1
|
Falco N, Griffin ME. Discovering microbiota functions via chemical probe incorporation for targeted sequencing. Curr Opin Chem Biol 2025; 84:102551. [PMID: 39615426 PMCID: PMC11799120 DOI: 10.1016/j.cbpa.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
Our microbiota plays crucial roles in immune development and homeostasis and has been implicated in virtually all major diseases of the 21st century. Nevertheless, our understanding of the exact microbial functions that underlie these correlations remains extremely limited, due in large part to the difficulty of profiling cellular activities within non-model organisms and complex communities. Over the past decade, new flow cytometric approaches have been developed to distinguish specific microbial populations based on their interactions with metabolite analogs, modified biomolecules, and reactive compounds. By selecting and separating active microbes via fluorescence-activated cell sorting, PRobe INcorporation for Targeted sequencing (PRINT-seq) has inspired innovative approaches to identify and characterize functional members of our microbiota. Here, we provide a broad overview of this evolving technology and summarize how this method has been recently employed as a diagnostic fingerprint for diverse microbial activities.
Collapse
Affiliation(s)
- Natalie Falco
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthew E Griffin
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Xu N, Lin H, Lin L, Tang M, Zhang Z, Yang C, Wang W. Visual and Quantitative Analysis of Dietary Fiber-Microbiota Interactions via Metabolic Labeling In Vivo. Chembiochem 2025; 26:e202400922. [PMID: 39538366 DOI: 10.1002/cbic.202400922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Dietary fiber (DF)-based interventions are crucial in establishing a health-promoting gut microbiota. However, directly investigating DFs' in vivo interactions with intestinal bacteria remains challenging due to the lack of suitable tools. Here, we develop an in vivo metabolic labeling-based strategy, which enables not only imaging and identifying the bacteria that bind with specific DF in the intestines, but also quantifying DF's impact on their metabolic status. Four DFs, including galactan, rhamnogalacturonan and two inulins, are fluorescently derivatized and used for in vivo labeling to visually record DFs' interactions with gut bacteria. The subsequent cell-sorting, 16S rDNA sequencing, and fluorescence in situ hybridization identify the taxa that bind each DF. We then select a DF-binding species newly identified herein and verify its DF-catabolizing capability in vitro. Furthermore, we find that the indigenous metabolic status of Gram-positive bacteria, whether inulin-binders or not, is significantly enhanced by the inulin supplement. This trend is not observed in Gram-negative microbiota, even for the inulin-binders, demonstrating the ability of our methods in differentiating the primary, secondary DF-degraders from cross-feeders, a question that is difficult to answer by using other methods. Our strategy provides a novel chemical biology tool for deciphering the complex DF-bacteria interactions in the gut.
Collapse
Affiliation(s)
- Ningning Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310005, China
| | - Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liyuan Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mi Tang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhidong Zhang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
3
|
Yang C, Han B, Tang J, Hu J, Qiu L, Cai W, Zhou X, Zhang X. Life history strategies complement niche partitioning to support the coexistence of closely related Gilliamella species in the bee gut. THE ISME JOURNAL 2025; 19:wraf016. [PMID: 39893622 PMCID: PMC11822680 DOI: 10.1093/ismejo/wraf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The maintenance of bacterial diversity at both species and strain levels is crucial for the sustainability of honey bee gut microbiota and host health. Periodic or random fluctuation in diet typically alters the metabolic niches available to gut microbes, thereby continuously reshaping bacterial diversity and interspecific interactions. It remains unclear how closely related bacteria adapt to these fluctuations and maintain coexistence within the bee gut. Here, we demonstrate that the five predominant Gilliamella species associated with Apis cerana, a widely distributed Asiatic honey bee, have diverged in carbohydrate metabolism to adapt to distinct nutrient niches driven by dietary fluctuation. Specifically, the glycan-specialists gain improved growth on a pollen-rich diet, but are overall inferior in competition to non-glycan-specialist on either a simple sugar or sugar-pollen diet, when co-inoculated in the bee host and transmitted across generations. Strikingly, despite of their disadvantage in a high-sugar condition, the glycan-specialists are found prevalent in natural A. cerana guts. We further reveal that these bacteria have adopted a life history strategy characterized by high biomass yield on a low-concentration sugar diet, allowing them to thrive under poor nutritional conditions, such as when the bee hosts undergo periodical starvation. Transcriptome analyses indicate that the divergence in life history strategies is attributed to gene expression programming rather than genetic variation. This study highlights the importance of integrative metabolic strategies in carbohydrate utilization, which facilitate the coexistence of closely related Gilliamella species in a changing bee gut environment.
Collapse
Affiliation(s)
- Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
- Sanya Institute of China Agricultural University, 572024 Hainan, China
| | - Benfeng Han
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Lifei Qiu
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Wanzhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
- Sanya Institute of China Agricultural University, 572024 Hainan, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
4
|
King ML, Xing X, Reintjes G, Klassen L, Low KE, Alexander TW, Waldner M, Patel TR, Wade Abbott D. In vitro and ex vivo metabolism of chemically diverse fructans by bovine rumen Bifidobacterium and Lactobacillus species. Anim Microbiome 2024; 6:50. [PMID: 39252059 PMCID: PMC11382395 DOI: 10.1186/s42523-024-00328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Inulin and inulin-derived fructooligosaccharides (FOS) are well-known prebiotics for use in companion animals and livestock. The mechanisms by which FOS contribute to health has not been fully established. Further, the fine chemistry of fructan structures from diverse sources, such as graminan-type fructans found in cereal crops, has not been fully elucidated. New methods to study fructan structure and microbial responses to these complex carbohydrates will be key for evaluating the prebiotic potency of cereal fructans found in cattle feeds. As the rumen microbiome composition is closely associated with their metabolic traits, such as feed utilization and waste production, prebiotics and probiotics represent promising additives to shift the microbial community toward a more productive state. RESULTS Within this study, inulin, levan, and graminan-type fructans from winter wheat, spring wheat, and barley were used to assess the capacity of rumen-derived Bifidobacterium boum, Bifidobacterium merycicum, and Lactobacillus vitulinus to metabolize diverse fructans. Graminan-type fructans were purified and structurally characterized from the stems and kernels of each plant. All three bacterial species grew on FOS, inulin, and cereal crop fructans in pure cultures. L. vitulinus was the only species that could metabolize levan, albeit its growth was delayed. Fluorescently labelled polysaccharides (FLAPS) were used to demonstrate interactions with Gram-positive bacteria and confirm fructan metabolism at the single-cell level; these results were in agreement with the individual growth profiles of each species. The prebiotic potential of inulin was further investigated within naïve rumen microbial communities, where increased relative abundance of Bifidobacterium and Lactobacillus species occurred in a dose-dependent and temporal-related manner. This was supported by in situ analysis of rumen microbiota from cattle fed inulin. FLAPS probe derived from inulin and fluorescent in situ hybridization using taxon-specific probes confirmed that inulin interacts with Bifidobacteria and Lactobacilli at the single-cell level. CONCLUSION This research revealed that rumen-derived Bifidobacteria and Lactobacilli vary in their metabolism of structurally diverse fructans, and that inulin has limited prebiotic potential in the rumen. This knowledge establishes new methods for evaluating the prebiotic potential of fructans from diverse plant sources as prebiotic candidates for use in ruminants and other animals.
Collapse
Affiliation(s)
- Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Greta Reintjes
- Microbial-Carbohydrate Interactions Group, Department of Biology/Chemistry, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Matthew Waldner
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
5
|
Bai T, Jiang C, Wang J, E G, Guo X, Liu J, Le VH, Cheng L. The role of monoammonium glycyrrhizinate as a methane inhibitor to limit the rumen methane emissions of Karakul sheep. Animal 2024; 18:101293. [PMID: 39216153 DOI: 10.1016/j.animal.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Methane (CH4) from ruminant production systems produces greenhouse gases that contribute to global warming. Our goal was to determine whether monoammonium glycyrrhizinate could inhibit CH4 emissions over the long term without affecting animal performance and immune indices in Karakul sheep. This study aimed to assess the effects of medium-term (60 days) addition of monoammonium glycyrrhizinate on growth performance, apparent digestibility, CH4 emissions, methanogens, fibre-degrading bacteria and blood characteristics in Karakul sheep. Twelve male Karakul sheep (40.1 ± 3.59 kg) with fistula were randomly divided into two groups (n = 6): the Control group received a basal diet + the same volume of distilled water (30 ml) and the Treatment group received a basal diet + 8.75 g/kg monoammonium glycyrrhizinate injected via fistula. The adaptation stage was 15 days, and the measurement stage was 60 days. The sampling during the measurement stage was divided into two stages, stage I (1 ∼ 30 d) and stage II (31 ∼ 60 d). The results showed that monoammonium glycyrrhizinate significantly reduced the relative abundance of Bacteroides caccae, daily CH4 emission and protozoa population, significantly increased the relative abundance of Lachnospiraceae bacterium AD3010, Lachnospiraceae bacterium FE2018, Lachnospiraceae bacterium NK3A20, Lachnospiraceae bacterium NK4A179 and Lachnospiraceae bacterium V9D3004 in stage I (P < 0.05); significantly increased the relative abundance of Lachnospiraceae bacterium AD3010, but significantly decreased the relative abundance of Lachnospiraceae bacterium NK4A179 and Lachnospiraceae bacterium C6A11 in stage II (P < 0.05). Therefore, monoammonium glycyrrhizinate could be used as a CH4 inhibitor to limit the rumen CH4 emissions of Karakul sheep in short-term period (30 days) without affecting the growth performance, fibre digestibility and blood parameters.
Collapse
Affiliation(s)
- Tiantian Bai
- College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China; Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China
| | - Chenyu Jiang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Jishu Wang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Guangxu E
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xuefeng Guo
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China.
| | - Junfeng Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China; Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
| | - Van Hung Le
- Faculty of Science, Dookie Campus, The University of Melbourne, Victoria 3647, Australia
| | - Long Cheng
- Faculty of Science, Dookie Campus, The University of Melbourne, Victoria 3647, Australia
| |
Collapse
|
6
|
Li Z, Hu Y, Li H, Lin Y, Cheng M, Zhu F, Guo Y. Effects of yeast culture supplementation on milk yield, rumen fermentation, metabolism, and bacterial composition in dairy goats. Front Vet Sci 2024; 11:1447238. [PMID: 39170629 PMCID: PMC11336828 DOI: 10.3389/fvets.2024.1447238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The effects of yeast culture (YC) on dairy goat milk yield and potential effects of rumen microbial population changes on rumen fermentation are poorly understood. This study aimed to evaluate the effects of YC on milk yield and rumen fermentation in dairy goats and explore the potential microbial mechanisms. Forty Laoshan dairy goats with a weight of 51.23 ± 2.23 kg and daily milk yield of 1.41 ± 0.26 kg were randomly divided into 4 groups: control (no YC), YC1 (10 g/day per goat), YC2 (25 g/day per goat), and YC3 (40 g/day per goat). The pre-feeding period was 15 days, and the official period was 60 days. Laoshan dairy goats were milked twice daily, and the individual milk yield was recorded. On the last day of the official period, rumen fluid was collected to measure rumen fermentation, perform quantitative polymerase chain reaction (PCR), and detect metabolites. Compared to the control group, the YC group had greater milk yield; higher acetic acid, butyric acid, and total volatile fatty acid contents; and lower ammonia-N (NH3-N) content in the rumen (p < 0.05). YC increased the abundance of Clostridia_UCG-014 and Paraprevotella (p < 0.05). Differential metabolites L-leucine and aspartic acid were screened. This study revealed the microbial mechanisms linking the relative abundance of Paraprevotella and Clostridia_UCG-014 to L-leucine and aspartic acid utilization. These results describe the potential benefits of supplementing 10 g/day per goat YC in the diets of Laoshan dairy goats for improving the rumen environment and milk yield.
Collapse
Affiliation(s)
- Zunyan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yufeng Hu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Haibin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yingting Lin
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Ming Cheng
- Qingdao Animal Husbandry and Veterinary Research Institute, Qingdao, China
| | - Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yixuan Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Low KE, Tingley JP, Klassen L, King ML, Xing X, Watt C, Hoover SER, Gorzelak M, Abbott DW. Carbohydrate flow through agricultural ecosystems: Implications for synthesis and microbial conversion of carbohydrates. Biotechnol Adv 2023; 69:108245. [PMID: 37652144 DOI: 10.1016/j.biotechadv.2023.108245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Carbohydrates are chemically and structurally diverse biomolecules, serving numerous and varied roles in agricultural ecosystems. Crops and horticulture products are inherent sources of carbohydrates that are consumed by humans and non-human animals alike; however carbohydrates are also present in other agricultural materials, such as soil and compost, human and animal tissues, milk and dairy products, and honey. The biosynthesis, modification, and flow of carbohydrates within and between agricultural ecosystems is intimately related with microbial communities that colonize and thrive within these environments. Recent advances in -omics techniques have ushered in a new era for microbial ecology by illuminating the functional potential for carbohydrate metabolism encoded within microbial genomes, while agricultural glycomics is providing fresh perspective on carbohydrate-microbe interactions and how they influence the flow of functionalized carbon. Indeed, carbohydrates and carbohydrate-active enzymes are interventions with unrealized potential for improving carbon sequestration, soil fertility and stability, developing alternatives to antimicrobials, and circular production systems. In this manner, glycomics represents a new frontier for carbohydrate-based biotechnological solutions for agricultural systems facing escalating challenges, such as the changing climate.
Collapse
Affiliation(s)
- Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Caitlin Watt
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Shelley E R Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Monika Gorzelak
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
8
|
Panwar D, Shubhashini A, Kapoor M. Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnol Adv 2023; 66:108166. [PMID: 37121556 DOI: 10.1016/j.biotechadv.2023.108166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research. Among various glycans, mannans represent an integral component of the human diet. Apart from their health effects, the diverse and complex mannan structures bears molecular signatures that alter the expression of specific gene clusters in selected Bacteroidota and Bacillota species. Both the phyla possess variable and sophisticated loci of mannan recognition proteins, hydrolytic enzymes, transporters, and other metabolic proteins to sense, capture and utilize mannans as an energy source. The current review summarizes mannan structural diversity, and strategies adopted by select species of the HGM bacteria to forage mannans by focusing primarily on glycoside hydrolases and their effects on host health and metabolism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
9
|
Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria. THE ISME JOURNAL 2023; 17:703-711. [PMID: 36813911 PMCID: PMC10119383 DOI: 10.1038/s41396-023-01385-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Polysaccharide breakdown by bacteria requires the activity of enzymes that degrade polymers either intra- or extra-cellularly. The latter mechanism generates a localized pool of breakdown products that are accessible to the enzyme producers themselves as well as to other organisms. Marine bacterial taxa often show marked differences in the production and secretion of degradative enzymes that break down polysaccharides. These differences can have profound effects on the pool of diffusible breakdown products and hence on the ecological dynamics. However, the consequences of differences in enzymatic secretions on cellular growth dynamics and interactions are unclear. Here we study growth dynamics of single cells within populations of marine Vibrionaceae strains that grow on the abundant marine polymer alginate, using microfluidics coupled to quantitative single-cell analysis and mathematical modelling. We find that strains that have low extracellular secretions of alginate lyases aggregate more strongly than strains that secrete high levels of enzymes. One plausible reason for this observation is that low secretors require a higher cellular density to achieve maximal growth rates in comparison with high secretors. Our findings indicate that increased aggregation increases intercellular synergy amongst cells of low-secreting strains. By mathematically modelling the impact of the level of degradative enzyme secretion on the rate of diffusive oligomer loss, we find that enzymatic secretion capability modulates the propensity of cells within clonal populations to cooperate or compete with each other. Our experiments and models demonstrate that enzymatic secretion capabilities can be linked with the propensity of cell aggregation in marine bacteria that extracellularly catabolize polysaccharides.
Collapse
|
10
|
Lui O, Dridi L, Gonzalez E, Yasmine S, Kubinski R, Billings H, Bohlmann J, Withers SG, Maurice C, Castagner B. Characterizing the Effect of Amylase Inhibitors on Maltodextrin Metabolism by Gut Bacteria Using Fluorescent Glycan Labeling. ACS Chem Biol 2023; 18:356-366. [PMID: 36728836 PMCID: PMC9942685 DOI: 10.1021/acschembio.2c00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023]
Abstract
Diet-derived polysaccharides are an important carbon source for gut bacteria and shape the human gut microbiome. Acarbose, a compound used clinically to treat type 2 diabetes, is known to inhibit the growth of some bacteria on starches based on its activity as an inhibitor of α-glucosidases and α-amylases. In contrast to acarbose, montbretin A, a new drug candidate for the treatment of type 2 diabetes, has been reported to be more specific for the inhibition of α-amylase, notably human pancreatic α-amylase. However, the effects of both molecules on glycan metabolism across a larger diversity of human gut bacteria remain to be characterized. Here, we used ex vivo metabolic labeling of a human microbiota sample with fluorescent maltodextrin to identify gut bacteria affected by amylase inhibitors. Metabolic labeling was performed in the presence and absence of amylase inhibitors, and the fluorescently labeled bacteria were identified by fluorescence-activated cell sorting coupled with 16S rDNA amplicon sequencing. We validated the labeling results in cultured isolates and identified four gut bacteria species whose metabolism of maltodextrin is inhibited by acarbose. In contrast, montbretin A slowed the growth of only one species, supporting the fact that it is more selective. Metabolic labeling is a valuable tool to characterize glycan metabolism in microbiota samples and could help understand the untargeted impact of drugs on the human gut microbiota.
Collapse
Affiliation(s)
- Olivia Lui
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Lharbi Dridi
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Emmanuel Gonzalez
- Canadian
Centre for Computational Genomics, McGill Genome Center, Montreal, Quebec H3A 0G1, Canada
- Department
of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montreal, Quebec H4A 3T2, Canada
| | - Suraya Yasmine
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Ryszard Kubinski
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Hannah Billings
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| | - Joerg Bohlmann
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Forest and Conservation Sciences, University
of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephen G Withers
- Michael
Smith Laboratories, University of British
Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Chemistry, Faculty of Science, University
of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Corinne Maurice
- Department
of Microbiology & Immunology, McGill
University, Montreal, Quebec H3A 2B4, Canada
| | - Bastien Castagner
- Department
of Pharmacology & Therapeutics, McGill
University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
11
|
Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting. Nat Commun 2023; 14:662. [PMID: 36750571 PMCID: PMC9905522 DOI: 10.1038/s41467-023-36365-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
The composition and metabolism of the human gut microbiota are strongly influenced by dietary complex glycans, which cause downstream effects on the physiology and health of hosts. Despite recent advances in our understanding of glycan metabolism by human gut bacteria, we still need methods to link glycans to their consuming bacteria. Here, we use a functional assay to identify and isolate gut bacteria from healthy human volunteers that take up different glycans. The method combines metabolic labeling using fluorescent oligosaccharides with fluorescence-activated cell sorting (FACS), followed by amplicon sequencing or culturomics. Our results demonstrate metabolic labeling in various taxa, such as Prevotella copri, Collinsella aerofaciens and Blautia wexlerae. In vitro validation confirms the ability of most, but not all, labeled species to consume the glycan of interest for growth. In parallel, we show that glycan consumers spanning three major phyla can be isolated from cultures of sorted labeled cells. By linking bacteria to the glycans they consume, this approach increases our basic understanding of glycan metabolism by gut bacteria. Going forward, it could be used to provide insight into the mechanism of prebiotic approaches, where glycans are used to manipulate the gut microbiota composition.
Collapse
|
12
|
Giljan G, Brown S, Lloyd CC, Ghobrial S, Amann R, Arnosti C. Selfish bacteria are active throughout the water column of the ocean. ISME COMMUNICATIONS 2023; 3:11. [PMID: 36739317 PMCID: PMC9899235 DOI: 10.1038/s43705-023-00219-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/06/2023]
Abstract
Heterotrophic bacteria in the ocean invest carbon, nitrogen, and energy in extracellular enzymes to hydrolyze large substrates to smaller sizes suitable for uptake. Since hydrolysis products produced outside of a cell may be lost to diffusion, the return on this investment is uncertain. Selfish bacteria change the odds in their favor by binding, partially hydrolyzing, and transporting polysaccharides into the periplasmic space without loss of hydrolysis products. We expected selfish bacteria to be most common in the upper ocean, where phytoplankton produce abundant fresh organic matter, including complex polysaccharides. We, therefore, sampled water in the western North Atlantic Ocean at four depths from three stations differing in physiochemical conditions; these stations and depths also differed considerably in microbial community composition. To our surprise, we found that selfish bacteria are common throughout the water column of the ocean, including at depths greater than 5500 m. Selfish uptake as a strategy thus appears to be geographically-and phylogenetically-widespread. Since processing and uptake of polysaccharides require enzymes that are highly sensitive to substrate structure, the activities of these bacteria might not be reflected by measurements relying on uptake only of low molecular weight substrates. Moreover, even at the bottom of the ocean, the supply of structurally-intact polysaccharides, and therefore the return on enzymatic investment, must be sufficient to maintain these organisms.
Collapse
Affiliation(s)
- Greta Giljan
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sarah Brown
- Environment, Ecology, and Energy Program, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - C Chad Lloyd
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Sherif Ghobrial
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carol Arnosti
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Department of Earth, Marine, and Environmental Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Reintjes G, Klassen L, Abbott DW. Visualization of Carbohydrate Uptake Using Fluorescent Polysaccharides. Methods Mol Biol 2023; 2657:241-249. [PMID: 37149536 DOI: 10.1007/978-1-0716-3151-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fluorescently labeled polysaccharides enable the visualization of carbohydrate-bacterial interactions and the quantification of carbohydrate hydrolysis rates in cultures and complex communities. Here, we present the method of generating polysaccharides conjugated to the fluorescent molecule, fluoresceinamine. Further, we describe the protocol of incubating these probes in bacterial cultures and complex environmental microbial communities, visualizing bacterial-probe interactions using fluorescence microscopy, and quantifying these interactions using flow cytometry. Finally, we present a novel approach for the in situ metabolic phenotyping of bacterial cells using fluorescently activated cell sorting coupled with omics-based analysis.
Collapse
Affiliation(s)
- Greta Reintjes
- Max Planck Institute for Marine Microbiology, Department of Molecular Ecology, Bremen, Germany.
| | - Leeann Klassen
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - D Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| |
Collapse
|
14
|
Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients 2022; 14:nu14102096. [PMID: 35631237 PMCID: PMC9147914 DOI: 10.3390/nu14102096] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/13/2022] Open
Abstract
The colon harbours a dynamic and complex community of microorganisms, collectively known as the gut microbiota, which constitutes the densest microbial ecosystem in the human body. These commensal gut microbes play a key role in human health and diseases, revealing the strong potential of fine-tuning the gut microbiota to confer health benefits. In this context, dietary strategies targeting gut microbes to modulate the composition and metabolic function of microbial communities are of increasing interest. One such dietary strategy is the use of prebiotics, which are defined as substrates that are selectively utilised by host microorganisms to confer a health benefit. A better understanding of the metabolic pathways involved in the breakdown of prebiotics is essential to improve these nutritional strategies. In this review, we will present the concept of prebiotics, and focus on the main sources and nature of these components, which are mainly non-digestible polysaccharides. We will review the breakdown mechanisms of complex carbohydrates by the intestinal microbiota and present short-chain fatty acids (SCFAs) as key molecules mediating the dialogue between the intestinal microbiota and the host. Finally, we will review human studies exploring the potential of prebiotics in metabolic diseases, revealing the personalised responses to prebiotic ingestion. In conclusion, we hope that this review will be of interest to identify mechanistic factors for the optimization of prebiotic-based strategies.
Collapse
|
15
|
Technical pipeline for screening microbial communities as a function of substrate specificity through fluorescent labelling. Commun Biol 2022; 5:444. [PMID: 35545700 PMCID: PMC9095699 DOI: 10.1038/s42003-022-03383-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
The study of specific glycan uptake and metabolism is an effective tool in aiding with the continued unravelling of the complexities in the human gut microbiome. To this aim fluorescent labelling of glycans may provide a powerful route towards this target. Here, we successfully used the fluorescent label 2-aminobenzamide (2-AB) to monitor and study microbial degradation of labelled glycans. Both single strain and co-cultured fermentations of microbes from the common human-gut derived Bacteroides genus, are able to grow when supplemented with 2-AB labelled glycans of different monosaccharide composition, degrees of acetylation and polymerization. Utilizing a multifaceted approach that combines chromatography, mass spectrometry, microscopy and flow cytometry techniques, it is possible to better understand the metabolism of labelled glycans in both supernatants and at a single cell level. We envisage this combination of complementary techniques will help further the understanding of substrate specificity and the role it plays within microbial communities. A reductive amination-based fluorophore labelling of complex wood-derived glycans provides a proof-of-principle multi-modal platform for monitoring glycan uptake by bacteria.
Collapse
|
16
|
Zhang X, Liu X, Chang S, Zhang C, Du W, Hou F. Effect of Cistanche deserticola on Rumen Microbiota and Rumen Function in Grazing Sheep. Front Microbiol 2022; 13:840725. [PMID: 35432287 PMCID: PMC9009397 DOI: 10.3389/fmicb.2022.840725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
For a long time, veterinary drugs and chemical additives have been widely used in livestock and poultry breeding to improve production performance. However, problems such as drug residues in food are causing serious concerns. The use of functional plants and their extracts to improve production performance is becoming increasingly popular. This study aimed to evaluate the effect of Cistanche deserticola in sheep feed on rumen flora and to analyze the causes to provide a theoretical basis for the future use of Cistanche deserticola as a functional substance to improve sheep production performance. A completely randomized experimental design was adopted using 24 six-month-old sheep males divided into four groups (six animals in each group) which were fed a basic diet composed of alfalfa and tall fescue grass. The C. deserticola feed was provided to sheep at different levels (0, 2, 4, and 6%) as experimental treatments. On the last day (Day 75), ruminal fluid was collected through a rumen tube for evaluating changes in rumen flora. The test results showed that Prevotella_1, Lactobacillus, and Rikenellaceae_RC9_gut_group were the dominant species at the genus level in all samples. Lactobacillus, Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, Butyrivibrio_2, and Christensenellaceae_R-7_group differed significantly in relative abundance among the treatment groups. The polysaccharides in C. deserticola was the major factor influencing the alteration in rumen flora abundance, and had the functions of improving rumen fermentation environment and regulating rumen flora structure, etc. Hence, C. deserticola can be used to regulate rumen fermentation in grazing sheep to improve production efficiency.
Collapse
|
17
|
Integrative interactomics applied to bovine fescue toxicosis. Sci Rep 2022; 12:4899. [PMID: 35318361 PMCID: PMC8941056 DOI: 10.1038/s41598-022-08540-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte’s effects on the animal’s microbiota and metabolism were investigated recently, but its effects in planta or on the plant–animal interactions have not been considered. We examined multi-compartment microbiota–metabolome perturbations using multi-‘omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.
Collapse
|
18
|
Klassen L, Reintjes G, Li M, Jin L, Amundsen C, Xing X, Dridi L, Castagner B, Alexander TW, Abbott DW. Fluorescence activated cell sorting and fermentation analysis to study rumen microbiome responses to administered live microbials and yeast cell wall derived prebiotics. Front Microbiol 2022; 13:1020250. [PMID: 36938132 PMCID: PMC10022430 DOI: 10.3389/fmicb.2022.1020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/12/2022] [Indexed: 03/06/2023] Open
Abstract
Rapid dietary changes, such as switching from high-forage to high-grain diets, can modify the rumen microbiome and initiate gastrointestinal distress, such as bloating. In such cases, feed additives, including prebiotics and live microbials, can be used to mitigate these negative consequences. Bio-Mos® is a carbohydrate-based prebiotic derived from yeast cells that is reported to increase livestock performance. Here, the responses of rumen bacterial cells to Bio-Mos® were quantified, sorted by flow cytometry using fluorescently-labeled yeast mannan, and taxonomically characterized using fluorescence in situ hybridization and 16S rRNA sequencing. Further, to evaluate the effects of bovine-adapted Bacteroides thetaiotaomicron administration as a live microbial with and without Bio-Mos® supplementation, we analyzed microbial fermentation products, changes to carbohydrate profiles, and shifts in microbial composition of an in vitro rumen community. Bio-Mos® was shown to be an effective prebiotic that significantly altered microbial diversity, composition, and fermentation; while addition of B. thetaiotaomicron had no effect on community composition and resulted in fewer significant changes to microbial fermentation. When combined with Bio-Mos®, there were notable, although not significant, changes to major bacterial taxa, along with increased significant changes in fermentation end products. These data suggest a synergistic effect is elicited by combining Bio-Mos® and B. thetaiotaomicron. This protocol provides a new in vitro methodology that could be extended to evaluate prebiotics and probiotics in more complex artificial rumen systems and live animals.
Collapse
Affiliation(s)
- Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Greta Reintjes
- Department of Pharmacology & Therapeutics, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meiying Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Long Jin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Carolyn Amundsen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Lharbi Dridi
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Bastien Castagner
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- *Correspondence: D. Wade Abbott,
| |
Collapse
|
19
|
Sichert A, Cordero OX. Polysaccharide-Bacteria Interactions From the Lens of Evolutionary Ecology. Front Microbiol 2021; 12:705082. [PMID: 34690949 PMCID: PMC8531407 DOI: 10.3389/fmicb.2021.705082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Microbes have the unique ability to break down the complex polysaccharides that make up the bulk of organic matter, initiating a cascade of events that leads to their recycling. Traditionally, the rate of organic matter degradation is perceived to be limited by the chemical and physical structure of polymers. Recent advances in microbial ecology, however, suggest that polysaccharide persistence can result from non-linear growth dynamics created by the coexistence of alternate degradation strategies, metabolic roles as well as by ecological interactions between microbes. This complex "landscape" of degradation strategies and interspecific interactions present in natural microbial communities appears to be far from evolutionarily stable, as frequent gene gain and loss reshape enzymatic repertoires and metabolic roles. In this perspective, we discuss six challenges at the heart of this problem, ranging from the evolution of genetic repertoires, phenotypic heterogeneity in clonal populations, the development of a trait-based ecology, and the impact of metabolic interactions and microbial cooperation on degradation rates. We aim to reframe some of the key questions in the study of polysaccharide-bacteria interactions in the context of eco-evolutionary dynamics, highlighting possible research directions that, if pursued, would advance our understanding of polysaccharide degraders at the interface between biochemistry, ecology and evolution.
Collapse
|
20
|
Klassen L, Xing X, Tingley JP, Low KE, King ML, Reintjes G, Abbott DW. Approaches to Investigate Selective Dietary Polysaccharide Utilization by Human Gut Microbiota at a Functional Level. Front Microbiol 2021; 12:632684. [PMID: 33679661 PMCID: PMC7933471 DOI: 10.3389/fmicb.2021.632684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
The human diet is temporally and spatially dynamic, and influenced by culture, regional food systems, socioeconomics, and consumer preference. Such factors result in enormous structural diversity of ingested glycans that are refractory to digestion by human enzymes. To convert these glycans into metabolizable nutrients and energy, humans rely upon the catalytic potential encoded within the gut microbiome, a rich collective of microorganisms residing in the gastrointestinal tract. The development of high-throughput sequencing methods has enabled microbial communities to be studied with more coverage and depth, and as a result, cataloging the taxonomic structure of the gut microbiome has become routine. Efforts to unravel the microbial processes governing glycan digestion by the gut microbiome, however, are still in their infancy and will benefit by retooling our approaches to study glycan structure at high resolution and adopting next-generation functional methods. Also, new bioinformatic tools specialized for annotating carbohydrate-active enzymes and predicting their functions with high accuracy will be required for deciphering the catalytic potential of sequence datasets. Furthermore, physiological approaches to enable genotype-phenotype assignments within the gut microbiome, such as fluorescent polysaccharides, has enabled rapid identification of carbohydrate interactions at the single cell level. In this review, we summarize the current state-of-knowledge of these methods and discuss how their continued development will advance our understanding of gut microbiome function.
Collapse
Affiliation(s)
- Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P. Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Kristin E. Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L. King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Greta Reintjes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|