1
|
Tsujimoto M, Dewi DAPR, Mason CE, Shiwa Y, Suzuki H. Shotgun metagenomic sequencing of swab samples from Japanese university campuses. Microbiol Resour Announc 2024; 13:e0021024. [PMID: 38837350 PMCID: PMC11256853 DOI: 10.1128/mra.00210-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
We obtained shotgun metagenome sequences from swab samples obtained through 3-minute swabbing of different surfaces and the air within buildings at three university campuses in part of the Greater Tokyo Area in Japan. These data aid in understanding built environment microbial communities and elucidate various microbial profiles across different locations.
Collapse
Affiliation(s)
- Megumu Tsujimoto
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | - Dewa A. P. Rasmika Dewi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- School of Medicine and Health Sciences, Udayana University, Bali, Indonesia
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| | - Yuh Shiwa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| |
Collapse
|
2
|
Hao Y, Lu C, Xiang Q, Sun A, Su JQ, Chen QL. Unveiling the overlooked microbial niches thriving on building exteriors. ENVIRONMENT INTERNATIONAL 2024; 187:108649. [PMID: 38642506 DOI: 10.1016/j.envint.2024.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Rapid urbanization in the Asia-Pacific region is expected to place two-thirds of its population in concrete-dominated urban landscapes by 2050. While diverse architectural facades define the unique appearance of these urban systems. There remains a significant gap in our understanding of the composition, assembly, and ecological potential of microbial communities on building exteriors. Here, we examined bacterial and protistan communities on building surfaces along an urbanization gradient (urban, suburban and rural regions), investigating their spatial patterns and the driving factors behind their presence. A total of 55 bacterial and protist phyla were identified. The bacterial community was predominantly composed of Proteobacteria (33.7% to 67.5%). The protistan community exhibited a prevalence of Opisthokonta and Archaeplastida (17.5% to 82.1% and 1.8% to 61.2%, respectively). The composition and functionality of bacterial communities exhibited spatial patterns correlated with urbanization. In urban buildings, factors such as facade type, light exposure, and building height had comparatively less impact on bacterial composition compared to suburban and rural areas. The highest bacterial diversity and lowest Weighted Average Community Identity (WACI) were observed on suburban buildings, followed by rural buildings. In contrast, protists did not show spatial distribution characteristics related to facade type, light exposure, building height and urbanization level. The distinct spatial patterns of protists were primarily shaped by community diffusion and the bottom-up regulation exerted by bacterial communities. Together, our findings suggest that building exteriors serve as attachment points for local microbial metacommunities, offering unique habitats where bacteria and protists exhibit independent adaptive strategies closely tied to the overall ecological potential of the community.
Collapse
Affiliation(s)
- Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
3
|
Onwusereaka CO, Jalaludin J, Oluchi SE, Poh Choo VC. New generation sequencing: molecular approaches for the detection and monitoring of bioaerosols in an indoor environment: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2023-0004. [PMID: 38214730 DOI: 10.1515/reveh-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The exposure of occupants to indoor air pollutants has increased in recent decades. The aim of this review is to discuss an overview of new approaches that are used to study fungal aerosols. Thus, this motivation was to compensate the gaps caused by the use of only traditional approaches in the study of fungal exposure. CONTENT The search involved various databases such as; Science Direct, PubMed, SAGE, Springer Link, EBCOHOST, MEDLINE, CINAHL, Cochrane library, Web of Science and Wiley Online Library. It was limited to full text research articles that reported the use of non-viable method in assessing bioaerosol, written in English Language, full text publications and published from year 2015-2022. SUMMARY AND OUTLOOK A total of 15 articles met the inclusion criteria and was included in this review. The use of next-generation sequencing, which is more commonly referred to as high-throughput sequencing (HTS) or molecular methods in microbial studies is based on the detection of genetic material of organisms present in a given sample. Applying these methods to different environments permitted the identification of the microorganisms present, and a better comprehension of the environmental impacts and ecological roles of microbial communities. Based on the reviewed articles, there is evidence that dust samples harbour a high diversity of human-associated bacteria and fungi. Molecular methods such as next generation sequencing are reliable tools for identifying and tracking the bacterial and fungal diversity in dust samples using 18S metagenomics approach.
Collapse
Affiliation(s)
- Cynthia Oluchi Onwusereaka
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | - Sampson Emilia Oluchi
- Department of Community Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia Serdang, Selangor, Malaysia
| | | |
Collapse
|
4
|
Konecna E, Videnska P, Buresova L, Urik M, Smetanova S, Smatana S, Prokes R, Lanickova B, Budinska E, Klanova J, Borilova Linhartova P. Enrichment of human nasopharyngeal bacteriome with bacteria from dust after short-term exposure to indoor environment: a pilot study. BMC Microbiol 2023; 23:202. [PMID: 37525095 PMCID: PMC10391871 DOI: 10.1186/s12866-023-02951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Indoor dust particles are an everyday source of human exposure to microorganisms and their inhalation may directly affect the microbiota of the respiratory tract. We aimed to characterize the changes in human nasopharyngeal bacteriome after short-term exposure to indoor (workplace) environments. METHODS In this pilot study, nasopharyngeal swabs were taken from 22 participants in the morning and after 8 h of their presence at the workplace. At the same time points, indoor dust samples were collected from the participants' households (16 from flats and 6 from houses) and workplaces (8 from a maternity hospital - NEO, 6 from a pediatric hospital - ENT, and 8 from a research center - RCX). 16S rRNA sequencing analysis was performed on these human and environmental matrices. RESULTS Staphylococcus and Corynebacterium were the most abundant genera in both indoor dust and nasopharyngeal samples. The analysis indicated lower bacterial diversity in indoor dust samples from flats compared to houses, NEO, ENT, and RCX (p < 0.05). Participants working in the NEO had the highest nasopharyngeal bacterial diversity of all groups (p < 0.05). After 8 h of exposure to the workplace environment, enrichment of the nasopharynx with several new bacterial genera present in the indoor dust was observed in 76% of study participants; however, no significant changes were observed at the level of the nasopharyngeal bacterial diversity (p > 0.05, Shannon index). These "enriching" bacterial genera overlapped between the hospital workplaces - NEO and ENT but differed from those in the research center - RCX. CONCLUSIONS The results suggest that although the composition of nasopharyngeal bacteriome is relatively stable during the day. Short-term exposure to the indoor environment can result in the enrichment of the nasopharynx with bacterial DNA from indoor dust; the bacterial composition, however, varies by the indoor workplace environment.
Collapse
Affiliation(s)
- Eva Konecna
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Videnska
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lucie Buresova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Milan Urik
- Department of Pediatric Otorhinolaryngology, University Hospital Brno, Černopolní 9, 613 00 Brno, Czech Republic
- Department of Pediatric Otorhinolaryngology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Sona Smetanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Stanislav Smatana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Roman Prokes
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno, Czech Republic
| | - Barbara Lanickova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Department of Gynaecology and Obstetrics, University Hospital Brno, Obilni Trh 526/11, 602 00 Brno, Czech Republic
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | |
Collapse
|
5
|
Luo L, Fu A, Shi M, Hu J, Kong D, Liu T, Yuan J, Sun S, Chen C. Species-Level Characterization of the Microbiome in Breast Tissues with Different Malignancy and Hormone-Receptor Statuses Using Nanopore Sequencing. J Pers Med 2023; 13:jpm13020174. [PMID: 36836409 PMCID: PMC9965790 DOI: 10.3390/jpm13020174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Unambiguous evidence indicates that microbes are closely linked to various human diseases, including cancer. Most prior work investigating the microbiome of breast tissue describes an association between compositional differences of microbial species in benign and malignant tissues, but few studies have examined the relative abundance of microbial communities within human breast tissue at the species level. In this work, a total of 44 breast tissue samples including benign and malignant tissues with adjacent normal breast tissue pairs were collected, and Oxford Nanopore long-read sequencing was employed to assess breast tissue microbial signatures. Nearly 900 bacterial species were detected from the four dominant phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The bacteria with the highest abundance in all breast tissues was Ralstonia pickettii, and its relative abundance increased with decreasing malignancy. We further examined the breast-tissue microbiome composition with different hormone-receptor statuses, and the relative abundance of the genus Pseudomonas increased most significantly in breast tissues. Our study provides a rationale for exploring microbiomes associated with breast carcinogenesis and cancer development. Further large-cohort investigation of the breast microbiome is necessary to characterize a microbial risk signature and develop potential microbial-based prevention therapies.
Collapse
Affiliation(s)
- Lan Luo
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Aisi Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430060, China
| | - Manman Shi
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiawei Hu
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Deguang Kong
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shengrong Sun
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chuang Chen
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence:
| |
Collapse
|
6
|
Yang JIL, Lee BG, Park J, Yeo M. Airborne fungal and bacterial microbiome in classrooms of elementary schools during the COVID-19 pandemic period: Effects of school disinfection and other environmental factors. INDOOR AIR 2022; 32:e13107. [PMID: 36168218 PMCID: PMC9538906 DOI: 10.1111/ina.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The aim of the study was to examine the effects of environmental factors including disinfection on airborne microbiome during the coronavirus disease 2019 pandemic, we evaluated indoor and outdoor air collected from 19 classrooms regularly disinfected. Extracted bacterial and fungal DNA samples were sequenced using the Illumina MiSeq™ platform. Using bacterial DNA copy number concentrations from qPCR analysis, multiple linear regressions including environmental factors as predictors were performed. Microbial diversity and community composition were evaluated. Classrooms disinfected with spray ≤1 week before sampling had lower bacterial DNA concentration (3116 DNA copies/m3 ) than those >1 week (5003 copies/m3 ) (p-values = 0.06). The bacterial DNA copy number concentration increased with temperature and was higher in classrooms in coastal than inland cities (p-values <0.01). Bacterial diversity in outdoor air was higher in coastal than inland cities while outdoor fungal diversity was higher in inland than coastal cities. These outdoor microbiomes affected classroom microbial diversity but bacterial community composition at the genus level in occupied classrooms were similar between coastal and inland cities. Our findings emphasize that environmental conditions including disinfection, climate, and school location are important factors in shaping classroom microbiota. Yet, further research is needed to understand the effects of modified microbiome by disinfection on occupants' health.
Collapse
Affiliation(s)
- Jun I. L. Yang
- Department of Applied Environmental ScienceGraduate School Kyung Hee UniversityYongin‐siKorea
| | - Bong Gu Lee
- Department of Applied Environmental ScienceGraduate School Kyung Hee UniversityYongin‐siKorea
| | - Ju‐Hyeong Park
- Respiratory Health DivisionNational Institute for Occupational Safety and HealthMorgantownWest VirginiaUSA
| | - Min‐Kyeong Yeo
- Department of Applied Environmental ScienceGraduate School Kyung Hee UniversityYongin‐siKorea
- Department of Environmental Science and Engineering, College of EngineeringKyung Hee UniversityYongin‐siKorea
| |
Collapse
|
7
|
Park JH, Lemons AR, Croston TL, Park Y, Roseman J, Green BJ, Cox-Ganser JM. Mycobiota and the Contribution of Yeasts in Floor Dust of 50 Elementary Schools Characterized with Sequencing Internal Transcribed Spacer Region of Ribosomal DNA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11493-11503. [PMID: 35901271 PMCID: PMC10183301 DOI: 10.1021/acs.est.2c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The assemblage of fungi including unicellular yeasts in schools is understudied. We conducted an environmental study to characterize fungal communities in classroom floor dust. We collected 500 samples from 50 elementary schools in Philadelphia, PA, and evaluated room dampness/mold conditions. Genomic DNA from dust was extracted for internal transcribed spacer 1 Illumina MiSeq sequencing to identify operational taxonomic units (OTUs) organized from DNA sequences. Differential abundance analyses were performed to examine significant differences in abundance among groups. We identified 724 genera from 1490 OTUs. The genus Epicoccum was not diverse but the most abundant (relative abundance = 18.9%). Fungi were less diverse but most dissimilar in composition in the most water-damaged classrooms compared to the least water-damaged, indicating differential effects of individual classroom water-damage on fungal compositions. We identified 62 yeast genera, representing 19.6% of DNA sequences. Cyberlindnera was the most abundant (6.1%), followed by Cryptococcus, Aureobasidium, Rhodotorula, and Candida. The average relative abundance of yeasts tended to increase with increasing dampness and mold score and was significantly (p-value = 0.048) higher in the most water-damaged classrooms (22.4%) than the least water-damaged classrooms (18.2%). Our study suggests the need for further research on the potential health effects associated with exposures to yeasts in schools.
Collapse
Affiliation(s)
- Ju-Hyeong Park
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Angela R Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Tara L Croston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Yeonmi Park
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Jerry Roseman
- Philadelphia Federation of Teachers Health & Welfare Fund & Union, Philadelphia, Pennsylvania 19103, United States
| | - Brett J Green
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Jean M Cox-Ganser
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| |
Collapse
|
8
|
NIOSH Dampness and Mold Assessment Tool (DMAT): Documentation and Data Analysis of Dampness and Mold-Related Damage in Buildings and Its Application. BUILDINGS 2022; 12:1075-1092. [DOI: 10.3390/buildings12081075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Indoor dampness and mold are prevalent, and the exposure has been associated with various illnesses such as the exacerbation of existing asthma, asthma development, current asthma, ever-diagnosed asthma, bronchitis, respiratory infection, allergic rhinitis, dyspnea, wheezing, cough, upper respiratory symptoms, and eczema. However, assessing exposures or environments in damp and moldy buildings/rooms, especially by collecting and analyzing environmental samples for microbial agents, is complicated. Nonetheless, observational assessment (visual and olfactory inspection) has been demonstrated as an effective method for evaluating indoor dampness and mold. The National Institute for Occupational Safety and Health developed an observational assessment method called the Dampness and Mold Assessment Tool (DMAT). The DMAT uses a semi-quantitative approach to score the level of dampness and mold-related damage (mold odor, water damage/stains, visible mold, and wetness/dampness) by intensity or size for each of the room components (ceiling, walls, windows, floor, furnishings, ventilation system, pipes, and supplies and materials). Total or average room scores and factor-or component-specific scores can be calculated for data analysis. Because the DMAT uses a semi-quantitative scoring method, it better differentiates the level of damage compared to the binary (presence or absence of damage) approach. Thus, our DMAT provides useful information on identifying dampness and mold, tracking and comparing past and present damage by the scores, and prioritizing remediation to avoid potential adverse health effects in occupants. This protocol-type article describes the DMAT and demonstrates how to apply it to effectively manage indoor dampness and mold-related damage.
Collapse
|
9
|
Lam T, Chew D, Zhao H, Zhu P, Zhang L, Dai Y, Liu J, Xu J. Species-Resolved Metagenomics of Kindergarten Microbiomes Reveal Microbial Admixture Within Sites and Potential Microbial Hazards. Front Microbiol 2022; 13:871017. [PMID: 35418963 PMCID: PMC8996153 DOI: 10.3389/fmicb.2022.871017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
Microbiomes on surfaces in kindergartens, the intermediate transfer medium for microbial exchange, can exert significant impact on the hygiene and wellbeing of young children, both individually and as a community. Here employing 2bRAD-M, a novel species-resolved metagenomics approach for low-biomass microbiomes, we surveyed over 100 samples from seven frequently contacted surfaces by children, plus individual children’s palms, in two kindergartens. Microbiome compositions, although kindergarten-specific, were grouped closely based on the type of surface within each kindergarten. Extensive microbial admixture were found among the various sampled sites, likely facilitated by contact with children’s hands. Notably, bacterial species with potential human health concerns and potentially antibiotic-resistant, although found across all sampled locations, were predominantly enriched on children’s hands instead of on the environmental sites. This first species-resolved kindergarten microbiome survey underscores the importance of good hand hygiene practices in kindergartens and provides insights into better managing hygiene levels and minimizing spread of harmful microbes in susceptible indoor environments.
Collapse
Affiliation(s)
- TzeHau Lam
- Global BioScience, Procter & Gamble Singapore Innovation Center, Singapore, Singapore
| | - Dillon Chew
- Global BioScience, Procter & Gamble Singapore Innovation Center, Singapore, Singapore
| | - Helen Zhao
- Global BioScience, Procter & Gamble Singapore Innovation Center, Singapore, Singapore
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lili Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yajie Dai
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jiquan Liu
- Global BioScience, Procter & Gamble Singapore Innovation Center, Singapore, Singapore
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Beasley DE, Monsur M, Hu J, Dunn RR, Madden AA. The bacterial community of childcare centers: potential implications for microbial dispersal and child exposure. ENVIRONMENTAL MICROBIOME 2022; 17:8. [PMID: 35246271 PMCID: PMC8895594 DOI: 10.1186/s40793-022-00404-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bacterial communities within built environments reflect differences in sources of bacteria, building design, and environmental contexts. These communities impact the health of their occupants in many ways. Children interact with the built environment differently than do adults as a result of their unique behaviors, size, and developmental status. Consequently, understanding the broader bacterial community to which children are exposed will help inform public health efforts and contribute to our growing understanding of the bacterial community associated with childcare centers. METHODS We sampled childcare centers to survey the variation in bacterial community composition across five surfaces found inside and outside twelve classrooms and six centers using 16S rRNA marker gene amplicon sequencing. We then correlated these bacterial community analyses of surfaces with environmental and demographic measures of illumination and classroom occupant density. RESULTS The childcare environment was dominated by human-associated bacteria with modest input from outdoor sources. Though the bacterial communities of individual childcare centers differed, there was a greater difference in the bacterial community within a classroom than among centers. Surface habitats-fomites-within the classroom, did not differ in community composition despite differing proximity to likely sources of bacteria, and possible environmental filters, such as light. Bacterial communities did correlate with occupant density and differed significantly between high and low usage surfaces. CONCLUSIONS Our results suggest built environments inhabited by young children are similar to functionally equivalent built environments inhabited by adults, despite the different way young children engage with their environment. Ultimately, these results will be useful when further interrogating microbial dispersal and human exposure to microorganisms in built environments that specifically cater to young children.
Collapse
Affiliation(s)
- D E Beasley
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Biology, Geology and Environmental Science, University of Tennessee Chattanooga, Chattanooga, TN, 37403, USA.
| | - M Monsur
- College of Design, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Landscape Architecture, Texas Tech University, Lubbock, TX, 79409, USA
| | - J Hu
- College of Design, North Carolina State University, Raleigh, NC, 27695, USA
| | - R R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - A A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
- The Microbe Institute, Everett, MA, 02149, USA
| |
Collapse
|
11
|
Park JH, Lemons AR, Roseman J, Green BJ, Cox-Ganser JM. Correction to: Bacterial community assemblages in classroom floor dust of 50 public schools in a large city: characterization using 16S rRNA sequences and associations with environmental factors. MICROBIOME 2021; 9:42. [PMID: 33581712 PMCID: PMC7881578 DOI: 10.1186/s40168-021-01005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- Ju-Hyeong Park
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| | - Angela R Lemons
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jerry Roseman
- Philadelphia Federation of Teachers Health & Welfare Fund & Union, Philadelphia, PA, USA
| | - Brett J Green
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jean M Cox-Ganser
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|