1
|
Yang X, Garuglieri E, Van Goethem MW, Marasco R, Fusi M, Daffonchio D. Mangrovimonas cancribranchiae sp. nov., a novel bacterial species associated with the gills of the fiddler crab Cranuca inversa (Brachyura, Ocypodidae) from Red Sea mangroves. Int J Syst Evol Microbiol 2024; 74:006415. [PMID: 38865172 PMCID: PMC11261673 DOI: 10.1099/ijsem.0.006415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Two bacteria, UG2_1T and UG2_2, were isolated from the gill tissues of the mangrove fiddler crab Cranuca inversa collected on the east coast of the Red Sea (Thuwal, Saudi Arabia). The cells are Gram-negative, rod-shaped, orange-pigmented, motile by gliding with no flagella, strictly aerobic, and grow at 20-37 °C (optimum, 28-35 °C), at pH 5.0-9.0 (optimum, pH 6.0-7.0), and with 1-11 % (w/v) NaCl (optimum, 2-4 %). They were positive for oxidase and catalase activity. Phylogenetic analysis based on 16S rRNA gene sequences indicated that isolates UG2_1T and UG2_2 belong to the genus Mangrovimonas, showing the highest similarity to Mangrovimonas spongiae HN-E26T (99.4 %). Phylogenomic analysis based on the whole genomes, independently using 49 and 120 concatenated genes, showed that strains UG2_1T and UG2_2 formed a monophyletic lineage in a different cluster from other type strain species within the genus Mangrovimonas. The genome sizes were 3.08 and 3.07 Mbp for UG2_1T and UG2_2, respectively, with a G+C content of 33.8 mol% for both strains. Values of average nucleotide identity and digital DNA-DNA hybridization between the strains and closely related species were 91.0 and 43.5 %, respectively. Chemotaxonomic analysis indicated that both strains had iso-C15 : 0 and iso-C15 : 1 G as dominant fatty acids, and the primary respiratory quinone was identified as MK-6. The major polar lipids comprised phosphatidylethanolamine, one unidentified glycolipid, one unidentified phospholipid, two unidentified aminolipids, and four unidentified lipids. Based on phylogenetic, phylogenomic, genome relatedness, phenotypic, and chemotaxonomical data, the two isolates represent a novel species within the genus Mangrovimonas, with the proposed name Mangrovimonas cancribranchiae sp. nov., and the type strain UG2_1T (=KCTC 102158T=DSM 117025T).
Collapse
Affiliation(s)
- Xinyuan Yang
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elisa Garuglieri
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marc W. Van Goethem
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ramona Marasco
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marco Fusi
- Dove Marine Laboratory, School of Natural and Environmental Sciences Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Hui TKL, Lo ICN, Wong KKW, Tsang CTT, Tsang LM. Metagenomic analysis of gut microbiome illuminates the mechanisms and evolution of lignocellulose degradation in mangrove herbivorous crabs. BMC Microbiol 2024; 24:57. [PMID: 38350856 PMCID: PMC10863281 DOI: 10.1186/s12866-024-03209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Sesarmid crabs dominate mangrove habitats as the major primary consumers, which facilitates the trophic link and nutrient recycling in the ecosystem. Therefore, the adaptations and mechanisms of sesarmid crabs to herbivory are not only crucial to terrestrialization and its evolutionary success, but also to the healthy functioning of mangrove ecosystems. Although endogenous cellulase expressions were reported in crabs, it remains unknown if endogenous enzymes alone can complete the whole lignocellulolytic pathway, or if they also depend on the contribution from the intestinal microbiome. We attempt to investigate the role of gut symbiotic microbes of mangrove-feeding sesarmid crabs in plant digestion using a comparative metagenomic approach. RESULTS Metagenomics analyses on 43 crab gut samples from 23 species of mangrove crabs with different dietary preferences revealed a wide coverage of 127 CAZy families and nine KOs targeting lignocellulose and their derivatives in all species analyzed, including predominantly carnivorous species, suggesting the crab gut microbiomes have lignocellulolytic capacity regardless of dietary preference. Microbial cellulase, hemicellulase and pectinase genes in herbivorous and detritivorous crabs were differentially more abundant when compared to omnivorous and carnivorous crabs, indicating the importance of gut symbionts in lignocellulose degradation and the enrichment of lignocellulolytic microbes in response to diet with higher lignocellulose content. Herbivorous and detritivorous crabs showed highly similar CAZyme composition despite dissimilarities in taxonomic profiles observed in both groups, suggesting a stronger selection force on gut microbiota by functional capacity than by taxonomy. The gut microbiota in herbivorous sesarmid crabs were also enriched with nitrogen reduction and fixation genes, implying possible roles of gut microbiota in supplementing nitrogen that is deficient in plant diet. CONCLUSIONS Endosymbiotic microbes play an important role in lignocellulose degradation in most crab species. Their abundance is strongly correlated with dietary preference, and they are highly enriched in herbivorous sesarmids, thus enhancing their capacity in digesting mangrove leaves. Dietary preference is a stronger driver in determining the microbial CAZyme composition and taxonomic profile in the crab microbiome, resulting in functional redundancy of endosymbiotic microbes. Our results showed that crabs implement a mixed mode of digestion utilizing both endogenous and microbial enzymes in lignocellulose degradation, as observed in most of the more advanced herbivorous invertebrates.
Collapse
Affiliation(s)
- Tom Kwok Lun Hui
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Irene Ching Nam Lo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Karen Ka Wing Wong
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chandler Tsz To Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ling Ming Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
3
|
Bacci G, Meriggi N, Cheng CLY, Ng KH, Iannucci A, Mengoni A, Cavalieri D, Cannicci S, Fratini S. Species-specific gill's microbiome of eight crab species with different breathing adaptations. Sci Rep 2023; 13:21033. [PMID: 38030652 PMCID: PMC10687215 DOI: 10.1038/s41598-023-48308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Transitions to physically different environments, such as the water-to-land transition, proved to be the main drivers of relevant evolutionary events. Brachyuran crabs evolved remarkable morphological, behavioral, and physiological adaptations to terrestrial life. Terrestrial species evolved new respiratory structures devoted to replace or support the gills, a multifunctional organ devoted to gas exchanges, ion-regulation and nitrogen excretion. It was hypothesized that microorganisms associated with respiratory apparatus could have facilitated the processes of osmoregulation, respiration, and elimination of metabolites along this evolutionary transition. To test if crab species with different breathing adaptations may host similar microbial communities on their gills, we performed a comparative targeted-metagenomic analysis, selecting two marine and six terrestrial crabs belonging to different families and characterised by different breathing adaptations. We analysed anterior and posterior gills separately according to their different and specific roles. Regardless of their terrestrial or marine adaptations, microbial assemblages were strongly species-specific indicating a non-random association between the host and its microbiome. Significant differences were found in only two terrestrial species when considering posterior vs. anterior gills, without any association with species-specific respiratory adaptations. Our results suggest that all the selected species are strongly adapted to the ecological niche and specific micro-habitat they colonise.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Christine L Y Cheng
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ka Hei Ng
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Alessio Iannucci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Stefano Cannicci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy.
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Sara Fratini
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|