1
|
Santoro EP, Cárdenas A, Villela HDM, Vilela CLS, Ghizelini AM, Duarte GAS, Perna G, Saraiva JP, Thomas T, Voolstra CR, Peixoto RS. Inherent differential microbial assemblages and functions associated with corals exhibiting different thermal phenotypes. SCIENCE ADVANCES 2025; 11:eadq2583. [PMID: 39823335 PMCID: PMC11740947 DOI: 10.1126/sciadv.adq2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes. Notably, TBR corals were inherently enriched with microbial eukaryotes, particularly Symbiodiniaceae, linked to photosynthesis, and the biosynthesis of antibiotic and antitumor compounds and glycosylphosphatidylinositol-anchor proteins, crucial for cell wall regulation and metabolite exchange. In contrast, TBS corals were dominated by bacterial metabolic genes related to nitrogen, amino acid, and lipid metabolism. The inherent microbiome differences between TBR and TBS corals, already observed before thermal stress, point to distinct holobiont phenotypes associated to thermal bleaching resistance, offering insights into mechanisms underlying coral response to climate-induced stress.
Collapse
Affiliation(s)
- Erika P. Santoro
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- IMPPG, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biology, American University, Washington, D.C. 20016, USA
| | - Helena D. M. Villela
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Gustavo A. S. Duarte
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - João P. Saraiva
- Department of Environmental Microbiology, Helmholtz Center for Environmental Research – UFZ, Leipzig, Germany
| | - Torsten Thomas
- Center for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Raquel S. Peixoto
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Abdelghany S, Simancas-Giraldo SM, Zayed A, Farag MA. How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms. MARINE ENVIRONMENTAL RESEARCH 2024; 204:106920. [PMID: 39729906 DOI: 10.1016/j.marenvres.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.
Collapse
Affiliation(s)
- Sabrin Abdelghany
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany; National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Susana M Simancas-Giraldo
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Am Alten Hafen, 27568, Bremerhaven, Germany
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), 31527, Tanta, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt.
| |
Collapse
|
3
|
García FC, Osman EO, Garcias-Bonet N, Delgadillo-Ordoñez N, Santoro EP, Raimundo I, Villela HDM, Voolstra CR, Peixoto RS. Seasonal changes in coral thermal threshold suggest species-specific strategies for coping with temperature variations. Commun Biol 2024; 7:1680. [PMID: 39702455 DOI: 10.1038/s42003-024-07340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Coral thermotolerance research has focused on the ability of coral holobionts to maximize withstanding thermal stress exposure. Yet, it's unclear whether thermal thresholds adjust across seasons or remain constant for a given species and location. Here, we assessed the thermal tolerance thresholds over time spanning the annual temperature variation in the Red Sea for Pocillopora verrucosa and Acropora spp. colonies. Utilizing the Coral Bleaching Automated Stress System (CBASS), we conducted standardized acute thermal assays by exposing corals to a range of temperatures (30 to 39 °C) and measuring their photosynthetic efficiency (Fv/Fm). Our results reveal species-specific thermal tolerance patterns. P. verrucosa exhibited significant seasonal changes in their thermal thresholds of around 3 °C, while Acropora spp. remained rather stable, showing changes of around 1 °C between seasons. Our work shows that thermal thresholds can vary with seasonal temperature fluctuations, suggesting that coral species may acclimate to these natural temperature hanges over short periods in a species-specific manner.
Collapse
Affiliation(s)
- Francisca C García
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia.
| | - Eslam O Osman
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Neus Garcias-Bonet
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Nathalia Delgadillo-Ordoñez
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Erika P Santoro
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Inês Raimundo
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Helena D M Villela
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | | | - Raquel S Peixoto
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia.
| |
Collapse
|
4
|
Qin Y, Cheng K, Jong MC, Zheng H, Cai Z, Xiao B, Zhou J. Symbiotic bacterial communities and carbon metabolic profiles of Acropora coral with varying health status under thermal stress. MARINE POLLUTION BULLETIN 2024; 209:117116. [PMID: 39418876 DOI: 10.1016/j.marpolbul.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Thermal-induced coral bleaching has received substantial research attention; however, the dynamics of symbiotic coral-associated bacterial communities are underexplored and the roles of coral with intermediate health status remain unclear. Using high-throughput sequencing and biochemical analyses, we found that the symbiotic zooxanthellae number gradually decreased with the increase of bleaching degree (non-bleached, semi-bleached, and fully-bleached) in the coral Acropora pruinosa. The semi-bleached host exhibited a relatively more complex microbial interaction network. For the carbon metabolic profiles, relatively higher carbon-fixing abilities observed in non-bleached coral symbiotic bacteria, followed by semi-bleached host, and lowest values appeared in fully-bleached coral. Partial least-squares pathway modeling revealed that bacterial community features and carbon metabolic function were directly related with health status, while temperature exerted a strong influence on the bleaching resilience. These findings can help us better understand the coral microecological feature and carbon metabolic potential under changing environment.
Collapse
Affiliation(s)
- Yuke Qin
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Huina Zheng
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Baohua Xiao
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518120, Guangdong Province, PR China.
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
5
|
Levy N, Marques JA, Simon-Blecher N, Bourne DG, Doniger T, Benichou JIC, Lim JY, Tarazi E, Levy O. Ecosystem transplant from a healthy reef boosts coral health at a degraded reef. Nat Commun 2024; 15:10033. [PMID: 39562544 DOI: 10.1038/s41467-024-54149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Organismal communities associated with coral reefs, particularly invertebrates and microbes, play crucial roles in ecosystem maintenance and coral health. Here, we characterized the organismal composition of a healthy, non-urbanized reef (Site A) and a degraded, urbanized reef (Site B) in the Gulf of Eilat/Aqaba, Red Sea to assess its impact on coral health and physiology. Biomimetically designed terracotta tiles were conditioned for 6 months at both sites, then reciprocally transplanted, and scleractinian coral species, Acropora eurystoma and Stylophora pistillata, were attached for an additional 6 months. After 12 months, tiles from Site A transplanted to Site B exhibited greater invertebrate richness and diversity than Site B's original tiles (via Cytochrome c. Oxidase subunit I metabarcoding). Key bacteria from the healthy reef were more prevalent on Site A tiles and on the tiles transplanted to Site B (via 16S rRNA gene sequencing). Corals originally from Site B attached to transplanted healthy tiles (Site A) showed higher photochemical capacity, increased endosymbionts, and reduced physiological stress, measured by total antioxidant capacity and an integrated biomarker response. Our findings demonstrate the successful transfer of organismal communities between reefs, highlighting the potential benefits of healthy reef-associated invertebrates and microbes on coral physiology and their implications for reef restoration strategies.
Collapse
Affiliation(s)
- Natalie Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| | - Joseane A Marques
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sde Boker, Israel
- The Inter-University Institute for Marine Sciences of Eilat, Eilat, Israel
| | - Noa Simon-Blecher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jennifer I C Benichou
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jin Yan Lim
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Ezri Tarazi
- Design-Tech Lab, Industrial Design Department at the Faculty of Architecture and Town Planning Technion, Israel Institute of Technology, Haifa, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
- The Inter-University Institute for Marine Sciences of Eilat, Eilat, Israel.
| |
Collapse
|
6
|
Yan ZF, Fei Y, Wang ZQ, Yang J, Zhou XY, Huang QS, Chen S, Wu J. Synergistic bioremediation of petroleum-contaminated soil using immobilized consortium of Rhodococcus rhodochrous and Bacillus subtilis laccase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123049. [PMID: 39447356 DOI: 10.1016/j.jenvman.2024.123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Petroleum-contaminated soil represents a significant environmental and public health challenge on a global scale. Microbial bioremediation has shown potential, yet the role of enzymes in enhancing petroleum degradation remains underexplored. In this study, the synergistic effects of Rhodococcus rhodochrous (R.rh) and Bacillus subtilis-derived laccase (BsLac) was investigated in the remediation of petroleum-contaminated soil. Immobilized R.rh (PSIMRH) and BsLac (ADIMLac) exhibited higher petroleum degradation rates than their free state, achieving 78.3% and 56.3% degradation in liquid systems, respectively. The combined treatment of PSIMRH and ADIMLac demonstrated a synergistic effect on petroleum degradation, achieving 43.6% with a maximum degradation constant of 0.0335 d-1, representing a 202.7% improvement over untreated soil. PSIMRH enhanced petroleum degradation through microbial metabolism, while ADIMLac accelerated the initial breakdown of complex hydrocarbons into simpler, more bioavailable ones via enzymatic oxidation, providing growth substrates for microbes and significantly improving petroleum degradation rates. The microbial analysis revealed an increase abundance of known petroleum-degrading bacterial genera, including Rhodococcus, Lysobacter, Micromonospora, and Streptomyces. However, the presence of BsLac appeared to reduce the competitive advantage of Rhodococcus, promoting the proliferation of indigenous strains like Lysobacter and Streptomyces. These results suggest that enzyme-microbe synergy can enhance the bioremediation process by altering microbial community dynamics and accelerating petroleum degradation. This study attempts to remediate petroleum-contaminated pollution with the combined use of strains and enzymes, providing a new approach for the remediation of other pollution problems.
Collapse
Affiliation(s)
- Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | - Yang Fei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zi-Qi Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xing-Yu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China; National Center of Technology Innovation for Dairy, Hohhot, 010100, China
| | - Qing-Song Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Sheng Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
7
|
Villela LB, da Silva-Lima AW, Moreira APB, Aiube YRA, Ribeiro FDV, Villela HDM, Majzoub ME, Amario M, de Moura RL, Thomas T, Peixoto RS, Salomon PS. Bacterial and Symbiodiniaceae communities' variation in corals with distinct traits and geographical distribution. Sci Rep 2024; 14:24319. [PMID: 39414857 PMCID: PMC11484869 DOI: 10.1038/s41598-024-70121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/13/2024] [Indexed: 10/18/2024] Open
Abstract
Coral microbiomes play crucial roles in holobiont homeostasis and adaptation. The host's ability to populate broad ecological niches and to cope with environmental changes seems to be related to the flexibility of the coral microbiome. By means of high-throughput DNA sequencing we characterized simultaneously both bacterial (16S rRNA) and Symbiodiniaceae (ITS2) communities of four reef-building coral species (Mussismilia braziliensis, Mussismilia harttii, Montastraea cavernosa, and Favia gravida) that differ in geographic distribution and niche specificity. Samples were collected in a marginal reef system (Abrolhos, Brazil) in four sites of contrasting irradiance and turbidity. Biological filters governed by the host are important in shaping corals' microbiome structure. More structured associated microbial communities by reef site tend to occur in coral species with broader geographic and depth ranges, especially for Symbiodiniaceae, whereas the endemic and habitat-specialist host, M. braziliensis, has relatively more homogenous bacterial communities with more exclusive members. Our findings lend credence to the hypothesis that higher microbiome flexibility renders corals more adaptable to diverse environments, a trend that should be investigated in more hosts and reef areas.
Collapse
Affiliation(s)
- Livia Bonetti Villela
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
- Genetics Graduation Program, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Arthur Weiss da Silva-Lima
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Ana Paula Barbosa Moreira
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Yuri Ricardo Andrade Aiube
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
- Genetics Graduation Program, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Felipe de Vargas Ribeiro
- Marine Biology Department, Biology Institute, Fluminense Federal University, Niterói, RJ, 24210-201, Brazil
| | - Helena Dias Muller Villela
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, 23955, Thuwal, Makkah, Saudi Arabia
| | - Marwan E Majzoub
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michelle Amario
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
- Genetics Graduation Program, Biology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Rodrigo Leão de Moura
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Raquel Silva Peixoto
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, 23955, Thuwal, Makkah, Saudi Arabia
| | - Paulo Sergio Salomon
- Biology Institute and SAGE/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|
8
|
Chung SSW, Cheung K, Arromrak BS, Li Z, Tse CM, Gaitán-Espitia JD. The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. ENVIRONMENTAL MICROBIOME 2024; 19:74. [PMID: 39397007 PMCID: PMC11479550 DOI: 10.1186/s40793-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.
Collapse
Affiliation(s)
- Sheena Suet-Wah Chung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Bovern Suchart Arromrak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Cham Man Tse
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Hamamoto K, Mizuyama M, Nishijima M, Maeda A, Gibu K, Poliseno A, Iguchi A, Reimer JD. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. ENVIRONMENTAL MICROBIOME 2024; 19:54. [PMID: 39080706 PMCID: PMC11290285 DOI: 10.1186/s40793-024-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions. RESULTS The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation. CONCLUSION Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.
Collapse
Affiliation(s)
- Kohei Hamamoto
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Masaru Mizuyama
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
- Department of Health Informatics, Faculty of Human Health Sciences, Meio University, Nago, Okinawa, 905-8585, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Ayumi Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
10
|
Bai C, Wang Q, Xu J, Zhang H, Huang Y, Cai L, Zheng X, Yang M. Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea. Microorganisms 2024; 12:1540. [PMID: 39203380 PMCID: PMC11356306 DOI: 10.3390/microorganisms12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22-56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms' relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments.
Collapse
Affiliation(s)
- Chuanzhu Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Qifang Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Jinyan Xu
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, MNR), Pingtan 350400, China;
| | - Han Zhang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Yuxin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Ling Cai
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
| |
Collapse
|
11
|
Miller TC, Bentlage B. Seasonal dynamics and environmental drivers of tissue and mucus microbiomes in the staghorn coral Acropora pulchra. PeerJ 2024; 12:e17421. [PMID: 38827308 PMCID: PMC11144401 DOI: 10.7717/peerj.17421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.
Collapse
Affiliation(s)
- Therese C. Miller
- Marine Laboratory, University of Guam, Mangilao, Guam, USA
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | | |
Collapse
|
12
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
13
|
Chen B, Wei Y, Yu K, Liang Y, Yu X, Liao Z, Qin Z, Xu L, Bao Z. The microbiome dynamics and interaction of endosymbiotic Symbiodiniaceae and fungi are associated with thermal bleaching susceptibility of coral holobionts. Appl Environ Microbiol 2024; 90:e0193923. [PMID: 38445866 PMCID: PMC11022545 DOI: 10.1128/aem.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024] Open
Abstract
The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanting Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
14
|
Delgadillo-Ordoñez N, Garcias-Bonet N, Raimundo I, García FC, Villela H, Osman EO, Santoro EP, Curdia J, Rosado JGD, Cardoso P, Alsaggaf A, Barno A, Antony CP, Bocanegra C, Berumen ML, Voolstra CR, Benzoni F, Carvalho S, Peixoto RS. Probiotics reshape the coral microbiome in situ without detectable off-target effects in the surrounding environment. Commun Biol 2024; 7:434. [PMID: 38594357 PMCID: PMC11004148 DOI: 10.1038/s42003-024-06135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neus Garcias-Bonet
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Inês Raimundo
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Francisca C García
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Helena Villela
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Eslam O Osman
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Erika P Santoro
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joao Curdia
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Joao G D Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pedro Cardoso
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ahmed Alsaggaf
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Adam Barno
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Chakkiath Paul Antony
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carolina Bocanegra
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Marine Science and Bioscience Programs, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
15
|
Zou Y, Ip JCH, Xie JY, Yeung YH, Wei L, Guo Z, Zhang Y, Qiu JW. Dynamic changes in bacterial communities in three species of corals during the 2017 bleaching event in subtropical Hong Kong waters. MARINE POLLUTION BULLETIN 2024; 199:116002. [PMID: 38181470 DOI: 10.1016/j.marpolbul.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Bacteria play important roles in coral health, yet little is known about the dynamics of coral-associated bacterial communities during coral bleaching. Here, we reported the dynamic changes of bacterial communities in three scleractinian corals (Montipora peltiformis, Pavona decussata and Platygyra carnosa) during and after bleaching through amplicon sequencing. Our results revealed that the bacterial composition and dominant bacteria varied among the three coral species. The higher susceptibility of M. peltiformis to bleaching corresponded to a lower bacterial community diversity, and the dominant Synechococcus shifted in abundance during the bleaching and coral recovery phases. The resilient P. decussata and P. carnosa had higher bacterial diversity and a more similar bacterial composition between the healthy and bleached conditions. Overall, our study reveals the dynamic changes in coral-associated microbial diversity under different conditions, contributing to explaining the differential susceptibility of corals to extreme climate conditions.
Collapse
Affiliation(s)
- Ying Zou
- School of Life and Health Sciences, Hainan University, Haikou, China
| | | | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lu Wei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Zhiqiang Guo
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanjie Zhang
- School of Life and Health Sciences, Hainan University, Haikou, China.
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
16
|
Cheng K, Li X, Tong M, Jong MC, Cai Z, Zheng H, Xiao B, Zhou J. Integrated metagenomic and metaproteomic analyses reveal bacterial micro-ecological mechanisms in coral bleaching. mSystems 2023; 8:e0050523. [PMID: 37882797 PMCID: PMC10734480 DOI: 10.1128/msystems.00505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approaches were utilized to shed light on the changes in the composition and functions of coral symbiotic bacteria during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Through differential analyses of gene and protein expression, it becomes evident that symbionts experience functional disturbances in response to heat stress. These disturbances result in abnormal energy metabolism, which could potentially compromise the health and resilience of the symbionts. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria providing critical services to corals in stress responses and pathogenic bacteria driving coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under heat stress from the micro-ecological perspective and offers fundamental data for future monitoring of coral health.
Collapse
Affiliation(s)
- Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xinyang Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
17
|
Wuerz M, Lawson CA, Oakley CA, Possell M, Wilkinson SP, Grossman AR, Weis VM, Suggett DJ, Davy SK. Symbiont Identity Impacts the Microbiome and Volatilome of a Model Cnidarian-Dinoflagellate Symbiosis. BIOLOGY 2023; 12:1014. [PMID: 37508443 PMCID: PMC10376011 DOI: 10.3390/biology12071014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D. trenchii produces a metabolically sub-optimal symbiosis with Aiptasia, and add to our understanding of how symbiotic cnidarians, including corals, may respond to climate change should they acquire novel dinoflagellate partners.
Collapse
Affiliation(s)
- Maggie Wuerz
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Arthur R. Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney Broadway, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
18
|
Zhu W, Liu X, Zhang J, Zhao H, Li Z, Wang H, Chen R, Wang A, Li X. Response of coral bacterial composition and function to water quality variations under anthropogenic influence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163837. [PMID: 37137368 DOI: 10.1016/j.scitotenv.2023.163837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Microbial communities play key roles in the adaptation of corals living in adverse environments, as the microbiome flexibility can enhance environmental plasticity of coral holobiont. However, the ecological association of coral microbiome and related function to locally deteriorating water quality remains underexplored. In this work, we used 16S rRNA gene sequencing and quantitative microbial element cycling (QMEC) to investigate the seasonal changes of bacterial communities, particularly their functional genes related to carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycle, of the scleractinian coral Galaxea fascicularis from nearshore reefs exposed anthropogenic influence. We used nutrient concentrations as the indicator of anthropogenic activities in coastal reefs, and found a higher nutrient pressure in spring than summer. The bacterial diversity, community structure and dominant bacteria of coral shifted significantly due to seasonal variations dominated by nutrient concentrations. Additionally, the network structure and nutrient cycling gene profiles in summer under low nutrient stress was distinct from that under poor environmental conditions in spring, with lower network complexity and abundance of CNPS cycling genes in summer compared with spring. We further identified significant correlations between microbial community (taxonomic composition and co-occurrence network) and geochemical functions (abundance of multiple functional genes and functional community). Nutrient enrichment was proved to be the most important environmental fluctuation in controlling the diversity, community structure, interactional network and functional genes of the coral microbiome. These results highlight that seasonal shifts in coral-associated bacteria due to anthropogenic activities alter the functional potentials, and provide novel insight about the mechanisms of coral adaptation to locally deteriorating environments.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Junling Zhang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - He Zhao
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhuoran Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
19
|
Thirukanthan CS, Azra MN, Lananan F, Sara’ G, Grinfelde I, Rudovica V, Vincevica-Gaile Z, Burlakovs J. The Evolution of Coral Reef under Changing Climate: A Scientometric Review. Animals (Basel) 2023; 13:ani13050949. [PMID: 36899805 PMCID: PMC10000160 DOI: 10.3390/ani13050949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
In this scientometric review, we employ the Web of Science Core Collection to assess current publications and research trends regarding coral reefs in relation to climate change. Thirty-seven keywords for climate change and seven keywords for coral reefs were used in the analysis of 7743 articles on coral reefs and climate change. The field entered an accelerated uptrend phase in 2016, and it is anticipated that this phase will last for the next 5 to 10 years of research publication and citation. The United States and Australia have produced the greatest number of publications in this field. A cluster (i.e., focused issue) analysis showed that coral bleaching dominated the literature from 2000 to 2010, ocean acidification from 2010 to 2020, and sea-level rise, as well as the central Red Sea (Africa/Asia), in 2021. Three different types of keywords appear in the analysis based on which are the (i) most recent (2021), (ii) most influential (highly cited), and (iii) mostly used (frequently used keywords in the article) in the field. The Great Barrier Reef, which is found in the waters of Australia, is thought to be the subject of current coral reef and climate change research. Interestingly, climate-induced temperature changes in "ocean warming" and "sea surface temperature" are the most recent significant and dominant keywords in the coral reef and climate change area.
Collapse
Affiliation(s)
- Chandra Segaran Thirukanthan
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
| | - Mohamad Nor Azra
- Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), Kuala Nerus 21030, Terengganu, Malaysia
- Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang 83352, Indonesia
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Gianluca Sara’
- Laboratory of Ecology, Earth and Marine Sciences Department, University of Palermo, 90133 Palermo, Italy
| | - Inga Grinfelde
- Laboratory of Forest and Water Resources, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vite Rudovica
- Department of Analytical Chemistry, University of Latvia, LV-1004 Riga, Latvia
| | | | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, 31-261 Krakow, Poland
- Correspondence: (M.N.A.); (J.B.); Tel.: +609-6683785 (M.N.A.)
| |
Collapse
|
20
|
Zhu W, Wang H, Li X, Liu X, Zhu M, Wang A, Li X. Consistent responses of coral microbiome to acute and chronic heat stress exposures. MARINE ENVIRONMENTAL RESEARCH 2023; 185:105900. [PMID: 36731191 DOI: 10.1016/j.marenvres.2023.105900] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Frequent and intense heat waves lead to bleaching and even death of reef-building corals, and the thermal tolerance ultimately depends on the genetic composition of the holobiont. Here, we compared the effects of acute and chronic heat stress exposures on coral Porites cylindrica holobiont. Regardless of the temperature treatment, corals at 33 °C showed signs of bleaching and a significant decrease in photochemical efficiency (Fv/Fm). However, Symbiodiniaceae communities were relatively stable and all dominated by the same genus Cladocopium (C15). The relative abundanbce of core microbiome varied significantly, and they may provide several functions important to holobiont fitness. Both heat stress exposures induced the significant structural reorganization of coral-associated bacteria, with bacterial diversity and community heterogeneity significantly increasing with the temperature treatment. The modified stochasticity ratio (MST) revealed that stochastic processes dominated bacterial community assembly in thermally stressed corals. Certain core bacterial members that were hypothesized to fulfil functional niche decreased significantly, with the enrichment of potentially pathogenic and opportunistic bacteria in heat stress exposures. Thermally stressed corals had more positive correlation, higher network complexity and tighter associations among microbial taxa, relative to healthy corals. Overall, the coral microbiome exhibits similar responses to acute and chronic heat stress, and our study provides new insights about the deleterious impacts of complex warming oceans on coral holobiont.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xinke Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiangbo Liu
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ming Zhu
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Aimin Wang
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xiubao Li
- College of Marine Science, Hainan University, Haikou, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
21
|
Mock T. Algal model species for advancing biological sciences. JOURNAL OF PHYCOLOGY 2023; 59:1-3. [PMID: 36779558 DOI: 10.1111/jpy.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| |
Collapse
|
22
|
Mohamed HF, Abd‐Elgawad A, Cai R, Luo Z, Xu C. The bacterial signature offers vision into the machinery of coral fitness across high-latitude coral reef in the South China Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:13-30. [PMID: 36054576 PMCID: PMC10103774 DOI: 10.1111/1758-2229.13119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 05/20/2023]
Abstract
Coral-bacterial interaction is a major driver in coral acclimatization to the stressful environment. 16S rRNA High-throughput sequencing was used to classify the role of different coral reef compartments; sediment, water, and tissue; in the South China Sea (SCS), as well as different locations in shaping the microbial community. The majority of OTUs significantly shifted at impacted sites and indicated distinction in the relative abundance of bacteria compartment/site-wise. Richness and diversity were higher, and more taxa were enriched in the sediment communities. Proteobacteria dominated sediment samples, while Cyanobacteria dominated water samples. Coral tissue showed a shift among different sites with Proteobacteria remaining the dominant Phylum. Moreover, we report a dominance of Chlorobium genus in the healthy coral tissue sample collected from the severely damaged Site B, suggesting a contribution to tolerance and adaptation to the disturbing environment. Thus, revealing the complex functionally diverse microbial patterns associated with biotic and abiotic disturbed coral reefs will deliver understanding of the symbiotic connections and competitive benefit inside the hosts niche and can reveal a measurable footprint of the environmental impacts on coral ecosystems. We hence, urge scientists to draw more attention towards using coral microbiome as a self-sustaining tool in coral restoration.
Collapse
Affiliation(s)
- Hala F. Mohamed
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
- Al‐Azhar University (Girls Branch)Faculty of Science, Botany & Microbiology DepartmentCairoEgypt
| | - Amro Abd‐Elgawad
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
- Tourism Developing AuthorityCentral Adminstration for Environmental AffairsCairoEgypt
| | - Rongshuo Cai
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
| | - Zhaohe Luo
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
| | - Changan Xu
- Third Institute of OceanographyMinistry of Natural ResourcesXiamenPeople's Republic of China
| |
Collapse
|
23
|
Osman EO, Vohsen SA, Girard F, Cruz R, Glickman O, Bullock LM, Anderson KE, Weinnig AM, Cordes EE, Fisher CR, Baums IB. Capacity of deep-sea corals to obtain nutrition from cold seeps aligned with microbiome reorganization. GLOBAL CHANGE BIOLOGY 2023; 29:189-205. [PMID: 36271605 PMCID: PMC10092215 DOI: 10.1111/gcb.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients.
Collapse
Affiliation(s)
- Eslam O. Osman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Marine Biology LabZoology Department, Faculty of ScienceAl‐Azhar UniversityCairoEgypt
- Red Sea Research Center (RSRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Samuel A. Vohsen
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Fanny Girard
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Monterey Bay Aquarium Research InstituteMoss LandingCAUSA
| | - Rafaelina Cruz
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Orli Glickman
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Lena M. Bullock
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Kaitlin E. Anderson
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | | | | | - Charles R. Fisher
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Iliana B. Baums
- Department of BiologyThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)AmmerländerHeerstraße 231, 26129 OldenburgGermany
| |
Collapse
|
24
|
Delgadillo-Ordoñez N, Raimundo I, Barno AR, Osman EO, Villela H, Bennett-Smith M, Voolstra CR, Benzoni F, Peixoto RS. Red Sea Atlas of Coral-Associated Bacteria Highlights Common Microbiome Members and Their Distribution across Environmental Gradients-A Systematic Review. Microorganisms 2022; 10:microorganisms10122340. [PMID: 36557593 PMCID: PMC9787610 DOI: 10.3390/microorganisms10122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The Red Sea is a suitable model for studying coral reefs under climate change due to its strong environmental gradient that provides a window into future global warming scenarios. For instance, corals in the southern Red Sea thrive at temperatures predicted to occur at the end of the century in other biogeographic regions. Corals in the Red Sea thrive under contrasting thermal and environmental regimes along their latitudinal gradient. Because microbial communities associated with corals contribute to host physiology, we conducted a systematic review of the known diversity of Red Sea coral-associated bacteria, considering geographic location and host species. Our assessment comprises 54 studies of 67 coral host species employing cultivation-dependent and cultivation-independent techniques. Most studies have been conducted in the central and northern Red Sea, while the southern and western regions remain largely unexplored. Our data also show that, despite the high diversity of corals in the Red Sea, the most studied corals were Pocillopora verrucosa, Dipsastraea spp., Pleuractis granulosa, and Stylophora pistillata. Microbial diversity was dominated by bacteria from the class Gammaproteobacteria, while the most frequently occurring bacterial families included Rhodobacteraceae and Vibrionaceae. We also identified bacterial families exclusively associated with each of the studied coral orders: Scleractinia (n = 125), Alcyonacea (n = 7), and Capitata (n = 2). This review encompasses 20 years of research in the Red Sea, providing a baseline compendium for coral-associated bacterial diversity.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Inês Raimundo
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Adam R. Barno
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eslam O. Osman
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Helena Villela
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Morgan Bennett-Smith
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Christian R. Voolstra
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Francesca Benzoni
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Raquel S. Peixoto
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Correspondence:
| |
Collapse
|
25
|
Liberman R, Benayahu Y, Huchon D. Octocorals in the Gulf of Aqaba exhibit high photosymbiont fidelity. Front Microbiol 2022; 13:1005471. [PMID: 36504779 PMCID: PMC9732034 DOI: 10.3389/fmicb.2022.1005471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Symbiotic associations, widespread in terrestrial and marine ecosystems, are of considerable ecological importance. Many tropical coral species are holobionts, formed by the obligate association between a cnidarian host and endosymbiotic dinoflagellates of the family Symbiodiniaceae. The latter are abundant on coral reefs from very shallow water down to the upper mesophotic zone (30-70 m). The research on scleractinians has revealed that the photosymbiont lineages present in the cnidarian host play an important role in the coral's ability to thrive under different environmental conditions, such as light regime and temperature. However, little is known regarding octocoral photosymbionts, and in particular regarding those found deeper than 30 m. Here, we used ribosomal (ITS2) and chloroplast (23S) markers to uncover, for the first time, the dominant Symbiodiniaceae taxa present in 19 mesophotic octocoral species (30-70 m depth) from the Gulf of Aqaba/Eilat (northern Red Sea). In addition, using high-throughput sequencing of the ITS2 region we characterized both the dominant and the rare Symbiodiniaceae lineages found in several species across depth. The phylogenetic analyses of both markers were in agreement and revealed that most of the studied mesophotic octocorals host the genus Cladocopium. Litophyton spp. and Klyxum utinomii were exceptions, as they harbored Symbiodinium and Durusdinium photosymbionts, respectively. While the dominant algal lineage of each coral species did not vary across depth, the endosymbiont community structure significantly differed between host species, as well as between different depths for some host species. The findings from this study contribute to the growing global-catalogue of Cnidaria-Symbiodiniaceae associations. Unravelling the Symbiodiniaceae composition in octocoral holobionts across environmental gradients, depth in particular, may enable a better understanding of how specialized those associations are, and to what extent coral holobionts are able to modify their photosymbionts.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Dorothée Huchon
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Zhu W, Zhu M, Liu X, Xia J, Wang H, Chen R, Li X. Adaptive changes of coral Galaxea fascicularis holobiont in response to nearshore stress. Front Microbiol 2022; 13:1052776. [PMID: 36425038 PMCID: PMC9678930 DOI: 10.3389/fmicb.2022.1052776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 02/07/2024] Open
Abstract
Global change and local stressors are simultaneously affecting the nearshore corals, and microbiome flexibility may assist corals in thriving under such multiple stressors. Here, we investigated the effects of various environmental variables on Galaxea fascicularis holobiont from nearshore and offshore reefs. These nearshore reefs were more turbid, eutrophic, and warm than offshore reefs. However, coral physiological parameters did not differ significantly. Corals under stressful nearshore environments had low symbiont diversity and selected more tolerant Symbiodiniaceae. The bacterial diversity of offshore corals was significantly higher, and their community composition varied obviously. Diffusion limitations and environmental heterogeneity were essential in structuring microbial communities. Functional annotation analysis demonstrated significant differences between nearshore and offshore corals in bacterial functional groups. Environmental stress significantly reduced the complexity and connectivity of bacterial networks, and the abundances of keystone taxa altered considerably. These results indicated that corals could thrive nearshore through holobiont plasticity to cope with multiple environmental stresses.
Collapse
Affiliation(s)
- Wentao Zhu
- College of Ecology and Environment, Hainan University, Haikou, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ming Zhu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Xiangbo Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| | - Jingquan Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Hao Wang
- College of Marine Science, Hainan University, Haikou, China
| | - Rouwen Chen
- College of Marine Science, Hainan University, Haikou, China
| | - Xiubao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Marine Science, Hainan University, Haikou, China
| |
Collapse
|
27
|
Sanchez-Garcia S, Wang H, Wagner-Döbler I. The microbiome of the dinoflagellate Prorocentrum cordatum in laboratory culture and its changes at higher temperatures. Front Microbiol 2022; 13:952238. [PMID: 36246277 PMCID: PMC9555710 DOI: 10.3389/fmicb.2022.952238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the ocean, phytoplankton are dependent on communities of bacteria living in the phycosphere, a hot spot of metabolic and genetic exchange. Many types of interactions between phytoplankton and phycosphere bacteria have been shown, but it is unclear if the microbial communities associated with microalgae strains in culture collections are beneficial or harmful to the host strain. Here, we studied the microbial communities associated with four strains of the dinoflagellate Prorocentrum cordatum that had been isolated from distant geographical locations and maintained in culture collection for hundreds of generations. Community composition was determined by 16S rRNA gene amplicon sequencing. The dinoflagellate host strain was the strongest parameter separating communities, while growth phase, lifestyle (particle-attached versus free-living) and temperature had only a modulating effect. Although the strains had been isolated from distant locations in the Atlantic and Pacific Ocean, 14 ASVs were shared among all strains, the most abundant ones being Gilvibacter, Marivita, uncultivated Rhodobacteraceae, Marinobacter, Hyphomonadaceae, Cupriavidus, Variovorax, and Paucibacter. Adaptation to higher temperatures resulted in specific changes in each phycosphere microbiome, including increased abundance of rare community members. We then compared the growth of the four xenic cultures to that of the axenic P. cordatum CCMP1329. At 20°C, growth of the xenic cultures was similar or slower than that of CCMP1329. At 26°C, all four xenic cultures experienced a death phase, while the axenic culture stably remained in the stationary phase. At 30°C, only two of the xenic cultures were able to grow. A shift of dinoflagellate metabolism from autotrophy to mixotrophy and competition between dinoflagellate and bacteria for limiting nutrients, including essential vitamins, may contribute to these differences in growth patterns.
Collapse
Affiliation(s)
| | | | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
28
|
Full-Length Transcriptome Maps of Reef-Building Coral Illuminate the Molecular Basis of Calcification, Symbiosis, and Circa-Dian Genes. Int J Mol Sci 2022; 23:ijms231911135. [PMID: 36232445 PMCID: PMC9570262 DOI: 10.3390/ijms231911135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Coral transcriptomic data largely rely on short-read sequencing, which severely limits the understanding of coral molecular mechanisms and leaves many important biological questions unresolved. Here, we sequence the full-length transcriptomes of four common and frequently dominant reef-building corals using the PacBio Sequel II platform. We obtain information on reported gene functions, structures, and expression profiles. Among them, a comparative analysis of biomineralization-related genes provides insights into the molecular basis of coral skeletal density. The gene expression profiles of the symbiont Symbiodiniaceae are also isolated and annotated from the holobiont sequence data. Finally, a phylogenetic analysis of key circadian clock genes among 40 evolutionarily representative species indicates that there are four key members in early metazoans, including cry genes; Clock or Npas2; cyc or Arntl; and tim, while per, as the fifth member, occurs in Bilateria. In summary, this work provides a foundation for further work on the manipulation of skeleton production or symbiosis to promote the survival of these important organisms.
Collapse
|
29
|
Effect of Various Local Anthropogenic Impacts on the Diversity of Coral Mucus-Associated Bacterial Communities. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The global continued decline in coral reefs is intensifying the need to understand the response of corals to local environmental stressors. Coral-associated bacterial communities have been suggested to have a swift response to environmental pollutants. This study aims to determine the variation in the bacterial communities associated with the mucus of two coral species, Pocillopora damicornis (Linnaeus, 1758) and Stylophora pistillata (Esper, 1792), and the coral-surrounding seawater from three areas exposed to contamination at the Jordanian coast of the Gulf of Aqaba (Red Sea), and also explores the antibacterial activity of these bacteria. Corals were collected from three contaminated zones along the coast, and the bacteria were quantified and identified by conventional morphological and biochemical tests, as well as 16S rRNA gene sequencing. The average number of bacteria significantly varied among the coral mucus from the sampling zones and between the coral mucus and the surrounding seawater. The P. damicornis mucus-associated bacterial community was dominated by members of the classes Gammaproteobacteria, Cytophagia, and Actinomycetia, while the mucus of S. pistillata represented higher bacterial diversity, with the dominance of the bacterial classes Gammaproteobacteria, Actinomycetia, Alphaproteobacteria, and Bacilli. The effects of local anthropogenic impacts on coral mucus bacterial communities were represented in the increased abundance of bacterial species related to coral diseases. Furthermore, the results demonstrated the existence of bacterial isolates with antibacterial activity that possibly acted as a first line of defense to protect and maintain the coral host against pathogens. Indeed, the dynamics of coral-associated microbial communities highlight the importance of holistic studies that focus on microbial interactions across the coral reef ecosystem.
Collapse
|
30
|
Microbiome Restructuring: Dominant Coral Bacterium Endozoicomonas Species Respond Differentially to Environmental Changes. mSystems 2022; 7:e0035922. [PMID: 35703535 PMCID: PMC9426584 DOI: 10.1128/msystems.00359-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteria in the coral microbiome play a crucial role in determining coral health and fitness, and the coral host often restructures its microbiome composition in response to external factors. An important but often neglected factor determining this microbiome restructuring is the ability of microbiome members to respond to changes in the environment. To address this issue, we examined how the microbiome structure of Acropora muricata corals changed over 9 months following a reciprocal transplant experiment. Using a combination of metabarcoding, genomics, and comparative genomics approaches, we found that coral colonies separated by a small distance harbored different dominant Endozoicomonas-related phylotypes belonging to two different species, including a novel species, “Candidatus Endozoicomonas penghunesis” 4G, whose chromosome-level (complete) genome was also sequenced in this study. Furthermore, the two dominant Endozoicomonas species had different potentials to scavenge reactive oxygen species, suggesting potential differences in responding to the environment. Differential capabilities of dominant members of the microbiome to respond to environmental change can (i) provide distinct advantages or disadvantages to coral hosts when subjected to changing environmental conditions and (ii) have positive or negative implications for future reefs. IMPORTANCE The coral microbiome has been known to play a crucial role in host health. In recent years, we have known that the coral microbiome changes in response to external stressors and that coral hosts structure their microbiome in a host-specific manner. However, an important internal factor, the ability of microbiome members to respond to change, has been often neglected. In this study, we combine metabarcoding, culturing, and genomics to delineate the differential ability of two dominant Endozoicomonas species, including a novel “Ca. Endozoicomonas penghunesis” 4G, to respond to change in the environment following a reciprocal transplant experiment.
Collapse
|
31
|
Haydon TD, Suggett DJ, Siboni N, Kahlke T, Camp EF, Seymour JR. Temporal Variation in the Microbiome of Tropical and Temperate Octocorals. MICROBIAL ECOLOGY 2022; 83:1073-1087. [PMID: 34331071 DOI: 10.1007/s00248-021-01823-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Bacterial members of the coral holobiont play an important role in determining coral fitness. However, most knowledge of the coral microbiome has come from reef-building scleractinian corals, with far less known about the nature and importance of the microbiome of octocorals (subclass Octocorallia), which contribute significantly to reef biodiversity and functional complexity. We examined the diversity and structure of the bacterial component of octocoral microbiomes over summer and winter, with a focus on two temperate (Erythropodium hicksoni, Capnella gaboensis; Sydney Harbour) and two tropical (Sinularia sp., Sarcophyton sp.; Heron Island) species common to reefs in eastern Australia. Bacterial communities associated with these octocorals were also compared to common temperate (Plesiastrea versipora) and tropical (Acropora aspera) hard corals from the same reefs. Using 16S rRNA amplicon sequencing, bacterial diversity was found to be heterogeneous among octocorals, but we observed changes in composition between summer and winter for some species (C. gaboensis and Sinularia sp.), but not for others (E. hicksoni and Sarcophyton sp.). Bacterial community structure differed significantly between all octocoral species within both the temperate and tropical environments. However, on a seasonal basis, those differences were less pronounced. The microbiomes of C. gaboensis and Sinularia sp. were dominated by bacteria belonging to the genus Endozoicomonas, which were a key conserved feature of their core microbiomes. In contrast to previous studies, our analysis revealed that Endozoicomonas phylotypes are shared across different octocoral species, inhabiting different environments. Together, our data demonstrates that octocorals harbour a broad diversity of bacterial partners, some of which comprise 'core microbiomes' that potentially impart important functional roles to their hosts.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Emma F Camp
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
32
|
Levy S, Mass T. The Skeleton and Biomineralization Mechanism as Part of the Innate Immune System of Stony Corals. Front Immunol 2022; 13:850338. [PMID: 35281045 PMCID: PMC8913943 DOI: 10.3389/fimmu.2022.850338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Stony corals are among the most important calcifiers in the marine ecosystem as they form the coral reefs. Coral reefs have huge ecological importance as they constitute the most diverse marine ecosystem, providing a home to roughly a quarter of all marine species. In recent years, many studies have shed light on the mechanisms underlying the biomineralization processes in corals, as characterizing the calicoblast cell layer and genes involved in the formation of the calcium carbonate skeleton. In addition, considerable advancements have been made in the research field of coral immunity as characterizing genes involved in the immune response to pathogens and stressors, and the revealing of specialized immune cells, including their gene expression profile and phagocytosis capabilities. Yet, these two fields of corals research have never been integrated. Here, we discuss how the coral skeleton plays a role as the first line of defense. We integrate the knowledge from both fields and highlight genes and proteins that are related to biomineralization and might be involved in the innate immune response and help the coral deal with pathogens that penetrate its skeleton. In many organisms, the immune system has been tied to calcification. In humans, immune factors enhance ectopic calcification which causes severe diseases. Further investigation of coral immune genes which are involved in skeleton defense as well as in biomineralization might shed light on our understanding of the correlation and the interaction of both processes as well as reveal novel comprehension of how immune factors enhance calcification.
Collapse
Affiliation(s)
- Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| |
Collapse
|
33
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Contrasting microbiome dynamics of putative denitrifying bacteria in two octocoral species exposed to dissolved organic carbon (DOC) and warming. Appl Environ Microbiol 2021; 88:e0188621. [PMID: 34788073 PMCID: PMC8788706 DOI: 10.1128/aem.01886-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutualistic nutrient cycling in the coral-algae symbiosis depends on limited nitrogen (N) availability for algal symbionts. Denitrifying prokaryotes capable of reducing nitrate or nitrite to dinitrogen could thus support coral holobiont functioning by limiting N availability. Octocorals show some of the highest denitrification rates among reef organisms; however, little is known about the community structures of associated denitrifiers and their response to environmental fluctuations. Combining 16S rRNA gene amplicon sequencing with nirS in-silico PCR and quantitative PCR, we found differences in bacterial community dynamics between two octocorals exposed to excess dissolved organic carbon (DOC) and concomitant warming. Although bacterial communities of the gorgonian Pinnigorgia flava remained largely unaffected by DOC and warming, the soft coral Xenia umbellata exhibited a pronounced shift toward Alphaproteobacteria dominance under excess DOC. Likewise, the relative abundance of denitrifiers was not altered in P. flava but decreased by 1 order of magnitude in X. umbellata under excess DOC, likely due to decreased proportions of Ruegeria spp. Given that holobiont C:N ratios remained stable in P. flava but showed a pronounced increase with excess DOC in X. umbellata, our results suggest that microbial community dynamics may reflect the nutritional status of the holobiont. Hence, denitrifier abundance may be directly linked to N availability. This suggests a passive regulation of N cycling microbes based on N availability, which could help stabilize nutrient limitation in the coral-algal symbiosis and thereby support holobiont functioning in a changing environment. IMPORTANCE Octocorals are important members of reef-associated benthic communities that can rapidly replace scleractinian corals as the dominant ecosystem engineers on degraded reefs. Considering the substantial change in the (a)biotic environment that is commonly driving reef degradation, maintaining a dynamic and metabolically diverse microbial community might contribute to octocoral acclimatization. Nitrogen (N) cycling microbes, in particular denitrifying prokaryotes, may support holobiont functioning by limiting internal N availability, but little is known about the identity and (a)biotic drivers of octocoral-associated denitrifiers. Here, we show contrasting dynamics of bacterial communities associated with two common octocoral species, the soft coral Xenia umbellata and the gorgonian Pinnigorgia flava after a 6-week exposure to excess dissolved organic carbon under concomitant warming conditions. The specific responses of denitrifier communities of the two octocoral species aligned with the nutritional status of holobiont members. This suggests a passive regulation based on N availability in the coral holobiont.
Collapse
|
35
|
Haydon TD, Seymour JR, Raina JB, Edmondson J, Siboni N, Matthews JL, Camp EF, Suggett DJ. Rapid Shifts in Bacterial Communities and Homogeneity of Symbiodiniaceae in Colonies of Pocillopora acuta Transplanted Between Reef and Mangrove Environments. Front Microbiol 2021; 12:756091. [PMID: 34759906 PMCID: PMC8575411 DOI: 10.3389/fmicb.2021.756091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
It has been proposed that an effective approach for predicting whether and how reef-forming corals persist under future climate change is to examine populations thriving in present day extreme environments, such as mangrove lagoons, where water temperatures can exceed those of reef environments by more than 3°C, pH levels are more acidic (pH < 7.9, often below 7.6) and O2 concentrations are regularly considered hypoxic (<2 mg/L). Defining the physiological features of these “extreme” corals, as well as their relationships with the, often symbiotic, organisms within their microbiome, could increase our understanding of how corals will persist into the future. To better understand coral-microbe relationships that potentially underpin coral persistence within extreme mangrove environments, we therefore conducted a 9-month reciprocal transplant experiment, whereby specimens of the coral Pocillopora acuta were transplanted between adjacent mangrove and reef sites on the northern Great Barrier Reef. Bacterial communities associated with P. acuta specimens native to the reef environment were dominated by Endozoicomonas, while Symbiodiniaceae communities were dominated by members of the Cladocopium genus. In contrast, P. acuta colonies native to the mangrove site exhibited highly diverse bacterial communities with no dominating members, and Symbiodiniaceae communities dominated by Durusdinium. All corals survived for 9 months after being transplanted from reef-to-mangrove, mangrove-to-reef environments (as well as control within environment transplants), and during this time there were significant changes in the bacterial communities, but not in the Symbiodiniaceae communities or their photo-physiological functioning. In reef-to-mangrove transplanted corals, there were varied, but sometimes rapid shifts in the associated bacterial communities, including a loss of “core” bacterial members after 9 months where coral bacterial communities began to resemble those of the native mangrove corals. Bacterial communities associated with mangrove-to-reef P. acuta colonies also changed from their original composition, but remained different to the native reef corals. Our data demonstrates that P. acuta associated bacterial communities are strongly influenced by changes in environmental conditions, whereas Symbiodiniaceae associated communities remain highly stable.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | | | - Nachshon Siboni
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | | | - Emma F Camp
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology, Ultimo, NSW, Australia
| |
Collapse
|
36
|
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623-638. [PMID: 33875863 PMCID: PMC8054256 DOI: 10.1038/s41579-021-00550-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Virtually all plants and animals, including humans, are home to symbiotic microorganisms. Symbiotic interactions can be neutral, harmful or have beneficial effects on the host organism. However, growing evidence suggests that microbial symbionts can evolve rapidly, resulting in drastic transitions along the parasite-mutualist continuum. In this Review, we integrate theoretical and empirical findings to discuss the mechanisms underpinning these evolutionary shifts, as well as the ecological drivers and why some host-microorganism interactions may be stuck at the end of the continuum. In addition to having biomedical consequences, understanding the dynamic life of microorganisms reveals how symbioses can shape an organism's biology and the entire community, particularly in a changing world.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Yang F, Xiao Z, Wei Z, Long L. Bacterial Communities Associated With Healthy and Bleached Crustose Coralline Alga Porolithon onkodes. Front Microbiol 2021; 12:646143. [PMID: 34177828 PMCID: PMC8219876 DOI: 10.3389/fmicb.2021.646143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Crustose coralline algae (CCA) play vital roles in producing and stabilizing reef structures and inducing the settlement and metamorphosis of invertebrate larvae in coral reef ecosystems. However, little is known about the bacterial communities associated with healthy and bleached CCA and their interactions with coral larval settlement. We collected samples of healthy, middle semi-bleached, and bleached CCA Porolithon onkodes from Sanya Bay in the South China Sea and investigated their influences on the larval settlement and metamorphosis of the reef-building coral Pocillopora damicornis. The larval settlement/metamorphosis rates all exceeded 70% when exposed to healthy, middle semi-bleached, and bleached algae. Furthermore, the compositions of bacterial community using amplicon pyrosequencing of the V3–V4 region of 16S rRNA were investigated. There were no obvious changes in bacterial community structure among healthy, middle semi-bleached, and bleached algae. Alphaproteobacteria, Bacteroidetes, and Gammaproteobacteria were dominant in all samples, which may contribute to coral larval settlement. However, the relative abundances of several bacterial communities varied among groups. The relative abundances of Mesoflavibacter, Ruegeria, Nautella, and Alteromonas in bleached samples were more than double those in the healthy samples, whereas Fodinicurvata and unclassified Rhodobacteraceae were significantly lower in the bleached samples. Additionally, others at the genus level increased significantly from 8.5% in the healthy samples to 22.93% in the bleached samples, which may be related to algal bleaching. These results revealed that the microbial community structure associated with P. onkodes generally displayed a degree of stability. Furthermore, bleached alga was still able to induce larval settlement and metamorphosis.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiliang Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhangliang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
38
|
Maire J, Blackall LL, van Oppen MJH. Microbiome characterization of defensive tissues in the model anemone Exaiptasia diaphana. BMC Microbiol 2021; 21:152. [PMID: 34020587 PMCID: PMC8140459 DOI: 10.1186/s12866-021-02211-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Coral reefs are among the most diverse and productive ecosystems on Earth. This success relies on the coral’s association with a wide range of microorganisms, including dinoflagellates of the family Symbiodiniaceae that provide coral hosts with most of their organic carbon requirements. While bacterial associates have long been overlooked, research on these microorganisms is gaining traction, and deciphering bacterial identity and function is greatly enhancing our understanding of cnidarian biology. Here, we investigated bacterial communities in defensive tissues (acontia) of the coral model, the sea anemone Exaiptasia diaphana. Acontia are internal filaments that are ejected upon detection of an external threat and release toxins to repel predators. Results Using culturing techniques and 16S rRNA gene metabarcoding we identified bacterial communities associated with acontia of four Great Barrier Reef-sourced E. diaphana genotypes. We show that bacterial communities are similar across genotypes, and dominated by Alteromonadaceae, Vibrionaceae, Rhodobacteraceae, and Saprospiraceae. By analyzing abundant amplicon sequence variants (ASVs) from metabarcoding data from acontia and comparing these to data from whole anemones, we identified five potentially important bacterial genera of the acontia microbiome: Vibrio, Sulfitobacter, Marivita, Alteromonas, and Lewinella. The role of these bacteria within the acontia remains uninvestigated but could entail assistance in defense processes such as toxin production. Conclusions This study provides insight into potential bacterial involvement in cnidarian defense tissues and highlights the need to study bacterial communities in individual compartments within a holobiont. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02211-4.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia.,Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
39
|
Savary R, Barshis DJ, Voolstra CR, Cárdenas A, Evensen NR, Banc-Prandi G, Fine M, Meibom A. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc Natl Acad Sci U S A 2021; 118:e2023298118. [PMID: 33941698 PMCID: PMC8126839 DOI: 10.1073/pnas.2023298118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Corals from the northern Red Sea and Gulf of Aqaba exhibit extreme thermal tolerance. To examine the underlying gene expression dynamics, we exposed Stylophora pistillata from the Gulf of Aqaba to short-term (hours) and long-term (weeks) heat stress with peak seawater temperatures ranging from their maximum monthly mean of 27 °C (baseline) to 29.5 °C, 32 °C, and 34.5 °C. Corals were sampled at the end of the heat stress as well as after a recovery period at baseline temperature. Changes in coral host and symbiotic algal gene expression were determined via RNA-sequencing (RNA-Seq). Shifts in coral microbiome composition were detected by complementary DNA (cDNA)-based 16S ribosomal RNA (rRNA) gene sequencing. In all experiments up to 32 °C, RNA-Seq revealed fast and pervasive changes in gene expression, primarily in the coral host, followed by a return to baseline gene expression for the majority of coral (>94%) and algal (>71%) genes during recovery. At 34.5 °C, large differences in gene expression were observed with minimal recovery, high coral mortality, and a microbiome dominated by opportunistic bacteria (including Vibrio species), indicating that a lethal temperature threshold had been crossed. Our results show that the S. pistillata holobiont can mount a rapid and pervasive gene expression response contingent on the amplitude and duration of the thermal stress. We propose that the transcriptomic resilience and transcriptomic acclimation observed are key to the extraordinary thermal tolerance of this holobiont and, by inference, of other northern Red Sea coral holobionts, up to seawater temperatures of at least 32 °C, that is, 5 °C above their current maximum monthly mean.
Collapse
Affiliation(s)
- Romain Savary
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | | | - Anny Cárdenas
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nicolas R Evensen
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| | - Guilhem Banc-Prandi
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Laboratory for Coral Reef Ecology, Interuniversity Institute for Marine Sciences, 88103 Eilat, Israel
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Laboratory for Coral Reef Ecology, Interuniversity Institute for Marine Sciences, 88103 Eilat, Israel
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Chen B, Yu K, Liao Z, Yu X, Qin Z, Liang J, Wang G, Wu Q, Jiang L. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142690. [PMID: 33071127 DOI: 10.1016/j.scitotenv.2020.142690] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Regional acclimatisation and microbial interactions significantly influence the resilience of reef-building corals facing anthropogenic climate change, allowing them to adapt to environmental stresses. However, the connections between community structure and microbial interactions of the endemic coral microbiome and holobiont acclimatisation remain unclear. Herein, we used generation sequencing of internal transcribed spacer (ITS2) and 16S rRNA genes to investigate the microbiome composition (Symbiodiniaceae and bacteria) and associated potential interactions of endemic dominant coral holobionts (Pocillopora verrucosa and Turbinaria peltata) in the South China Sea (SCS). We found that shifts in Symbiodiniaceae and bacterial communities of P. verrucosa were associated with latitudinal gradient and climate zone changes, respectively. The C1 sub-clade consistently dominated the Symbiodiniaceae community in T. peltata; yet, the bacterial community structure was spatially heterogeneous. The relative abundance of the core microbiome among P. verrucosa holobionts was reduced in the biogeographical transition zone, while bacterial taxa associated with anthropogenic activity (Escherichia coli and Sphingomonas) were identified in the core microbiomes. Symbiodiniaceae and bacteria potentially interact in microbial co-occurrence networks. Further, increased bacterial, and Symbiodiniaceae α-diversity was associated with increased and decreased network complexity, respectively. Hence, Symbiodiniaceae and bacteria demonstrated different flexibility in latitudinal or climatic environmental regimes, which correlated with holobiont acclimatisation. Core microbiome analysis has indicated that the function of core bacterial microbiota might have changed in distinct environmental regimes, implying potential human activity in the coral habitats. Increased bacterial α diversity may lead to a decline in the stability of coral-microorganism symbioses, whereas rare Symbiodiniaceae may help to retain symbioses. Cladocopium, γ-proteobacteria, while α-proteobacteria may have been the primary drivers in the Symbiodiniaceae-bacterial interactions (SBIs). Our study highlights the association between microbiome shift in distinct environmental regimes and holobiont acclimatisation, while providing insights into the impact of SBIs on holobiont health and acclimatisation during climate change.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Leilei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
41
|
Peixoto RS, Sweet M, Villela HDM, Cardoso P, Thomas T, Voolstra CR, Høj L, Bourne DG. Coral Probiotics: Premise, Promise, Prospects. Annu Rev Anim Biosci 2020; 9:265-288. [PMID: 33321044 DOI: 10.1146/annurev-animal-090120-115444] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of Beneficial Microorganisms for Corals (BMCs) has been proposed recently as a tool for the improvement of coral health, with knowledge in this research topic advancing rapidly. BMCs are defined as consortia of microorganisms that contribute to coral health through mechanisms that include (a) promoting coral nutrition and growth, (b) mitigating stress and impacts of toxic compounds, (c) deterring pathogens, and (d) benefiting early life-stage development. Here, we review the current proposed BMC approach and outline the studies that have proven its potential to increase coral resilience to stress. We revisit and expand the list of putative beneficial microorganisms associated with corals and their proposed mechanismsthat facilitate improved host performance. Further, we discuss the caveats and bottlenecks affecting the efficacy of BMCs and close by focusing on the next steps to facilitate application at larger scales that can improve outcomes for corals and reefs globally.
Collapse
Affiliation(s)
- Raquel S Peixoto
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; .,IMAM-AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, 20220-360, Brazil.,Current affiliation: Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby DE22 1GB, United Kingdom
| | - Helena D M Villela
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Pedro Cardoso
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz 78457, Germany.,Division of Biological and Environmental Science and Engineering, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lone Høj
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia.,College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
42
|
Mote S, Gupta V, De K, Nanajkar M, Damare SR, Ingole B. Bacterial diversity associated with a newly described bioeroding sponge, Cliona thomasi, from the coral reefs on the West Coast of India. Folia Microbiol (Praha) 2020; 66:203-211. [PMID: 33140282 DOI: 10.1007/s12223-020-00830-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
The bacterial diversity associated with eroding sponges belonging to the Cliona viridis species complex is scarcely known. Cliona thomasi described from the West Coast of India is a new introduction to the viridis species complex. In this study, we determined the bacterial diversity associated with C. thomasi using next-generation sequencing. The results revealed the dominance of Proteobacteria followed by Cyanobacteria, Actinobacteria and Firmicutes. Among Proteobacteria, the Alphaproteobacteria were found to be the most dominant class. Furthermore, at the genus level, Rhodothalassium were highly abundant followed by Endozoicomonas in sponge samples. The beta-diversity and species richness measures showed remarkably lower diversity in Cliona thomasi than the ambient environment. The determined lower bacterial diversity in C. thomasi than the environmental samples, thus, categorized it as a low microbial abundance (LMA). Functional annotation of the C. thomasi-associated bacterial community indicates their possible role in photo-autotrophy, aerobic nitrification, coupling of sulphate reduction and sulphide oxidization. The present study unveils the bacterial diversity in bioeroding C. thomasi, which is a crucial step to determine the functions of the sponge holobiont in coral reef ecosystem.
Collapse
Affiliation(s)
- Sambhaji Mote
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,Department of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Vishal Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India. .,School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Kalyan De
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigao, Goa, India
| | - Mandar Nanajkar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Samir R Damare
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Baban Ingole
- CSIR-National Institute of Oceanography, Dona Paula, Goa, India.
| |
Collapse
|
43
|
Goulet TL, Erill I, Ascunce MS, Finley SJ, Javan GT. Conceptualization of the Holobiont Paradigm as It Pertains to Corals. Front Physiol 2020; 11:566968. [PMID: 33071821 PMCID: PMC7538806 DOI: 10.3389/fphys.2020.566968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
Corals' obligate association with unicellular dinoflagellates, family Symbiodiniaceae form the foundation of coral reefs. For nearly a century, researchers have delved into understanding the coral-algal mutualism from multiple levels of resolution and perspectives, and the questions and scope have evolved with each iteration of new techniques. Advances in genetic technologies not only aided in distinguishing between the multitude of Symbiodiniaceae but also illuminated the existence and diversity of other organisms constituting the coral microbiome. The coral therefore is a meta-organism, often referred to as the coral holobiont. In this review, we address the importance of including a holistic perspective to understanding the coral holobiont. We also discuss the ramifications of how different genotypic combinations of the coral consortium affect the holobiont entity. We highlight the paucity of data on most of the coral microbiome. Using Symbiodiniaceae data, we present evidence that the holobiont properties are not necessarily the sum of its parts. We then discuss the consequences of the holobiont attributes to the fitness of the holobiont and the myriad of organisms that contribute to it. Considering the complexity of host-symbiont genotypic combinations will aid in our understanding of coral resilience, robustness, acclimation, and/or adaptation in the face of environmental change and increasing perturbations.
Collapse
Affiliation(s)
- Tamar L Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Marina S Ascunce
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Plant Pathology Department, University of Florida, Gainesville, FL, United States
| | - Sheree J Finley
- Department of Physical Sciences and Forensic Science Programs, Alabama State University, Montgomery, AL, United States
| | - Gulnaz T Javan
- Department of Physical Sciences and Forensic Science Programs, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
44
|
The World Coral Conservatory (WCC): A Noah's ark for corals to support survival of reef ecosystems. PLoS Biol 2020; 18:e3000823. [PMID: 32925901 PMCID: PMC7529426 DOI: 10.1371/journal.pbio.3000823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Global change causes widespread decline of coral reefs. In order to counter the anticipated disappearance of coral reefs by the end of this century, many initiatives are emerging, including creation of marine protected areas (MPAs), reef restoration projects, and assisted evolution initiatives. Such efforts, although critically important, are locally constrained. We propose to build a “Noah's Ark” biological repository for corals that taps into the network of the world’s public aquaria and coral reef scientists. Public aquaria will serve not only as a reservoir for the purpose of conservation, restoration, and research of reef-building corals but also as a laboratory for the implementation of operations for the selection of stress-resilient and resistant genotypes. The proposed project will provide a global dimension to coral reef education and protection as a result of the involvement of a network of public and private aquaria. Global change is causing a widespread decline in coral reefs. This Community Page article proposes to build the World Coral Conservatory, a “Noah's Ark” biological repository that taps into the network of the world’s public aquaria and coral reef scientists, in order to preserve the fast-disappearing biodiversity of coral reefs.
Collapse
|
45
|
Kleinhaus K, Al-Sawalmih A, Barshis DJ, Genin A, Grace LN, Hoegh-Guldberg O, Loya Y, Meibom A, Osman EO, Ruch JD, Shaked Y, Voolstra CR, Zvuloni A, Fine M. Science, Diplomacy, and the Red Sea’s Unique Coral Reef: It’s Time for Action. FRONTIERS IN MARINE SCIENCE 2020; 7. [PMID: 0 DOI: 10.3389/fmars.2020.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
46
|
Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C, Sampayo EM, Warner ME, Smith DJ. Correction to: Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. MICROBIOME 2020; 8:24. [PMID: 32085815 PMCID: PMC7035705 DOI: 10.1186/s40168-020-00807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Following publication of the original article [1], the authors reported an error on the legend of of P.damicornis in Fig. 1.
Collapse
Affiliation(s)
- Eslam O Osman
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Marine Biology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11448, Egypt.
| | - David J Suggett
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - D Tye Pettay
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - Dave R Clark
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Claudia Pogoreutz
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mark E Warner
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, 19958, USA
| | - David J Smith
- Coral Reef Research Unit, School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| |
Collapse
|