miR-143-3p overexpression suppressed the proliferation and clone formation of OC cells and increased DNA damage and apoptosis of OC cells via the miR-143-3p/TIMELESS axis. Furthermore, we demonstrated that METTL3 could direct the formation of has_circ_0061179 through a specific m6A modification site. YTHDC1 facilitated the cytoplasmic transfer of has_circ_0061179 by directly binding to the modified m6A site. Our findings suggest that hsa_circ_0061179 acts as the sponge of miR-143-3p to activate TIMELESS signaling and inhibits DNA damage and apoptosis in OC cells.
Collapse
Affiliation(s)
- Yuhong Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuhong Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiu Shi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongmei Ding
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hanqing Chen
- Jiangsu Institute of Clinical Immunology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of hematology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dingjie Zhou
- NHC Contraceptive Adverse Reaction Surveillance Center, Jiangsu Health Development Research Center, Nanjing, Jiangsu, China
- Jiangsu Provincial Medical Key Laboratory of Fertility Protection and Health Technology Assessment, Nanjing, Jiangsu, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Wu X, Chen H, Li K, Zhang H, Li K, Tan H. The biological function of the N6-Methyladenosine reader YTHDC2 and its role in diseases. J Transl Med 2024; 22:490. [PMID: 38790013 PMCID: PMC11119022 DOI: 10.1186/s12967-024-05293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
N6-methyladenosine (m6A) stands as the most prevalent modified form of RNA in eukaryotes, pivotal in various biological processes such as regulating RNA stability, translation, and transcription. All members within the YT521-B homology (YTH) gene family are categorized as m6A reading proteins, capable of identifying and binding m6A modifications on RNA, thereby regulating RNA metabolism and functioning across diverse physiological processes. YTH domain-containing 2 (YTHDC2), identified as the latest member of the YTH family, has only recently started to emerge for its biological function. Numerous studies have underscored the significance of YTHDC2 in human physiology, highlighting its involvement in both tumor progression and non-tumor diseases. Consequently, this review aims to further elucidate the pathological mechanisms of YTHDC2 by summarizing its functions and roles in tumors and other diseases, with a particular focus on its downstream molecular targets and signaling pathways.
Collapse
Affiliation(s)
- Xudong Wu
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410015, Hunan, People's Republic of China
| | - Hui Chen
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410015, Hunan, People's Republic of China
| | - Kai Li
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410015, Hunan, People's Republic of China
| | - Hong Zhang
- Department of Thoracic Surgery, The Third Hospital of Changsha, Changsha, 410015, Hunan, People's Republic of China
| | - Kai Li
- Department of Thoracic Surgery, Xiangxi Autonomous Prefecture People's Hospital, Jishou, 410015, Hunan, People's Republic of China
| | - Haoyu Tan
- Department of Cardio-vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
6
|
Shao C, Han Y, Huang Y, Zhang Z, Gong T, Zhang Y, Tian X, Fang M, Han X, Li M. Targeting key RNA methylation enzymes to improve the outcome of colorectal cancer chemotherapy (Review). Int J Oncol 2024; 64:17. [PMID: 38131226 PMCID: PMC10783943 DOI: 10.3892/ijo.2023.5605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
RNA methylation modifications are closely linked to tumor development, migration, invasion and responses to various therapies. Recent studies have shown notable advancements regarding the roles of RNA methylation in tumor immunotherapy, the tumor microenvironment and metabolic reprogramming. However, research on the association between tumor chemoresistance and N6‑methyladenosine (m6A) methyltransferases in specific cancer types is still scarce. Colorectal cancer (CRC) is among the most common gastrointestinal cancers worldwide. Conventional chemotherapy remains the predominant treatment modality for CRC and chemotherapy resistance is the primary cause of treatment failure. The expression levels of m6A methyltransferases, including methyltransferase‑like 3 (METTL3), METTL14 and METTL16, in CRC tissue samples are associated with patients' clinical outcomes and chemotherapy efficacy. Natural pharmaceutical ingredients, such as quercetin, have the potential to act as METTL3 inhibitors to combat chemotherapy resistance in patients with CRC. The present review discussed the various roles of different types of key RNA methylation enzymes in the development of CRC, focusing on the mechanisms associated with chemotherapy resistance. The progress in the development of certain inhibitors is also listed. The potential of using natural remedies to develop antitumor medications that target m6A methylation is also outlined.
Collapse
Affiliation(s)
- Chiyun Shao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yanjie Han
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yuying Huang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Zhe Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- No. 3 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tao Gong
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Yajie Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Xiaokang Tian
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Mingzhi Fang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Xuan Han
- School of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| |
Collapse
|
7
|
Zhao P, Xia L, Chen D, Xu W, Guo H, Xu Y, Yan B, Wu X, Li Y, Zhang Y, Zhang X. METTL1 mediated tRNA m 7G modification promotes leukaemogenesis of AML via tRNA regulated translational control. Exp Hematol Oncol 2024; 13:8. [PMID: 38268051 PMCID: PMC10807064 DOI: 10.1186/s40164-024-00477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND RNA modifications have been proven to play fundamental roles in regulating cellular biology process. Recently, maladjusted N7-methylguanosine (m7G) modification and its modifiers METTL1/WDR4 have been confirmed an oncogene role in multiple cancers. However, the functions and molecular mechanisms of METTL1/WDR4 in acute myeloid leukemia (AML) remain to be determined. METHODS METTL1/WDR4 expression levels were quantified using qRT-PCR, western blot analysis on AML clinical samples, and bioinformatics analysis on publicly available AML datasets. CCK-8 assays and cell count assays were performed to determine cell proliferation. Flow cytometry assays were conducted to assess cell cycle and apoptosis rates. Multiple techniques were used for mechanism studies in vitro assays, such as northern blotting, liquid chromatography-coupled mass spectrometry (LC-MS/MS), tRNA stability analysis, transcriptome sequencing, small non-coding RNA sequencing, quantitative proteomics, and protein synthesis measurements. RESULTS METTL1/WDR4 are significantly elevated in AML patients and associated with poor prognosis. METTL1 knockdown resulted in reduced cell proliferation and increased apoptosis in AML cells. Mechanically, METTL1 knockdown leads to significant decrease of m7G modification abundance on tRNA, which further destabilizes tRNAs and facilitates the biogenesis of tsRNAs in AML cells. In addition, profiling of nascent proteins revealed that METTL1 knockdown and transfection of total tRNAs that were isolated from METTL1 knockdown AML cells decreased global translation efficiency in AML cells. CONCLUSIONS Taken together, our study demonstrates the important role of METTL1/WDR4 in AML leukaemogenesis, which provides a promising target candidate for AML therapy.
Collapse
Affiliation(s)
- Pan Zhao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Lin Xia
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Dan Chen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Wei Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Huanping Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yinying Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Bingbing Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Xiao Wu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yuxia Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
| | - Yunfang Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400037, China.
| |
Collapse
|
8
|
Zhou W, Li S, Wang H, Zhou J, Li S, Chen G, Guan W, Fu X, Nervi C, Yu L, Li Y. A novel AML1-ETO/FTO positive feedback loop promotes leukemogenesis and Ara-C resistance via stabilizing IGFBP2 in t(8;21) acute myeloid leukemia. Exp Hematol Oncol 2024; 13:9. [PMID: 38268050 PMCID: PMC10807068 DOI: 10.1186/s40164-024-00480-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND t(8;21)(q22;q22) is one of the most frequent chromosomal abnormalities in acute myeloid leukemia (AML), leading to the generation of the fusion protein AML1-ETO. Despite t(8;21) AML being considered as a subtype with a favorable prognosis, approximately 30-50% of patients experience drug resistance and subsequent relapse. N6-methyladenosine (m6A) is demonstrated to be involved in the development of AML. However, the regulatory mechanisms between AML1-ETO and m6A-related enzymes and the roles of dysregulated m6A modifications in the t(8;21)-leukemogenesis and chemoresistance remain elusive. METHODS Chromatin immunoprecipitation, dual-luciferase reporter assay, m6A-qPCR, RNA immunoprecipitation, and RNA stability assay were used to investigate a regulatory loop between AML1-ETO and FTO, an m6A demethylase. Gain- and loss-of-function experiments both in vitro and in vivo were further performed. Transcriptome-wide RNA sequencing and m6A sequencing were conducted to identify the potential targets of FTO. RESULTS Here we show that FTO is highly expressed in t(8;21) AML, especially in patients with primary refractory disease. The expression of FTO is positively correlated with AML1-ETO, which is attributed to a positive regulatory loop between the AML1-ETO and FTO. Mechanistically, AML1-ETO upregulates FTO expression through inhibiting the transcriptional repression of FTO mediated by PU.1. Meanwhile, FTO promotes the expression of AML1-ETO by inhibiting YTHDF2-mediated AML1-ETO mRNA decay. Inactivation of FTO significantly suppresses cell proliferation, promotes cell differentiation and renders resistant t(8;21) AML cells sensitive to Ara-C. FTO exerts functions by regulating its mRNA targets, especially IGFBP2, in an m6A-dependent manner. Regain of Ara-C tolerance is observed when IGFBP2 is overexpressed in FTO-knockdown t(8;21) AML cells. CONCLUSION Our work reveals a therapeutic potential of targeting AML1-ETO/FTO/IGFBP2 minicircuitry in the treatment for t(8;21) patients with resistance to Ara-C.
Collapse
Affiliation(s)
- Wei Zhou
- Central Laboratory, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Siying Li
- School of Medicine, South China University of Technology, Guangzhou, 511400, Guangdong, China
| | - Hong Wang
- Central Laboratory, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Jingfeng Zhou
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Shuyi Li
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Guofeng Chen
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wei Guan
- Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Xianli Fu
- Department of Pathology, Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, China
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma La Sapienza, 04100, Latina, Italy
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yonghui Li
- Central Laboratory, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
9
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Wang L, Katipally RR, Liang HL, Yang K, Pitroda SP, He C, Weichselbaum RR. RNA m 6A methylation and MDSCs: Roles and therapeutic implications for radiotherapy. MED 2023; 4:863-874. [PMID: 38070481 PMCID: PMC10751059 DOI: 10.1016/j.medj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023]
Abstract
Emerging evidence suggests that local tumor radiotherapy reshapes the repertoire of circulating myeloid-derived suppressor cells (MDSCs) and leads to their infiltration into the tumor microenvironment, which poses a major obstacle for radiotherapy efficacy. Recent findings have identified RNA m6A modification at the nexus of both anti-tumor immunity and radiation response. Here, we examine the mechanisms by which this RNA modification modulates the immune milieu of the radiation-remodeled tumor microenvironment. We discuss potential therapeutic interventions targeting m6A machinery to improve radiotherapy response.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA.
| | - Rohan R Katipally
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Hua Laura Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA; Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Wang D, Zhang Y, Li Q, Zhang A, Xu J, Li Y, Li W, Tang L, Yang F, Meng J. N6-methyladenosine (m6A) in cancer therapeutic resistance: Potential mechanisms and clinical implications. Biomed Pharmacother 2023; 167:115477. [PMID: 37696088 DOI: 10.1016/j.biopha.2023.115477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Cancer therapy resistance (CTR) is the development of cancer resistance to multiple therapeutic strategies, which severely affects clinical response and leads to cancer progression, recurrence, and metastasis. N6-methyladenosine (m6A) has been identified as the most common, abundant, and conserved internal transcriptional alterations of RNA modifications, regulating RNA splicing, translation, stabilization, degradation, and gene expression, and is involved in the development and progression of a variety of diseases, including cancer. Recent studies have shown that m6A modifications play a critical role in both cancer development and progression, especially in reversing CTR. Although m6A modifications have great potential in CTR, the specific molecular mechanisms are not fully elucidated. In this review, we summarize the potential molecular mechanisms of m6A modification in CTR. In addition, we update recent advances in natural products from Traditional Chinese Medicines (TCM) and small-molecule lead compounds targeting m6A modifications, and discuss the great potential and clinical implications of these inhibitors targeting m6A regulators and combinations with other therapies to improve clinical efficacy and overcome CTR.
Collapse
Affiliation(s)
- Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxuan Xu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Wang H, Liu J, Zhu X, Yang B, He Z, Yao X. AZGP1P2/UBA1/RBM15 Cascade Mediates the Fate Determinations of Prostate Cancer Stem Cells and Promotes Therapeutic Effect of Docetaxel in Castration-Resistant Prostate Cancer via TPM1 m6A Modification. RESEARCH (WASHINGTON, D.C.) 2023; 6:0252. [PMID: 37854295 PMCID: PMC10581371 DOI: 10.34133/research.0252] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Prostate cancer (PCa) is a common malignant tumor with high morbidity and mortality worldwide. The prostate cancer stem cell (PCSC) model provides novel insights into the pathogenesis of PCa and its therapeutic response. However, the roles and molecular mechanisms of specific genes in mediating fate decisions of PCSCs and carcinogenesis of PCa remain to be elusive. In this study, we have explored the expression, function, and mechanism of AZGP1P2, a pseudogene of AZGP1, in regulating the stemness and apoptosis of PCSCs and treatment resistance of docetaxel in castration-resistant prostate cancer (CRPC). We revealed that AZGP1P2 was downregulated in CRPC cell lines and PCSCs, while it was positively associated with progression-free interval. Upregulation of the AZGP1P2 enhanced the sensitivity of docetaxel treatment in CRPCs via inhibiting their stemness. RNA pull-down associated with mass spectrometry analysis, co-immunoprecipitation assay, and RNA immunoprecipitation assay demonstrated that AZGP1P2 could bind to UBA1 and RBM15 as a "writer" of methyltransferase to form a compound. UBA1, an E1 ubiquitin-activating enzyme, contributed to RBM15 protein degradation via ubiquitination modification. Methylated RNA immunoprecipitation assay displayed that RBM15 controlled the mRNA decay of TPM1 in m6A methylation. Furthermore, a xenograft mouse model and patient-derived organoids showed that the therapeutic effect of docetaxel in CRPC was increased by AZGP1P2 in vivo. Collectively, these results imply that AZGP1P2 mediates the stemness and apoptosis of PCSCs and promotes docetaxel therapeutic effect by suppressing tumor growth and metastasis via UBA1/RBM15-mediated TPM1 mRNA decay in CRPC.
Collapse
Affiliation(s)
- Hong Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Xiaojun Zhu
- Department of Urology Surgery,
The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine,
Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
- Shanghai Key Laboratory of Reproductive Medicine,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine,
Tongji University, Shanghai, China
| |
Collapse
|