1
|
Beasley‐Hall PG, Kinjo Y, Rose HA, Walker J, Foster CSP, Kovacs TGL, Bourguignon T, Ho SYW, Lo N. Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life. INSECT SCIENCE 2024; 31:1810-1821. [PMID: 38462506 PMCID: PMC11632294 DOI: 10.1111/1744-7917.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.
Collapse
Affiliation(s)
- Perry G. Beasley‐Hall
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yukihiro Kinjo
- Evolutionary Genomics UnitOkinawa Institute of Science & Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Harley A. Rose
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - James Walker
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Charles S. P. Foster
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Toby G. L. Kovacs
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Thomas Bourguignon
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Simon Y. W. Ho
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Nathan Lo
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Degregori S, Wang X, Kommala A, Schulhof N, Moradi S, MacDonald A, Eblen K, Jukovich S, Smith E, Kelleher E, Suzuki K, Hall Z, Knight R, Amato KR. Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices. Biol Rev Camb Philos Soc 2024. [PMID: 39530277 DOI: 10.1111/brv.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Comparative approaches in animal gut microbiome research have revealed patterns of phylosymbiosis, dietary and physiological convergences, and environment-host interactions. However, most large-scale comparative studies, especially those that are highly cited, have focused on mammals, and efforts to integrate comparative approaches with existing ecological frameworks are lacking. While mammals serve as useful model organisms, developing generalised principles of how animal gut microbiomes are shaped and how these microbiomes interact bidirectionally with host ecology and evolution requires a more complete sampling of the animal kingdom. Here, we provide an overview of what past comparative studies have taught us about the gut microbiome, and how community ecology theory may help resolve certain contradictions in comparative gut microbiome research. We explore whether certain hypotheses are supported across clades, and how the disproportionate focus on mammals has introduced potential bias into gut microbiome theory. We then introduce a methodological solution by which public gut microbiome data of understudied hosts can be compiled and analysed in a comparative context. Our aggregation and analysis of 179 studies shows that generating data sets with rich host diversity is possible with public data and that key gut microbes associated with mammals are widespread across the animal kingdom. We also show the effects that sample size and taxonomic rank have on comparative gut microbiome studies and that results of multivariate analyses can vary significantly with these two parameters. While challenges remain in developing a universal model of the animal gut microbiome, we show that existing ecological frameworks can help bring us one step closer to integrating the gut microbiome into animal ecology and evolution.
Collapse
Affiliation(s)
- Samuel Degregori
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Xiaolin Wang
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Akhil Kommala
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Noah Schulhof
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Sadaf Moradi
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095, USA
| | - Allison MacDonald
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Kaitlin Eblen
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia Jukovich
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Emma Smith
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Emily Kelleher
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Kota Suzuki
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Zoey Hall
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Katherine Ryan Amato
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Anka IZ, Uren Webster TM, Berbel-Filho WM, Hitchings M, Overland B, Weller S, Garcia de Leaniz C, Consuegra S. Microbiome and epigenetic variation in wild fish with low genetic diversity. Nat Commun 2024; 15:4725. [PMID: 38830879 PMCID: PMC11148108 DOI: 10.1038/s41467-024-49162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Non-genetic sources of phenotypic variation, such as the epigenome and the microbiome, could be important contributors to adaptive variation for species with low genetic diversity. However, little is known about the complex interaction between these factors and the genetic diversity of the host, particularly in wild populations. Here, we examine the skin microbiome composition of two closely-related mangrove killifish species with different mating systems (self-fertilising and outcrossing) under sympatric and allopatric conditions. This allows us to partition the influence of the genotype and the environment on their microbiome and (previously described) epigenetic profiles. We find the diversity and community composition of the skin microbiome are strongly shaped by the environment and, to a lesser extent, by species-specific influences. Heterozygosity and microbiome alpha diversity, but not epigenetic variation, are associated with the fluctuating asymmetry of traits related to performance (vision) and behaviour (aggression). Our study identifies that a proportion of the epigenetic diversity and microbiome differentiation is unrelated to genetic variation, and we find evidence for an associative relationship between microbiome and epigenetic diversity in these wild populations. This suggests that both mechanisms could potentially contribute to variation in species with low genetic diversity.
Collapse
Affiliation(s)
- Ishrat Z Anka
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Tamsyn M Uren Webster
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Waldir M Berbel-Filho
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Matthew Hitchings
- Institute of Life Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Benjamin Overland
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Sarah Weller
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Carlos Garcia de Leaniz
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
- Marine Research Centre (CIM-UVIGO), Universidade de Vigo, Vigo, Spain
| | - Sofia Consuegra
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK.
- Grupo de Biotecnología Acuática, Departamento de Biotecnología y Acuicultura, Instituto de Investigacións Mariñas, IIM-CSIC, Vigo, Spain.
| |
Collapse
|
4
|
Härer A, Frazier CJ, Rennison DJ. Host ecotype and rearing environment are the main drivers of threespine stickleback gut microbiota diversity in a naturalistic experiment. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240649. [PMID: 39100190 PMCID: PMC11296155 DOI: 10.1098/rsos.240649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 08/06/2024]
Abstract
Host-microbiota interactions play a critical role in the hosts' biology, and thus, it is crucial to elucidate the mechanisms that shape gut microbial communities. We leveraged threespine stickleback fish (Gasterosteus aculeatus) as a model system to investigate the contribution of host and environmental factors to gut microbiota variation. These fish offer a unique opportunity for experiments in naturalistic conditions; we reared benthic and limnetic ecotypes from three different lakes in experimental ponds, allowing us to assess the relative effects of shared environment (pond), geographic origin (lake-of-origin), trophic ecology and genetics (ecotype) and biological sex on gut microbiota α- and β-diversity. Host ecotype had the strongest influence on α-diversity, with benthic fish exhibiting higher diversity than limnetic fish, followed by the rearing environment. β-diversity was primarily shaped by rearing environment, followed by host ecotype, indicating that environmental factors play a crucial role in determining gut microbiota composition. Furthermore, numerous bacterial orders were differentially abundant across ponds, underlining the substantial contribution of environmental factors to gut microbiota variation. Our study illustrates the complex interplay between environmental and host ecological or genetic factors in shaping the stickleback gut microbiota and highlights the value of experiments conducted under naturalistic conditions for understanding gut microbiota dynamics.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - Christine J. Frazier
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Huang Y, Chen Y, Xie H, Feng Y, Chen S, Bao B. Effects of Inducible Nitric Oxide Synthase (iNOS) Gene Knockout on the Diversity, Composition, and Function of Gut Microbiota in Adult Zebrafish. BIOLOGY 2024; 13:372. [PMID: 38927252 PMCID: PMC11201229 DOI: 10.3390/biology13060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
The gut microbiota constitutes a complex ecosystem that has an important impact on host health. In this study, genetically engineered zebrafish with inducible nitric oxide synthase (iNOS or NOS2) knockout were used as a model to investigate the effects of nos2a/nos2b gene single knockout and nos2 gene double knockout on intestinal microbiome composition and function. Extensive 16S rRNA sequencing revealed substantial changes in microbial diversity and specific taxonomic abundances, yet it did not affect the functional structure of the intestinal tissues. Notably, iNOS-deficient zebrafish demonstrated a decrease in Vibrio species and an increase in Aeromonas species, with more pronounced effects observed in double knockouts. Further transcriptomic analysis of the gut in double iNOS knockout zebrafish indicated significant alterations in immune-related and metabolic pathways, including the complement and PPAR signaling pathways. These findings underscore the crucial interplay between host genetics and gut microbiota, indicating that iNOS plays a key role in modulating the gut microbial ecology, host immune system, and metabolic responses.
Collapse
Affiliation(s)
- Yajuan Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Yadong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haisheng Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Yidong Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| | - Songlin Chen
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; (Y.H.); (Y.C.); (H.X.); (Y.F.)
| |
Collapse
|
6
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
7
|
Härer A, Rennison DJ. The effects of host ecology and phylogeny on gut microbiota (non)parallelism across birds and mammals. mSphere 2023; 8:e0044223. [PMID: 38038446 PMCID: PMC10732045 DOI: 10.1128/msphere.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE What are the roles of determinism and contingency in evolution? The paleontologist and evolutionary biologist Stephen J. Gould raised this question in his famous thought experiment of "replaying life's tape." Settings where independent lineages have repeatedly adapted to similar ecological niches (i.e., parallel evolution) are well suited to address this question. Here, we quantified whether repeated ecological shifts across 53 mammalian and 50 avian host species are associated with parallel gut microbiota changes. Our results indicate that parallel shifts in host diet are associated with greater gut microbiota parallelism (i.e., more deterministic). While further research will be necessary to obtain a comprehensive picture of the circumstances under which deterministic gut microbiota changes might be expected, our study can be instrumental in motivating the use of more quantitative methods in microbiota research. This, in turn, can help us better understand microbiota dynamics during adaptive evolution of their hosts.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| | - Diana J. Rennison
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Shankregowda AM, Siriyappagouder P, Kuizenga M, Bal TMP, Abdelhafiz Y, Eizaguirre C, Fernandes JMO, Kiron V, Raeymaekers JAM. Host habitat rather than evolutionary history explains gut microbiome diversity in sympatric stickleback species. Front Microbiol 2023; 14:1232358. [PMID: 37901806 PMCID: PMC10601471 DOI: 10.3389/fmicb.2023.1232358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Host-associated microbiota can influence host phenotypic variation, fitness and potential to adapt to local environmental conditions. In turn, both host evolutionary history and the abiotic and biotic environment can influence the diversity and composition of microbiota. Yet, to what extent environmental and host-specific factors drive microbial diversity remains largely unknown, limiting our understanding of host-microbiome interactions in natural populations. Here, we compared the intestinal microbiota between two phylogenetically related fishes, the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) in a common landscape. Using amplicon sequencing of the V3-V4 region of the bacterial 16S rRNA gene, we characterised the α and β diversity of the microbial communities in these two fish species from both brackish water and freshwater habitats. Across eight locations, α diversity was higher in the nine-spined stickleback, suggesting a broader niche use in this host species. Habitat was a strong determinant of β diversity in both host species, while host species only explained a small fraction of the variation in gut microbial composition. Strong habitat-specific effects overruled effects of geographic distance and historical freshwater colonisation, suggesting that the gut microbiome correlates primarily with local environmental conditions. Interestingly, the effect of habitat divergence on gut microbial communities was stronger in three-spined stickleback than in nine-spined stickleback, possibly mirroring the stronger level of adaptive divergence in this host species. Overall, our results show that microbial communities reflect habitat divergence rather than colonisation history or dispersal limitation of host species.
Collapse
Affiliation(s)
| | | | - Marijn Kuizenga
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Thijs M. P. Bal
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
9
|
Härer A, Rennison DJ. Assessing the validity of fecal sampling for characterizing variation in threespine stickleback's gut microbiota. PLoS One 2023; 18:e0290875. [PMID: 37733779 PMCID: PMC10513271 DOI: 10.1371/journal.pone.0290875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota is crucial for many aspects of their hosts' biology, and it has been characterized for many species across the animal kingdom. Yet, we still don't have a good understanding of whether non-lethal sampling can accurately capture the diversity of gut-associated bacterial communities, as estimated from lethal sampling of intestinal tissue. We further lack knowledge on whether non-lethal sampling methods are suitable for detecting gut microbiota shifts associated with changes in environmental factors (e.g., diet). We addressed these questions in threespine stickleback fish, a model system for evolutionary ecology, by comparing bacterial communities from intestinal tissue and feces. Despite some differences in community composition between the two sample types and considerable temporal variation among fecal samples, bacterial communities appear to largely overlap. Further, we detected consistent and significant changes of fecal bacterial communities associated with an experimental diet manipulation. This suggests that fecal sampling can represent an adequate non-lethal method to characterize the gut microbiota of threespine stickleback, but additional studies will be necessary before drawing general conclusions regarding the validity of fecal sampling for gut microbiota studies. To this end, we give recommendations to improve the characterization of the gut microbiota via fecal sampling. Fecal sampling allows studying temporal gut microbiota shifts associated with environmental change at the individual level, which increases opportunities for future experimental gut microbiota research.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California, United States of America
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
10
|
Kashinskaya EN, Simonov EP, Poddubnaya LG, Vlasenko PG, Shokurova AV, Parshukov AN, Andree KB, Solovyev MM. Trophic diversification and parasitic invasion as ecological niche modulators for gut microbiota of whitefish. Front Microbiol 2023; 14:1090899. [PMID: 36998403 PMCID: PMC10043260 DOI: 10.3389/fmicb.2023.1090899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/07/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction The impact of parasites on gut microbiota of the host is well documented, but the role of the relationship between the parasite and the host in the formation of the microbiota is poorly understood. This study has focused on the influence that trophic behavior and resulting parasitism has on the structure of the microbiome. Methods Using 16S amplicon sequencing and newly developed methodological approaches, we characterize the gut microbiota of the sympatric pair of whitefish Coregonus lavaretus complex and the associated microbiota of cestodes parasitizing their intestine. The essence of the proposed approaches is, firstly, to use the method of successive washes of the microbiota from the cestode's surfaces to analyze the degree of bacterial association to the tegument of the parasite. Secondly, to use a method combining the sampling of intestinal content and mucosa with the washout procedure from the mucosa to understand the real structure of the fish gut microbiota. Results and discussion Our results demonstrate that additional microbial community in the intestine are formed by the parasitic helminths that caused the restructuring of the microbiota in infected fish compared to those uninfected. Using the desorption method in Ringer's solution, we have demonstrated that Proteocephalus sp. cestodes possess their own microbial community which is put together from "surface" bacteria, and bacteria which are weakly and strongly associated with the tegument, bacteria obtained after treatment of the tegument with detergent, and bacteria obtained after removal of the tegument from the cestodes.
Collapse
Affiliation(s)
- Elena N. Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeniy P. Simonov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Larisa G. Poddubnaya
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Region, Russia
| | - Pavel G. Vlasenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V. Shokurova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Aleksey N. Parshukov
- Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
| | - Karl B. Andree
- Institut de Recerca i Tecnologìa Agroalimentaries (IRTA), Sant Carles de la Ràpita, Spain
| | - Mikhail M. Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Tomsk State University, Biological Institute, Tomsk, Russia
| |
Collapse
|
11
|
Rasmussen JA, Kiilerich P, Madhun AS, Waagbø R, Lock EJR, Madsen L, Gilbert MTP, Kristiansen K, Limborg MT. Co-diversification of an intestinal Mycoplasma and its salmonid host. THE ISME JOURNAL 2023; 17:682-692. [PMID: 36807409 PMCID: PMC10119124 DOI: 10.1038/s41396-023-01379-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Understanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host. Whether this co-existence leads to evolutionary co-diversification in animals is largely unexplored, mainly due to the complexity of the environment and microbial communities and the often low host selection. We present the gut metagenome from wild Atlantic salmon (Salmo salar), a new wild organism model with an intestinal microbiota of low complexity and a well-described population structure, making it well-suited for investigating co-evolution. Our data reveal a strong host selection of a core gut microbiota dominated by a single Mycoplasma species. We found a clear co-diversification between the population structure of Atlantic salmon and nucleotide variability of the intestinal Mycoplasma populations conforming to expectations from co-evolution between host and resident bacteria. Our results show that the stable microbiota of Atlantic salmon has evolved with its salmonid host populations while potentially providing adaptive traits to the salmon host populations, including defence mechanisms, biosynthesis of essential amino acids, and metabolism of B vitamins. We highlight Atlantic salmon as a novel model for studying co-evolution between vertebrate hosts and their resident bacteria.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Pia Kiilerich
- Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300, Copenhagen, Denmark
| | | | - Rune Waagbø
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Sylvain FÉ, Leroux N, Normandeau É, Holland A, Bouslama S, Mercier PL, Luis Val A, Derome N. Genomic and Environmental Factors Shape the Active Gill Bacterial Community of an Amazonian Teleost Holobiont. Microbiol Spectr 2022; 10:e0206422. [PMID: 36445161 PMCID: PMC9769777 DOI: 10.1128/spectrum.02064-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Fish bacterial communities provide functions critical for their host's survival in contrasting environments. These communities are sensitive to environmental-specific factors (i.e., physicochemical parameters, bacterioplankton), and host-specific factors (i.e., host genetic background). The relative contribution of these factors shaping Amazonian fish bacterial communities is largely unknown. Here, we investigated this topic by analyzing the gill bacterial communities of 240 wild flag cichlids (Mesonauta festivus) from 4 different populations (genetic clusters) distributed across 12 sites in 2 contrasting water types (ion-poor/acidic black water and ion-rich/circumneutral white water). Transcriptionally active gill bacterial communities were characterized by a 16S rRNA metabarcoding approach carried on RNA extractions. They were analyzed using comprehensive data sets from the hosts genetic background (Genotyping-By-Sequencing), the bacterioplankton (16S rRNA) and a set of 34 environmental parameters. Results show that the taxonomic structure of 16S rRNA gene transcripts libraries were significantly different between the 4 genetic clusters and also between the 2 water types. However, results suggest that the contribution of the host's genetic background was relatively weak in comparison to the environment-related factors in structuring the relative abundance of different active gill bacteria species. This finding was also confirmed by a mixed-effects modeling analysis, which indicated that the dissimilarity between the taxonomic structure of bacterioplanktonic communities possessed the best explicative power regarding the dissimilarity between gill bacterial communities' structure, while pairwise fixation indexes (FST) from the hosts' genetic data only had a weak explicative power. We discuss these results in terms of bacterial community assembly processes and flag cichlid fish ecology. IMPORTANCE Host-associated microbial communities respond to factors specific to the host physiology, genetic backgrounds, and life history. However, these communities also show different degrees of sensitivity to environment-dependent factors, such as abiotic physico-chemical parameters and ecological interactions. The relative importance of host- versus environment-associated factors in shaping teleost bacterial communities is still understudied and is paramount for their conservation and aquaculture. Here, we studied the relative importance of host- and environment-associated factors structuring teleost bacterial communities using gill samples from a wild Amazonian teleost model (Mesonauta festivus) sampled in contrasting habitats along a 1500 km section of the Amazonian basin, thus ensuring high genetic diversity. Results showed that the contribution of the host's genetic background was weak compared to environment-related bacterioplanktonic communities in shaping gill bacterial assemblages, thereby suggesting that our understanding of teleost microbiome assembly could benefit from further studies focused on the ecological interplay between host-associated and free-living communities.
Collapse
Affiliation(s)
| | - Nicolas Leroux
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Wodonga, Victoria, Australia
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Adalberto Luis Val
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas, Brazil
| | - Nicolas Derome
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas, Brazil
| |
Collapse
|
13
|
Härer A, Rennison DJ. Quantifying (non)parallelism of gut microbial community change using multivariate vector analysis. Ecol Evol 2022; 12:e9674. [PMID: 36590339 PMCID: PMC9797641 DOI: 10.1002/ece3.9674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Parallel evolution of phenotypic traits is regarded as strong evidence for natural selection and has been studied extensively in a variety of taxa. However, we have limited knowledge of whether parallel evolution of host organisms is accompanied by parallel changes of their associated microbial communities (i.e., microbiotas), which are crucial for their hosts' ecology and evolution. Determining the extent of microbiota parallelism in nature can improve our ability to identify the factors that are associated with (putatively adaptive) shifts in microbial communities. While it has been emphasized that (non)parallel evolution is better considered as a quantitative continuum rather than a binary phenomenon, quantitative approaches have rarely been used to study microbiota parallelism. We advocate using multivariate vector analysis (i.e., phenotypic change vector analysis) to quantify direction and magnitude of microbiota changes and discuss the applicability of this approach for studying parallelism, and we compiled an R package for multivariate vector analysis of microbial communities ('multivarvector'). We exemplify its use by reanalyzing gut microbiota data from multiple fish species that exhibit parallel shifts in trophic ecology. We found that multivariate vector analysis results were largely consistent with other statistical methods, parallelism estimates were not affected by the taxonomic level at which the microbiota is studied, and parallelism might be stronger for gut microbiota function compared to taxonomic composition. This approach provides an analytical framework for quantitative comparisons across host lineages, thereby providing the potential to advance our capacity to predict microbiota changes. Hence, we emphasize that the development and application of quantitative measures, such as multivariate vector analysis, should be further explored in microbiota research in order to better understand the role of microbiota dynamics during their hosts' adaptive evolution, particularly in settings of parallel evolution.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
14
|
Tao L, Chai J, Liu H, Huang W, Zou Y, Wu M, Peng B, Wang Q, Tang K. Characterization and Dynamics of the Gut Microbiota in Rice Fishes at Different Developmental Stages in Rice-Fish Coculture Systems. Microorganisms 2022; 10:2373. [PMID: 36557627 PMCID: PMC9787495 DOI: 10.3390/microorganisms10122373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The rice-fish system (RFS), a traditional coculture farming model, was selected as a "globally important agricultural heritage system." Host-associated microbiota play important roles in development, metabolism, physiology, and immune function. However, studies on the gut microbiota of aquatic animals in the RFS are scarce, especially the lack of baseline knowledge of the dynamics of gut microbial communities in rice fish during different developmental stages. In this study, we characterized the microbial composition, community structure, and functions of several sympatric aquatic animals (common carp (Cyprinus carpio), crucian carp (Carassius carassius), and black-spotted frogs (Pelophylax nigromaculatus)), and the environment (water) in the RFS using 16S rRNA gene sequencing. Moreover, we investigated stage-specific signatures in the gut microbiota of common carp throughout the three developmental stages (juvenile, sub-adult, and adult). Our results indicated that the Fusobacteriota, Proteobacteria, and Firmicutes were dominant gut microbial phyla in rice fish. The differences in gut microbial compositions and community structure between the three aquatic species were observed. Although no significant differences in alpha diversity were observed across the three developmental stages, the microbial composition and community structure varied with development in common carp in the RFS, with an increase in the relative abundance of Firmicutes in sub-adults and a shift in the functional features of the community. This study sheds light on the gut microbiota of aquatic animals in the RFS. It deepens our understanding of the dynamics of gut microflora during common carp development, which may help improve aquaculture strategies in the RFS.
Collapse
Affiliation(s)
- Ling Tao
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jie Chai
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wenhao Huang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yan Zou
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Mengling Wu
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Buqing Peng
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Qiong Wang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Keyi Tang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
15
|
Liu XY, Li J, Zhang Y, Fan L, Xia Y, Wu Y, Chen J, Zhao X, Gao Q, Xu B, Nie C, Li Z, Tong A, Wang W, Cai J. Kidney microbiota dysbiosis contributes to the development of hypertension. Gut Microbes 2022; 14:2143220. [PMID: 36369946 PMCID: PMC9662196 DOI: 10.1080/19490976.2022.2143220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gut microbiota dysbiosis promotes metabolic syndromes (e.g., hypertension); however, the patterns that drive hypertensive pathology and could be targeted for therapeutic intervention are unclear. We hypothesized that gut microbes might translocate to the kidney to trigger hypertension. We aimed to uncover their method of colonization, and thereby how to maintain blood pressure homeostasis. Using combined approaches based on fluorescence in situ hybridization (FISH) and immunofluorescence staining, electron microscopy analysis, bacterial cultures, species identification, and RNA-sequencing-based meta-transcriptomics, we first demonstrated the presence of bacteria within the kidney of spontaneously hypertensive rats (SHRs) and its normotensive counterpart, Wistar-Kyoto rats (WKYs), and patients with hypertension. Translocated renal bacteria were coated with secretory IgA (sIgA) or remained dormant in the L-form. Klebsiella pneumoniae (K.pn) was identified in the kidneys of germ-free (GF) mice following intestinal transplantation, which suggested an influx of gut bacteria into the kidneys. Renal bacterial taxa and their function are associated with hypertension. Hypertensive hosts showed increased richness in the pathobionts of their kidneys, which were partly derived from the gastrointestinal tract. We also demonstrated the indispensable role of bacterial IgA proteases in the translocation of live microbes. Furthermore, Tartary buckwheat dietary intervention reduced blood pressure and modulated the core renal flora-host ecosystem to near-normal states. Taken together, the unique patterns of viable and dormant bacteria in the kidney provide insight into the pathogenesis of non-communicable chronic diseases and cardiometabolic diseases (e.g., hypertension), and may lead to potential novel microbiota-targeted dietary therapies.
Collapse
Affiliation(s)
- Xin-Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,CONTACT Xin-Yu Liu State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Li
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital &Clinical Medical College of Chengdu University, Chengdu, P.R. China,School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Luyun Fan
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanli Xia
- Clinical Genetics Laboratory, Affiliated Hospital &Clinical Medical College of Chengdu University, Chengdu, P.R. China,School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, China
| | - Junru Chen
- Reproductive and Genetic Hospital of CITIC‐Xiangya, Changsha, China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiannan Gao
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Xu
- Department of Proctology, University of Chinese Academy of Sciences-Shenzhen Hospital (Guang Ming), Shenzhen, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjie Wang
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Jun Cai Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
16
|
Mejía O, Sánchez-Quinto A, Gómez-Acata ES, Pérez-Miranda F, Falcón LI. "Unraveling the Gut Microbiome of the Genus Herichthys (Pisces: Cichlidae): What Can We Learn from Museum Specimens?". Curr Microbiol 2022; 79:346. [PMID: 36209241 DOI: 10.1007/s00284-022-03047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
The use of museum preserved specimens to know microbiome in extinct and threatened species has been explored recently. The fishes of the genus Herichthys are distributed mainly in the Pánuco-Tamesí system in Northeastern Mexico, one of the most polluted basins in the country leading to near half of the species be considering as threatened. In this paper we used the hypervariable V4 region of the 16S rRNA gene from the 11 species of the genus Herichthys obtained from museum collections to evaluate the potential use of fixed preserved vouchers in the knowledge of gut microbiota diversity and the potential role of sympatric and allopatric speciation of the hosts in the gut microbiome evolution. The 100% of the samples were successfully amplified where the number of amplicons ranged from 4500 from a formaldehyde fixed specimen up to 55,000 in ethanol preserved specimens. Differences in gut microbiota were found between sympatric species and among the comparison of some trophic guilds. A non-random association between the gut host and their microbiome was found allow to suggest a potential phylosymbiosis relationship. In conclusion, the most abundant phyla recovered from the gut microbiota in this study were similar to those previously reported in other cichlids supporting the idea that a gut microbial core is conserved in this group of fishes despite millions of years of evolution and leading to support the potential use of museum specimens in microbiome studies.
Collapse
Affiliation(s)
- Omar Mejía
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Andrés Sánchez-Quinto
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, 04510, Mexico City, Mexico.,Instituto de Ecología, Campus Yucatán, Parque Científico y Tecnológico de Yucatán, 97302, Mérida, Mexico
| | - Elizabeth S Gómez-Acata
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, 04510, Mexico City, Mexico.,Instituto de Ecología, Campus Yucatán, Parque Científico y Tecnológico de Yucatán, 97302, Mérida, Mexico
| | - Fabian Pérez-Miranda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, 04510, Mexico City, Mexico.,Instituto de Ecología, Campus Yucatán, Parque Científico y Tecnológico de Yucatán, 97302, Mérida, Mexico
| |
Collapse
|
17
|
Qin W, Li S, Wu N, Wen Z, Xie J, Ma H, Zhang S. Main Factors Influencing the Gut Microbiota of Datong Yaks in Mixed Group. Animals (Basel) 2022; 12:ani12141777. [PMID: 35883324 PMCID: PMC9312300 DOI: 10.3390/ani12141777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This study examined the differences and similarities in gut microbial diversity and ecological assembly processes of Datong yaks, including domestic males and females and wild males, which were fed together on the Qinghai-Tibet Plateau in a mixed group. The results revealed that mixed grouping could influence the gut microbiota of these three groups of yaks and improve the gut microbial diversity of domestic females. The findings of this study can help to understand the effects of mixed grouping on the gut microbiota of livestock on the Qinghai-Tibet Plateau and improve the production of Datong yaks. Abstract The Datong yak (Bos grunniens) is the first artificial breed of yaks in the world and has played an important role in the improvement of domestic yak quality on the Qinghai-Tibet Plateau. The Datong yak breeding farm in the Qinghai province of China is the main place for the breeding and feeding of Datong yaks. It hosts domestic Datong yaks and wild male yaks, mainly in mixed groups. Different managements have different effects on livestock. The gut microbiota is closely related to the health and immunity of Datong yaks, and mixed grouping can affect the composition and diversity of the gut microbiota of Datong yaks. To reveal the effects of mixed grouping on the gut microbiota of Datong yaks and wild yaks and identify the main dominant factors, we compared the gut microbial diversities of domestic males and females and wild males based on 16S rRNA V3–V4 regions using fresh fecal samples. The data showed significant differences in the gut microbial diversity of these three groups, and the α-diversity was the highest in wild males. Different factors influence the gut microbiota, and the main influencing factors were different in different groups, including sex differences, host genetics, and physical interactions. We also compared ecological assembly processes in the three groups. The results showed that mixed grouping contributed to the improvement of gut microbial diversity in domestic females. Our study provides effective and feasible suggestions for the feeding and management of the Datong yaks.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China;
| | - Shuang Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - Nan Wu
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (N.W.); (Z.W.)
| | - Zhouxuan Wen
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (N.W.); (Z.W.)
| | - Jiuxiang Xie
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Hongyi Ma
- Forestry and Grassland Comprehensive Service Center of Yushu Prefecture, Yushu 815000, China;
| | - Shoudong Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
- Global Flyway Ecology, Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
18
|
Intrahabitat Differences in Bacterial Communities Associated with Corbicula fluminea in the Large Shallow Eutrophic Lake Taihu. Appl Environ Microbiol 2022; 88:e0232821. [PMID: 35285714 DOI: 10.1128/aem.02328-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Asian clam Corbicula fluminea is a keystone zoobenthos in freshwater ecosystems. However, its associated microbiome is not well understood. We investigated the bacterial communities of this clam and its surrounding environment, including sediment and water simultaneously, in a large lake by means of 16S rRNA gene sequencing. Approximately two-thirds of the bacterial operational taxonomic units (OTUs) associated with clams were observed in the surrounding environment and mostly from particle-associated samples. The associated bacterial communities were site specific and more similar to environmental bacteria from the same site than those at other sites, suggesting a local environmental influence on host bacteria. However, the significant differences in bacterial diversities and compositions between the clam and the environment also indicated strong host selection pressure on bacteria from the surrounding environment. Bacteria affiliated with Firmicutes, Spirochaetes, Tenericutes, Bacteroidetes, Epsilonbacteraeota, Patescibacteria, and Fusobacteria were found to be significantly enriched in the clams in comparison to their local environment. Oligotyping analyses of the core-associated bacterial OTUs also demonstrated that most of the core OTUs had lower relative abundances and occurrence frequencies in environmental samples. The core bacterial OTUs were found to play an important role in maintaining the stability of the bacterial community network. These core bacteria included the two most abundant taxa Romboutsia and Paraclostridium with the potential function of fermenting polysaccharides for assisting host clams in food digestion. Overall, we demonstrate that clam-associated bacteria were spatially dynamic and site specific, which were mainly structured both by local environments and host selection. IMPORTANCE The Asian clam Corbicula fluminea is an important benthic clam in freshwater ecosystems due to its high population densities and high filtering efficiency for particulate organic matter. While the associated microbiota is believed to be vital for host living, our knowledge about the compositions, sources, and potential functions is still lacking. We found that C. fluminea offers a unique ecological niche for specific lake bacteria. We also observed high intrahabitat variation in the associated bacterial communities. Such variations were driven mainly by local environments, followed by host selection pressure. While the local microbes served as a source of the clam-associated bacteria, host selection resulted in enrichments of bacterial taxa with the potential for assisting the host in organic matter digestion. These results significantly advance our current understanding of the origins and ecological roles of the microbiota associated with a keynote clam in freshwater ecosystems.
Collapse
|
19
|
Solovyev MM, Bochkarev NA, Oreshkova NV, Kashinskaya EN, Simonov EP. Phylogenetic Position of Whitefish Coregonus lavaretus (L.) from Teletskoye Lake (Siberia) Based on Complete Mitochondrial DNA. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Liu C, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2041-2053. [PMID: 34750711 DOI: 10.1007/s10695-021-01027-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/13/2021] [Indexed: 05/26/2023]
Abstract
Intestinal flora is closely related to the health of organisms and the occurrence and development of diseases. The study of intestinal flora will provide a reference for the research and treatment of disease pathogenesis. Upon hatching, fish begin to acquire a microbial community in the intestine. In response to the environment and the host itself, the fish gut eventually develops a unique set of microflora, with some microorganisms being common to different fish. The existence of intestinal microorganisms creates an excellent microecological environment for the host, while the fish symbiotically provides conditions for the growth and reproduction of intestinal microflora. The intestinal flora and the host are interdependent and mutually restrictive. This review mainly describes the formation of fish intestinal flora, the function of normal intestinal flora, factors affecting intestinal flora, and a series of fish models.
Collapse
Affiliation(s)
- Chang Liu
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Li-Ping Zhao
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Yan-Qin Shen
- Wuxi Medical School of Jiangnan University, Wuxi, China.
| |
Collapse
|
21
|
Miller AK, Westlake CS, Cross KL, Leigh BA, Bordenstein SR. The microbiome impacts host hybridization and speciation. PLoS Biol 2021; 19:e3001417. [PMID: 34699520 PMCID: PMC8547693 DOI: 10.1371/journal.pbio.3001417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microbial symbiosis and speciation profoundly shape the composition of life's biodiversity. Despite the enormous contributions of these two fields to the foundations of modern biology, there is a vast and exciting frontier ahead for research, literature, and conferences to address the neglected prospects of merging their study. Here, we survey and synthesize exemplar cases of how endosymbionts and microbial communities affect animal hybridization and vice versa. We conclude that though the number of case studies remain nascent, the wide-ranging types of animals, microbes, and isolation barriers impacted by hybridization will likely prove general and a major new phase of study that includes the microbiome as part of the functional whole contributing to reproductive isolation. Though microorganisms were proposed to impact animal speciation a century ago, the weight of the evidence supporting this view has now reached a tipping point.
Collapse
Affiliation(s)
- Asia K. Miller
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Camille S. Westlake
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Karissa L. Cross
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Department of Pathology, Microbiology & Immunology, Nashville, Tennessee, United States of America
| |
Collapse
|
22
|
Risely A, Gillingham MAF, Béchet A, Brändel S, Heni AC, Heurich M, Menke S, Manser MB, Tschapka M, Wasimuddin, Sommer S. Phylogeny- and Abundance-Based Metrics Allow for the Consistent Comparison of Core Gut Microbiome Diversity Indices Across Host Species. Front Microbiol 2021; 12:659918. [PMID: 34046023 PMCID: PMC8144293 DOI: 10.3389/fmicb.2021.659918] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
The filtering of gut microbial datasets to retain high prevalence taxa is often performed to identify a common core gut microbiome that may be important for host biological functions. However, prevalence thresholds used to identify a common core are highly variable, and it remains unclear how they affect diversity estimates and whether insights stemming from core microbiomes are comparable across studies. We hypothesized that if macroecological patterns in gut microbiome prevalence and abundance are similar across host species, then we would expect that increasing prevalence thresholds would yield similar changes to alpha diversity and beta dissimilarity scores across host species datasets. We analyzed eight gut microbiome datasets based on 16S rRNA gene amplicon sequencing and collected from different host species to (1) compare macroecological patterns across datasets, including amplicon sequence variant (ASV) detection rate with sequencing depth and sample size, occupancy-abundance curves, and rank-abundance curves; (2) test whether increasing prevalence thresholds generate universal or host-species specific effects on alpha and beta diversity scores; and (3) test whether diversity scores from prevalence-filtered core communities correlate with unfiltered data. We found that gut microbiomes collected from diverse hosts demonstrated similar ASV detection rates with sequencing depth, yet required different sample sizes to sufficiently capture rare ASVs across the host population. This suggests that sample size rather than sequencing depth tends to limit the ability of studies to detect rare ASVs across the host population. Despite differences in the distribution and detection of rare ASVs, microbiomes exhibited similar occupancy-abundance and rank-abundance curves. Consequently, increasing prevalence thresholds generated remarkably similar trends in standardized alpha diversity and beta dissimilarity across species datasets until high thresholds above 70%. At this point, diversity scores tended to become unpredictable for some diversity measures. Moreover, high prevalence thresholds tended to generate diversity scores that correlated poorly with the original unfiltered data. Overall, we recommend that high prevalence thresholds over 70% are avoided, and promote the use of diversity measures that account for phylogeny and abundance (Balance-weighted phylogenetic diversity and Weighted Unifrac for alpha and beta diversity, respectively), because we show that these measures are insensitive to prevalence filtering and therefore allow for the consistent comparison of core gut microbiomes across studies without the need for prevalence filtering.
Collapse
Affiliation(s)
- Alice Risely
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Mark A. F. Gillingham
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Arnaud Béchet
- Institut de Recherche de la Tour du Valat, Le Sambuc, Arles, France
| | - Stefan Brändel
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Ancon, Panama
| | - Alexander C. Heni
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Ancon, Panama
| | - Marco Heurich
- Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Grafenau, Germany
- Chair of Wildlife Ecology and Management, University of Freiburg, Freiburg, Germany
- Institute for Forest and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Sebastian Menke
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Marta B. Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Ancon, Panama
| | - Wasimuddin
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
23
|
Zhu L, Zhang Z, Chen H, Lamer JT, Wang J, Wei W, Fu L, Tang M, Wang C, Lu G. Gut microbiomes of bigheaded carps and hybrids provide insights into invasion: A hologenome perspective. Evol Appl 2021; 14:735-745. [PMID: 33767748 PMCID: PMC7980309 DOI: 10.1111/eva.13152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiomes play an essential role in host survival and local adaptation and thus can facilitate the invasion of host species. Biological invasions have been shown to be linked to the genetic properties of alien host species. It is thus plausible that the holobiont, the host, and its associated microbiome act as an entity to drive invasion success. The bighead carp and silver carp (bigheaded carps), invasive species that exhibit extensive hybridization in the Mississippi River Basin (MRB), provided a unique model to test the holobiont hypothesis of invasion. Here, we investigated the microbiomes of foreguts and hindguts in bigheaded carps and their reciprocal hybrids reared in aquaculture ponds using 16S amplicons and the associated gene prediction. We found an admixed pattern in the gut microbiome community in bigheaded carp hybrids. The hybrid gut microbiomes showed special characteristics such as relatively high alpha diversity in the foregut, an increasing dissimilarity between foreguts and hindguts, and a remarkable proportion of genes coding for putative enzymes related to their digestion of main food resources (Cyanobacteria, cellulose, and chitin). The pond-reared hybrids had advantageous features in genes coding for putative enzymes related to their diet. The above results collectively suggested that the gut microbiomes of hybrids could be beneficial to their local adaptation (e.g., food resource utilization), which might have facilitated their invasion in the MRB. The gut microbial findings, along with the intrinsic genomic features likely associated with life-history traits revealed in our recent study, provide preliminary evidence supporting the holobiont hypothesis of invasion.
Collapse
Affiliation(s)
- Lifeng Zhu
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Zheng Zhang
- College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hua Chen
- Mingke Biotechnology CenterHangzhouChina
| | - James T. Lamer
- Department of Biological SciencesWestern Illinois UniversityMacombILUSA
| | - Jun Wang
- Key Laboratory of Freshwater Fisheries Germplasm ResourcesMinistry of Agriculture and Rural Affair/National Demonstration Center for Experimental Fisheries ScienceEducation/Shanghai Engineering Research Center of AquacultureShanghai Ocean UniversityShanghaiChina
| | - Wenzhi Wei
- College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Lixia Fu
- College of Animal Science and TechnologyYangzhou UniversityYangzhouChina
| | - Minghu Tang
- Yangzhou Hanjiang National Carp Seed FarmYangzhouChina
| | - Chenghui Wang
- Key Laboratory of Freshwater Fisheries Germplasm ResourcesMinistry of Agriculture and Rural Affair/National Demonstration Center for Experimental Fisheries ScienceEducation/Shanghai Engineering Research Center of AquacultureShanghai Ocean UniversityShanghaiChina
| | - Guoqing Lu
- Department of BiologyUniversity of Nebraska at OmahaOmahaNEUSA
| |
Collapse
|
24
|
Piazzon MC, Naya-Català F, Perera E, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J. Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream. MICROBIOME 2020; 8:168. [PMID: 33228779 PMCID: PMC7686744 DOI: 10.1186/s40168-020-00922-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND The key effects of intestinal microbiota in animal health have led to an increasing interest in manipulating these bacterial populations to improve animal welfare. The aquaculture sector is no exception and in the last years, many studies have described these populations in different fish species. However, this is not an easy task, as intestinal microbiota is composed of very dynamic populations that are influenced by different factors, such as diet, environment, host age, and genetics. In the current study, we aimed to determine whether the genetic background of gilthead sea bream (Sparus aurata) influences the intestinal microbial composition, how these bacterial populations are modulated by dietary changes, and the effect of selection by growth on intestinal disease resistance. To that aim, three different groups of five families of gilthead sea bream that were selected during two generations for fast, intermediate, or slow growth (F3 generation) were kept together in the same open-flow tanks and fed a control or a well-balanced plant-based diet during 9 months. Six animals per family and dietary treatment were sacrificed and the adherent bacteria from the anterior intestinal portion were sequenced. In parallel, fish of the fast- and slow-growth groups were infected with the intestinal parasite Enteromyxum leei and the disease signs, prevalence, intensity, and parasite abundance were evaluated. RESULTS No differences were detected in alpha diversity indexes among families, and the core bacterial architecture was the prototypical composition of gilthead sea bream intestinal microbiota, indicating no dysbiosis in any of the groups. The plant-based diet significantly changed the microbiota in the intermediate- and slow-growth families, with a much lower effect on the fast-growth group. Interestingly, the smaller changes detected in the fast-growth families potentially accounted for more changes at the metabolic level when compared with the other families. Upon parasitic infection, the fast-growth group showed significantly lower disease signs and parasite intensity and abundance than the slow-growth animals. CONCLUSIONS These results show a clear genome-metagenome interaction indicating that the fast-growth families harbor a microbiota that is more flexible upon dietary changes. These animals also showed a better ability to cope with intestinal infections. Video Abstract.
Collapse
Affiliation(s)
- M. Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Erick Perera
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
25
|
Rajkov J, El Taher A, Böhne A, Salzburger W, Egger B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol Ecol 2020; 30:274-296. [PMID: 33107988 DOI: 10.1111/mec.15709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Variation in gene expression contributes to ecological speciation by facilitating population persistence in novel environments. Likewise, immune responses can be of relevance in speciation driven by adaptation to different environments. Previous studies examining gene expression differences between recently diverged ecotypes have often relied on only one pair of populations, targeted the expression of only a subset of genes or used wild-caught individuals. Here, we investigated the contribution of habitat-specific parasites and symbionts and the underlying immunological abilities of ecotype hosts to adaptive divergence in lake-river population pairs of the cichlid fish Astatotilapia burtoni. To shed light on the role of phenotypic plasticity in adaptive divergence, we compared parasite and microbiota communities, immune response, and gene expression patterns of fish from natural habitats and a lake-like pond set-up. In all investigated population pairs, lake fish were more heavily parasitized than river fish, in terms of both parasite taxon composition and infection abundance. The innate immune response in the wild was higher in lake than in river populations and was elevated in a river population exposed to lake parasites in the pond set-up. Environmental differences between lake and river habitat and their distinct parasite communities have shaped differential gene expression, involving genes functioning in osmoregulation and immune response. Most changes in gene expression between lake and river samples in the wild and in the pond set-up were based on a plastic response. Finally, gene expression and bacterial communities of wild-caught individuals and individuals acclimatized to lake-like pond conditions showed shifts underlying adaptive phenotypic plasticity.
Collapse
Affiliation(s)
- Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Athimed El Taher
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Härer A, Torres-Dowdall J, Rometsch SJ, Yohannes E, Machado-Schiaffino G, Meyer A. Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. MICROBIOME 2020; 8:149. [PMID: 33121541 PMCID: PMC7597055 DOI: 10.1186/s40168-020-00897-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Recent increases in understanding the ecological and evolutionary roles of microbial communities have underscored the importance of their hosts' biology. Yet, little is known about gut microbiota dynamics during the early stages of ecological diversification and speciation. We sequenced the V4 region of the 16s rRNA gene to study the gut microbiota of Nicaraguan Midas cichlid fish (Amphilophus cf. citrinellus). Specifically, we tested the hypothesis that parallel divergence in trophic ecology in extremely young adaptive radiations from two crater lakes is associated with parallel changes of their gut microbiota. RESULTS Bacterial communities of fish guts and lake water were highly distinct, indicating that the gut microbiota is shaped by host-specific factors. Among individuals of the same crater lake, differentiation in trophic ecology was weakly associated with gut microbiota differentiation, suggesting that diet, to some extent, affects the gut microbiota. However, differences in trophic ecology were much more pronounced across than within species whereas similar patterns were not observed for taxonomic and functional differences of the gut microbiota. Across the two crater lakes, we could not detect conclusive evidence for parallel changes of the gut microbiota associated with trophic ecology. CONCLUSIONS A lack of clearly differentiated niches during the early stages of ecological diversification might result in non-parallel changes of gut microbial communities, as observed in our study system as well as in other recently diverged fish species. Video Abstract.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Current address: Division of Biological Sciences, Section of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California USA
| | - Julián Torres-Dowdall
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Sina J. Rometsch
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Elizabeth Yohannes
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Gonzalo Machado-Schiaffino
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Current address: Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
27
|
Baedke J, Fábregas‐Tejeda A, Nieves Delgado A. The holobiont concept before Margulis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:149-155. [DOI: 10.1002/jez.b.22931] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Baedke
- Department of Philosophy IRuhr University BochumBochum Germany
- Institute of Zoology and Evolutionary ResearchFriedrich‐Schiller‐UniversityJena Germany
| | - Alejandro Fábregas‐Tejeda
- Department of Philosophy IRuhr University BochumBochum Germany
- Institute of BiologyNational Autonomous University of Mexico (UNAM) Circuito Exterior Ciudad Universitaria S/N Mexico City Mexico
| | - Abigail Nieves Delgado
- Department of Philosophy IRuhr University BochumBochum Germany
- Centre for Anthropological Knowledge in Scientific and Technological Cultures (CAST)Ruhr University BochumBochum Germany
| |
Collapse
|
28
|
Rennison DJ, Rudman SM, Schluter D. Parallel changes in gut microbiome composition and function during colonization, local adaptation and ecological speciation. Proc Biol Sci 2019; 286:20191911. [PMID: 31795865 DOI: 10.1098/rspb.2019.1911] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The processes of local adaptation and ecological speciation are often strongly shaped by biotic interactions such as competition and predation. One of the strongest lines of evidence that biotic interactions drive evolution comes from the repeated divergence of lineages in association with repeated changes in the community of interacting species. Yet relatively little is known about the repeatability of changes in gut microbial communities and their role in adaptation and divergence of host populations in nature. Here we use three cases of rapid, parallel adaptation and speciation in freshwater threespine stickleback to test for parallel changes in associated gut microbiomes. We find that features of the gut microbial communities have shifted repeatedly in the same direction in association with parallel divergence and speciation of stickleback hosts. These results suggest that changes to gut microbiomes can occur rapidly and predictably in conjunction with host evolution, and that host-microbe interactions might play an important role in host adaptation and diversification.
Collapse
Affiliation(s)
- Diana J Rennison
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth M Rudman
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dolph Schluter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Solovyev MM, Kashinskaya EN, Bochkarev NA, Andree KB, Simonov E. The effect of diet on the structure of gut bacterial community of sympatric pair of whitefishes ( Coregonus lavaretus): one story more. PeerJ 2019; 7:e8005. [PMID: 31824755 PMCID: PMC6896945 DOI: 10.7717/peerj.8005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the Coregonus lavaretus complex may be found lacustrine sympatric pairs, which serves as an intriguing model for studying different aspects of fish evolutionary biology. One such sympatric whitefish pair inhabits Teletskoye Lake (West Siberia, Russia) and includes a “large” form (Coregonus lavaretus pidschian (Gmelin, 1789)) and a “small” form (C. l. pravdinellus (Dulkeit, 1949)). C. l. pravdinellus has a narrow trophic specialization and feeds on zooplankton, whereas the diet of C. l. pidschian is based on benthic prey. In the present study we aimed to address the question of how the gut microbial community reflects the divergence in diet of a sympatric pair of whitefish. Studied samples included the mucosa and content were collected for cardiac and pyloric stomach, anterior, middle, and posterior intestine, but only mucosa was collected for the pyloric caeca. In addition, water, sediment, macrophyte (environmental microbiota) and invertebrate (microbiota of prey) samples were collected in the same location. The V3–V4 region of the 16S rRNA genes was chosen for microbiome analysis and the software PICRUSt used to estimate the difference functional roles of the microbiota. The number of OTUs and Chao1 index in mucosa and content of cardiac and pyloric stomach were significantly different between whitefish. Significant differences were observed between whitefish for content from different parts of the intestine in terms of OTU number and Chao1 indices, whereas for mucosa from the same parts of intestine these differences were absent. No significant differences were found for diversity estimates of mucosa and content of different parts of the gut (there were a few exceptions) between whitefish. The form of whitefish and the segment of the digestive system were factors with a significant determinative effect on the structure of the microbiota from gut mucosa and content. The most dominant phyla in mucosa and content of cardiac and pyloric stomach was Proteobacteria (57.0–84.0%) for both whitefish. Throughout the intestine of C. l. pidschian the dominant phyla in mucosa were Proteobacteria (38.8%) and Firmicutes (15.6%), whereas for C. l. pravdinellus–Tenericutes (49.6%) and Proteobacteria (28.1%). For both forms, the phylum Spirochaetes was found in a significant amount (20.0–25.0%) in the mucosa of the posterior intestine. While for the content obtained from anterior, middle and posterior intestines, the dominant bacterial phyla were the same as those described for mucosa from the same parts of the intestine for both whitefish. The bacterial community of the prey and environment was significantly different from bacterial communities found for all parts of the gut mucosa for both whitefish, with the exception of the mucosa of the cardiac stomach. According to PICRUSt the highest level of differences between whitefish at the L3 level were found for the intestinal mucosa (75.3%), whereas the lowest one was registered for stomach content (38.8%).
Collapse
Affiliation(s)
- Mikhail M Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Tomsk State University, Tomsk, Russia
| | - Elena N Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nickolai A Bochkarev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Karl B Andree
- Instituto de Investigación y Tecnología Agroalimentarias, San Carlos de la Rapita, Tarragona, Spain
| | - Evgeniy Simonov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Institute of Environmental and Agricultural Biology, Tyumen State University, Tyumen, Russia
| |
Collapse
|
30
|
LIU QING, CHEN XINTONG, LI XIAOYA, HONG JIANPING, JIANG GUIXIAN, LIANG HONGYU, LIU WENWEN, XU ZHENG, ZHANG JING, WANG WEI, XIAO LIANG. The Diversity of the Endobiotic Bacterial Communities in the Four Jellyfish Species. Pol J Microbiol 2019; 68:465-476. [PMID: 31880891 PMCID: PMC7260641 DOI: 10.33073/pjm-2019-046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023] Open
Abstract
The associated microbiota plays an essential role in the life process of jellyfish. The endobiotic bacterial communities from four common jellyfish Phyllorhiza punctata, Cyanea capillata, Chrysaora melanaster, and Aurelia coerulea were comparatively analyzed by 16S rDNA sequencing in this study. Several 1049 OTUs were harvested from a total of 130 183 reads. Tenericutes (68.4%) and Firmicutes (82.1%) are the most abundant phyla in P. punctata and C. melanaster, whereas C. capillata and A. coerulea share the same top phylum Proteobacteria (76.9% vs. 78.3%). The classified OTUs and bacterial abundance greatly decrease from the phylum to genus level. The top 20 matched genera only account for 9.03% of the total community in P. punctata, 48.9% in C. capillata, 83.05% in C. melanaster, and 58.1% in A. coerulea, respectively. The heatmap of the top 50 genera shows that the relative abundances in A. coerulea and C. capillata are far richer than that in P. punctata and C. melanaster. Moreover, a total of 41 predictive functional categories at KEGG level 2 were identified. Our study indicates the independent diversity of the bacterial communities in the four common Scyphomedusae, which might involve in the metabolism and environmental information processing of the hosts. The associated microbiota plays an essential role in the life process of jellyfish. The endobiotic bacterial communities from four common jellyfish Phyllorhiza punctata, Cyanea capillata, Chrysaora melanaster, and Aurelia coerulea were comparatively analyzed by 16S rDNA sequencing in this study. Several 1049 OTUs were harvested from a total of 130 183 reads. Tenericutes (68.4%) and Firmicutes (82.1%) are the most abundant phyla in P. punctata and C. melanaster, whereas C. capillata and A. coerulea share the same top phylum Proteobacteria (76.9% vs. 78.3%). The classified OTUs and bacterial abundance greatly decrease from the phylum to genus level. The top 20 matched genera only account for 9.03% of the total community in P. punctata, 48.9% in C. capillata, 83.05% in C. melanaster, and 58.1% in A. coerulea, respectively. The heatmap of the top 50 genera shows that the relative abundances in A. coerulea and C. capillata are far richer than that in P. punctata and C. melanaster. Moreover, a total of 41 predictive functional categories at KEGG level 2 were identified. Our study indicates the independent diversity of the bacterial communities in the four common Scyphomedusae, which might involve in the metabolism and environmental information processing of the hosts.
Collapse
Affiliation(s)
- QING LIU
- College of Animal Science and Veterinary Medicine; ShanXi Agricultural University, TaiGu, ShanXi, China
| | - XINTONG CHEN
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
- College of Resources and Environment; ShanXi Agricultural University, ShanXi, TaiGu, China
| | - XIAOYA LI
- College of Animal Science and Veterinary Medicine; ShanXi Agricultural University, TaiGu, ShanXi, China
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - JIANPING HONG
- College of Resources and Environment; ShanXi Agricultural University, ShanXi, TaiGu, China
| | - GUIXIAN JIANG
- Clinical Medicine, Grade 2015, Second Military Medical University (Naval Medical University), Shanghai, China
| | - HONGYU LIANG
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
- College of Traditional Chinese Medicine; Jilin Agricultural University, Changchun, Jilin, China
| | - WENWEN LIU
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
- College of Traditional Chinese Medicine; Jilin Agricultural University, Changchun, Jilin, China
| | - ZHENG XU
- Administration Office for Scientific Research, Second Military Medical University (Naval Medical University), Shanghai, China
| | - JING ZHANG
- College of Traditional Chinese Medicine; Jilin Agricultural University, Changchun, Jilin, China
| | - WEI WANG
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - LIANG XIAO
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| |
Collapse
|
31
|
Baldo L, Riera JL, Salzburger W, Barluenga M. Phylogeography and Ecological Niche Shape the Cichlid Fish Gut Microbiota in Central American and African Lakes. Front Microbiol 2019; 10:2372. [PMID: 31681230 PMCID: PMC6803461 DOI: 10.3389/fmicb.2019.02372] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Cichlid fishes, with their repeated colonization of lakes and subsequent radiations at different scales of phylogenetic and ecological diversification, offer an excellent model system to understand the factors shaping the host-gut microbiota association in nature. Here, we characterized the gut microbiota of the Amphilophus species complex from Central America (known as the Midas cichlid complex), encompassing 158 wild specimens (13 species) collected from seven Nicaraguan lakes, and combined these data with previously published data from two African lakes (spanning 29 species). Our aim was to comprehensively explore trends in microbiota variation and persistence along the large spatial and temporal scales of cichlid diversification (from the oldest radiation in L. Tanganyika, 9-12 My old, to young ones in Nicaraguan crater lakes, <0.5 My old), in allopatry and sympatry (within and across lakes), and across the range of dietary niches (from highly specialized to generalist feeders). Despite their extraordinary diversity, cichlids shared a remarkably conserved microbial taxonomic profile, which argues for a primary role of the host genetics in the assembly and maintenance of these microbial communities. Within this partly constrained microbiota profile, geographic isolation (continent and lake) represented the first level of discrimination. For the Midas cichlid, a partial congruency was found between host microbiota and genetic distances, suggesting that microbial communities have partly diversified along their cichlid phylogeographic history of crater lake colonization. In sympatry (within lakes), the young and poorly ecologically diversified cichlid assemblages of Central American lakes display largely unresolved gut microbiotas (in terms of both alpha and beta diversities), whereas the phylogenetically and ecologically diverse species found in African lakes showed greater microbial interspecific diversity. This pattern largely points to the level of habitat segregation, trophic niche overlap, and reproductive barriers as major modulators of the gut microbiota connectivity among sympatric species.
Collapse
Affiliation(s)
- Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Biodiversity (IRBio), University of Barcelona, Barcelona, Spain
| | - Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | | | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
32
|
Sevellec M, Laporte M, Bernatchez A, Derome N, Bernatchez L. Evidence for host effect on the intestinal microbiota of whitefish ( Coregonus sp.) species pairs and their hybrids. Ecol Evol 2019; 9:11762-11774. [PMID: 31695886 PMCID: PMC6822036 DOI: 10.1002/ece3.5676] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
Investigating relationships between microbiota and their host is essential toward a full understanding of how animal adapt to their environment. Lake Whitefish offers a powerful system to investigate processes of adaptive divergence where the dwarf, limnetic species evolved repeatedly from the normal, benthic species. We compared the transient intestinal microbiota between both species from the wild and in controlled conditions, including their reciprocal hybrids. We sequenced the 16s rRNA gene V3-V4 regions to (a) test for parallelism in the transient intestinal microbiota among sympatric pairs, (b) test for transient intestinal microbiota differences among dwarf, normal, and hybrids reared under identical conditions, and (c) compare intestinal microbiota between wild and captive whitefish. A significant host effect on microbiota taxonomic composition was observed when all lakes were analyzed together and in three of the five species pairs. In captive whitefish, host effect was also significant. Microbiota of both reciprocal hybrids fell outside of that observed in the parental forms. Six genera formed a bacterial core which was present in captive and wild whitefish, suggesting a horizontal microbiota transmission. Altogether, our results complex interactions among the host, the microbiota, and the environment, and we propose that these interactions define three distinct evolutionary paths of the intestinal microbiota.
Collapse
Affiliation(s)
- Maelle Sevellec
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| | - Alex Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Pavillon Charles‐Eugène‐MarchandUniversité LavalQuébecQCCanada
| |
Collapse
|
33
|
Rudman SM, Greenblum S, Hughes RC, Rajpurohit S, Kiratli O, Lowder DB, Lemmon SG, Petrov DA, Chaston JM, Schmidt P. Microbiome composition shapes rapid genomic adaptation of Drosophila melanogaster. Proc Natl Acad Sci U S A 2019; 116:20025-20032. [PMID: 31527278 PMCID: PMC6778213 DOI: 10.1073/pnas.1907787116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Population genomic data has revealed patterns of genetic variation associated with adaptation in many taxa. Yet understanding the adaptive process that drives such patterns is challenging; it requires disentangling the ecological agents of selection, determining the relevant timescales over which evolution occurs, and elucidating the genetic architecture of adaptation. Doing so for the adaptation of hosts to their microbiome is of particular interest with growing recognition of the importance and complexity of host-microbe interactions. Here, we track the pace and genomic architecture of adaptation to an experimental microbiome manipulation in replicate populations of Drosophila melanogaster in field mesocosms. Shifts in microbiome composition altered population dynamics and led to divergence between treatments in allele frequencies, with regions showing strong divergence found on all chromosomes. Moreover, at divergent loci previously associated with adaptation across natural populations, we found that the more common allele in fly populations experimentally enriched for a certain microbial group was also more common in natural populations with high relative abundance of that microbial group. These results suggest that microbiomes may be an agent of selection that shapes the pattern and process of adaptation and, more broadly, that variation in a single ecological factor within a complex environment can drive rapid, polygenic adaptation over short timescales.
Collapse
Affiliation(s)
- Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104;
| | | | - Rachel C Hughes
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ozan Kiratli
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Dallin B Lowder
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Skyler G Lemmon
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
34
|
Sylvain F, Holland A, Audet‐Gilbert É, Luis Val A, Derome N. Amazon fish bacterial communities show structural convergence along widespread hydrochemical gradients. Mol Ecol 2019; 28:3612-3626. [DOI: 10.1111/mec.15184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
| | - Aleicia Holland
- Department of Ecology, Environment and Evolution School of Life Science La Trobe University Bundoora Vic. Australia
| | - Émie Audet‐Gilbert
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec City QC Canada
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular Instituto Nacional de Pesquisas da Amazônia (INPA) Manaus Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec City QC Canada
| |
Collapse
|
35
|
Jiang B, Sun J, Lv A, Hu X, Shi H, Sung Y, Wang Q, Wang Y. Impact of DNA extraction methods on the observed microbial communities from the intestinal flora of the penaeid shrimp Litopenaeus vannamei. FEMS Microbiol Lett 2019; 366:5487890. [PMID: 31074797 DOI: 10.1093/femsle/fnz099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022] Open
Abstract
Two DNA extraction methods, the Zirmil-beating cell disruption method (ZBC) and the QIAamp fast DNA stool mini kit (QIA), were used to extract DNA from the intestinal flora of the penaeid shrimp Litopenaeus vannamei, and their microbial communities were analyzed using 16S rDNA high-throughput sequencing. Results were obtained in terms of the number of reads, alpha diversity indexes, beta diversity indexes and taxonomic composition. The alpha diversity indexes of the community, according to the ZBC method, were higher than those according to the QIA method. Furthermore, results from the three samples using the ZBC method were less consistent than those where the QIA method was used. Further, using the latter method led to substantive clustering. It is suggested that the QIA method is more stable and repeatable than the ZBC method. Although the two extraction methods shared the major abundant microflora based on 16S rDNA high-throughput sequencing, bias associated with diversity analysis indexes and certain species was observed.
Collapse
Affiliation(s)
- Boyun Jiang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Hongyue Shi
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - YeongYik Sung
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu 21030, Malaysia
| | - Qingkui Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Yang Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
36
|
Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiota interactions: from holobiont theory to analysis. MICROBIOME 2019; 7:5. [PMID: 30635058 PMCID: PMC6330386 DOI: 10.1186/s40168-019-0619-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 05/13/2023]
Abstract
In the recent years, the holobiont concept has emerged as a theoretical and experimental framework to study the interactions between hosts and their associated microbial communities in all types of ecosystems. The spread of this concept in many branches of biology results from the fairly recent realization of the ubiquitous nature of host-associated microbes and their central role in host biology, ecology, and evolution. Through this special series "Host-microbiota interactions: from holobiont theory to analysis," we wanted to promote this field of research which has considerable implications for human health, food production, and ecosystem protection. In this preface, we highlight a collection of articles selected for this special issue that show, use, or debate the concept of holobiont to approach taxonomically and ecologically diverse organisms, from humans and plants to sponges and insects. We also identify some theoretical and methodological challenges and propose directions for future research on holobionts.
Collapse
Affiliation(s)
- Jean-Christophe Simon
- UMR 1349, IGEPP (Institut de Génétique, Environnement et Protection des Plantes), INRA, Agrocampus Ouest, Université Rennes 1, Domaine de la Motte, 35653, Le Rheu Cedex, France.
| | - Julian R Marchesi
- Centre for Digestive and Gut Health, Imperial College London, London, W2 1NY, UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Christophe Mougel
- UMR 1349, IGEPP (Institut de Génétique, Environnement et Protection des Plantes), INRA, Agrocampus Ouest, Université Rennes 1, Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Marc-André Selosse
- Muséum National d'Histoire Naturelle, Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, 57 Rue Cuvier-CP39, F-75005, Paris, France
- Faculty of Biology, University of Gdansk, Ul. Wita Stwosza 59, 80-308, Gdansk, Poland
| |
Collapse
|
37
|
Li W, Liu J, Tan H, Yang C, Ren L, Liu Q, Wang S, Hu F, Xiao J, Zhao R, Tao M, Zhang C, Qin Q, Liu S. Genetic Effects on the Gut Microbiota Assemblages of Hybrid Fish From Parents With Different Feeding Habits. Front Microbiol 2018; 9:2972. [PMID: 30564218 PMCID: PMC6288232 DOI: 10.3389/fmicb.2018.02972] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota play critical roles in host nutrition and metabolism. However, little is known about the genetic effects on the gut microbiota assemblages because a suitable model for investigation is lacking. In the present study, we established the reciprocal hybrid fish lineages derived from the parents with different feeding habits, namely, herbivorous blunt snout bream (Megalobrama amblycephala, BSB, 2n = 48) and carnivorous topmouth culter (Culter alburnus, TC, 2n = 48). We investigated the genetic effects on gut microbiota assemblages by using 16S rRNA gene sequencing. The results showed that the gut characteristics (structure, relative gut length, relative gut mass, and Zihler’s index) differed between the two types of hybrids and the two parents. In particular, a strong correlation between genotype and gut microbial assemblages indicated that host genetic (subgenome) significantly altered the gut microbial communities. In addition, the microbial structures (composition and abundance) in the two types of hybrids were more similar to those in BSB parent (P > 0.05) than to those in TC parent (P < 0.05), and the cellulase contents in the gut (produced by gut microbes) also showed the similar results. The results suggested that the host genomic interaction (mainly subgenome domination) had a sizeable effect on shaping the gut microbiota assemblages in reciprocal hybrid fish. This study enriches our understanding of the relationship between host genetic and gut microbiota assemblages, and provides insight into gut microbiota and metabonomics.
Collapse
Affiliation(s)
- Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Junmei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
38
|
Díaz-Sánchez S, Hernández-Jarguín A, Torina A, de Mera IGF, Blanda V, Caracappa S, Gortazar C, de la Fuente J. Characterization of the bacterial microbiota in wild-caught Ixodes ventalloi. Ticks Tick Borne Dis 2018; 10:336-343. [PMID: 30482513 DOI: 10.1016/j.ttbdis.2018.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/10/2018] [Accepted: 11/15/2018] [Indexed: 11/24/2022]
Abstract
Exploring the microbial diversity of ticks is crucial to understand geographical dispersion and pathogen transmission. Tick microbes participate in many biological processes implicated in the acquisition, maintenance, and transmission of pathogens, and actively promote host phenotypic changes, and adaptation to new environments. The microbial community of Ixodes ventalloi still remains unexplored. In this study, the bacterial microbiota of wild-caught I. ventalloi was characterized using shotgun-metagenomic sequencing in samples from unfed adults collected during December 2013-January 2014 in two locations from Sicily, Italy. The microbiota identified in I. ventalloi was mainly composed of symbiotic, commensal, and environmental bacteria. Interestingly, we identified the genera Anaplasma and Borrelia as members of the microbiota of I. ventalloi. These results advance our information on I. ventalloi microbiota composition, with potential implications in tick-host adaptation, geographic expansion, and vector competence.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
| | - Angélica Hernández-Jarguín
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Alessandra Torina
- Intituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi no3, 90129, Palermo, Italy
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Valeria Blanda
- Intituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi no3, 90129, Palermo, Italy
| | - Santo Caracappa
- Intituto Zooprofilattico Sperimentale della Sicilia, Via G. Marinuzzi no3, 90129, Palermo, Italy
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
39
|
Siriyappagouder P, Galindo-Villegas J, Lokesh J, Mulero V, Fernandes JMO, Kiron V. Exposure to Yeast Shapes the Intestinal Bacterial Community Assembly in Zebrafish Larvae. Front Microbiol 2018; 9:1868. [PMID: 30154775 PMCID: PMC6103253 DOI: 10.3389/fmicb.2018.01868] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 01/18/2023] Open
Abstract
Establishment of the early-life gut microbiota has a large influence on host development and succession of microbial composition in later life stages. The effect of commensal yeasts - which are known to create a conducive environment for beneficial bacteria - on the structure and diversity of fish gut microbiota still remains unexplored. The present study examined the intestinal bacterial community of zebrafish (Danio rerio) larvae exposed to two fish-derived yeasts by sequencing the V4 hypervariable region of bacterial 16S rRNA. The first stage of the experiment (until 7 days post-fertilization) was performed in cell culture flasks under sterile and conventional conditions for germ-free (GF) and conventionally raised (CR) larvae, respectively. The second phase was carried out under standard rearing conditions, for both groups. Exposure of GF and CR zebrafish larvae to one of the yeast species Debaryomyces or Pseudozyma affected the bacterial composition. Exposure to Debaryomyces resulted in a significantly higher abundance of core bacteria. The difference was mainly due to shifts in relative abundance of taxa belonging to the phylum Proteobacteria. In Debaryomyces-exposed CR larvae, the significantly enriched taxa included beneficial bacteria such as Pediococcus and Lactococcus (Firmicutes). Furthermore, most diversity indices of bacterial communities in yeast-exposed CR zebrafish were significantly altered compared to the control group. Such alterations were not evident in GF zebrafish. The water bacterial community was distinct from the intestinal microbiota of zebrafish larvae. Our findings indicate that early exposure to commensal yeast could cause differential bacterial assemblage, including the establishment of potentially beneficial bacteria.
Collapse
Affiliation(s)
| | - Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, University of Murcia, Murcia, Spain
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, University of Murcia, Murcia, Spain
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|