1
|
Mehjardi NZ, Kessler J, Sanin AY, Picard D, Westhoff P, Nickel AC, Uhlmann C, Shi W, Steiger HJ, Remke M, Fischer I, Vordermark D, Croner RS, Kahlert UD. The development of a hiPSC-based platform to identify tissue-dependencies of IDH1 R132H. Cell Death Discov 2023; 9:452. [PMID: 38086797 PMCID: PMC10716401 DOI: 10.1038/s41420-023-01747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 07/29/2024] Open
Abstract
The application of patient-derived (PD) in vitro tumor models represents the classical strategy for clinical translational oncology research. Using these cellular heterogeneous cultures for the isolation of cancer stem cells (CSCs), suggested to be the main driver for disease malignancy, relies on the use of surrogate biomarkers or is based on CSC-enriching culture conditions. However, the ability of those strategies to exclusively and efficiently enrich for CSC pool has been questioned. Here we present an alternative in vitro CSC model based on the oncogenic transformation of single clone-derived human induced pluripotent stem cells (hiPSC). Hotspot mutations in the DNA encoding for the R132 codon of the enzyme isocitrate dehydrogenase 1 (IDH1) and codon R175 of p53 are commonly occurring molecular features of different tumors and were selected for our transformation strategy. By choosing p53 mutant glial tumors as our model disease, we show that in vitro therapy discovery tests on IDH1-engineered synthetic CSCs (sCSCs) can identify kinases-targeting chemotherapeutics that preferentially target tumor cells expressing corresponding genetic alteration. In contrast, neural stem cells (NSCs) derived from the IDH1R132H overexpressing hiPSCs increase their resistance to the tested interventions indicating glial-to-neural tissue-dependent differences of IDH1R132H. Taken together, we provide proof for the potential of our sCSC technology as a potent addition to biomarker-driven drug development projects or studies on tumor therapy resistance. Moreover, follow-up projects such as comparing in vitro drug sensitivity profiles of hiPSC-derived tissue progenitors of different lineages, might help to understand a variety of tissue-related functions of IDH1 mutations.
Collapse
Affiliation(s)
- N Z Mehjardi
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University and University Medical Center Düsseldorf, Düsseldorf, Germany
| | - J Kessler
- Clinic for Radiation Therapy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - A Y Sanin
- Department of Molecular and Experimental Surgery, Clinic for General, Visceral, Vascular, and Transplant Surgery, Medical Faculty and University Hospital Magdeburg, Magdeburg, Germany
| | - D Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - P Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich Heine University, Düsseldorf, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University and University Medical Center Düsseldorf, Düsseldorf, Germany
- Diaceutics PLC, Düsseldorf, Germany
| | - C Uhlmann
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University and University Medical Center Düsseldorf, Düsseldorf, Germany
- Charles River, Wuppertal, Germany
| | - W Shi
- Department of Molecular and Experimental Surgery, Clinic for General, Visceral, Vascular, and Transplant Surgery, Medical Faculty and University Hospital Magdeburg, Magdeburg, Germany
| | - H J Steiger
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University and University Medical Center Düsseldorf, Düsseldorf, Germany
| | - M Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Pediatric Oncology and Hematology, University Hospital Saarbrücken, Saarbrücken, Germany
| | - I Fischer
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University and University Medical Center Düsseldorf, Düsseldorf, Germany
| | - D Vordermark
- Clinic for Radiation Therapy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - R S Croner
- Department of Molecular and Experimental Surgery, Clinic for General, Visceral, Vascular, and Transplant Surgery, Medical Faculty and University Hospital Magdeburg, Magdeburg, Germany
| | - U D Kahlert
- Department of Molecular and Experimental Surgery, Clinic for General, Visceral, Vascular, and Transplant Surgery, Medical Faculty and University Hospital Magdeburg, Magdeburg, Germany.
| |
Collapse
|
2
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
3
|
Riviere-Cazaux C, Neth BJ, Hoplin MD, Wessel B, Miska J, Kizilbash SH, Burns TC. Glioma Metabolic Feedback In Situ: A First-In-Human Pharmacodynamic Trial of Difluoromethylornithine + AMXT-1501 Through High-Molecular Weight Microdialysis. Neurosurgery 2023; 93:932-938. [PMID: 37246885 PMCID: PMC10637404 DOI: 10.1227/neu.0000000000002511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND AND OBJECTIVES No new drug has improved survival for glioblastoma since temozolomide in 2005, due in part to the relative inaccessibility of each patient's individualized tumor biology and its response to therapy. We have identified a conserved extracellular metabolic signature of enhancing high-grade gliomas enriched for guanidinoacetate (GAA). GAA is coproduced with ornithine, the precursor to protumorigenic polyamines through ornithine decarboxylase (ODC). AMXT-1501 is a polyamine transporter inhibitor that can overcome tumoral resistance to the ODC inhibitor, difluoromethylornithine (DFMO). We will use DFMO with or without AMXT-1501 to identify candidate pharmacodynamic biomarkers of polyamine depletion in patients with high-grade gliomas in situ . We aim to determine (1) how blocking polyamine production affects intratumoral extracellular guanidinoacetate abundance and (2) the impact of polyamine depletion on the global extracellular metabolome within live human gliomas in situ. METHODS DFMO, with or without AMXT-1501, will be administered postoperatively in 15 patients after clinically indicated subtotal resection for high-grade glioma. High-molecular weight microdialysis catheters implanted into residual tumor and adjacent brain will be used for postoperative monitoring of extracellular GAA and polyamines throughout therapeutic intervention from postoperative day (POD) 1 to POD5. Catheters will be removed on POD5 before discharge. EXPECTED OUTCOMES We anticipate that GAA will be elevated in tumor relative to adjacent brain although it will decrease within 24 hours of ODC inhibition with DFMO. If AMXT-1501 effectively increases the cytotoxic impact of ODC inhibition, we expect an increase in biomarkers of cytotoxicity including glutamate with DFMO + AMXT-1501 treatment when compared with DFMO alone. DISCUSSION Limited mechanistic feedback from individual patients' gliomas hampers clinical translation of novel therapies. This pilot Phase 0 study will provide in situ feedback during DFMO + AMXT-1501 treatment to determine how high-grade gliomas respond to polyamine depletion.
Collapse
Affiliation(s)
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew D. Hoplin
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Bambi Wessel
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| | | | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Fortin Ensign SP, Jenkins RB, Giannini C, Sarkaria JN, Galanis E, Kizilbash SH. Translational significance of CDKN2A/B homozygous deletion in isocitrate dehydrogenase-mutant astrocytoma. Neuro Oncol 2023; 25:28-36. [PMID: 35973817 PMCID: PMC9825307 DOI: 10.1093/neuonc/noac205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/26/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) 1 or 2 mutations confer a favorable prognosis compared to IDH-wildtype in astrocytoma, frequently denoting a lower grade malignancy. However, recent molecular profiling has identified specific aggressive tumor subgroups with clear clinical prognostic implications that are independent of histologic grading. The homozygous deletion of CDKN2A/B is the strongest implicated independent indicator of the poor prognosis within IDH-mutant astrocytoma, and the identification of this alteration in these lower histologic grade tumors transforms their biology toward an aggressive grade 4 phenotype clinically. CDKN2A/B homozygous deletion is now sufficient to define a grade 4 tumor in IDH-mutant astrocytomas regardless of histologic appearance, yet there are currently no effective molecularly informed targeted therapies for these tumors. The biological impact of CDKN2A/B homozygous deletion in IDH-mutant tumors and the optimal treatment strategy for this molecular subgroup remains insufficiently explored. Here we review the current understanding of the translational significance of homozygous deletion of CDKN2A/B gene expression in IDH-mutant astrocytoma and associated diagnostic and therapeutic implications.
Collapse
Affiliation(s)
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
5
|
Mao H, Wen Y, Yu Y, Li H, Wang J, Sun B. Bioinspired nanocatalytic tumor therapy by simultaneous reactive oxygen species generation enhancement and glutamine pathway-mediated glutathione depletion. J Mater Chem B 2022; 11:131-143. [PMID: 36484247 DOI: 10.1039/d2tb02194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An insufficient intracellular H2O2 level and overexpressed glutathione (GSH) are still the major challenges for effective chemodynamic therapy (CDT). Inspired by the unique glutamine metabolism pathway in cancer cells, herein, intelligent nanocatalytic theranostics is used to enhance intracellular reactive oxygen species (ROS) accumulation via the production of H2O2 by a biomimetic nanozyme, and simultaneously reduce ROS consumption via the depression of GSH synthesis by the glutamine metabolic inhibitor. In this reactor, nano-sized Au and Fe3O4 coloaded dendritic mesoporous silica nanoparticles (DMSN-Au-Fe3O4) serve as the bifunctional nanozyme, where intracellular glucose is catalyzed into H2O2 by the glucose oxidase-mimicking Au nanoparticles and then immediately transformed into ˙OH by the peroxidase-like Fe3O4 nanoparticles. Then, CB839, the glutaminase (GLS) inhibitor, is grafted on the nanozyme, blocking the glutamine pathway and GSH biosynthesis. As a result, the as-designed nanoplatform with a three-pronged integration of Au-mediated H2O2 self-supply, Fe3O4-triggered Fenton-like reaction, and glutamine pathway-mediated GSH depletion significantly boosts the CDT efficacy, achieving remarkable and specific antitumor properties both in vitro and in vivo. This work not only paves a new way for rationally designing multi-functional nanozymes for achieving high therapeutic efficacy, but also provides new insights into the construction of bioinspired synergetic therapy by combining CDT and a key anticancer pathway.
Collapse
Affiliation(s)
- Huijia Mao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
6
|
Morato NM, Brown HM, Garcia D, Middlebrooks EH, Jentoft M, Chaichana K, Quiñones-Hinojosa A, Cooks RG. High-throughput analysis of tissue microarrays using automated desorption electrospray ionization mass spectrometry. Sci Rep 2022; 12:18851. [PMID: 36344609 PMCID: PMC9640715 DOI: 10.1038/s41598-022-22924-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Tissue microarrays (TMAs) are commonly used for the rapid analysis of large numbers of tissue samples, often in morphological assessments but increasingly in spectroscopic analysis, where specific molecular markers are targeted via immunostaining. Here we report the use of an automated high-throughput system based on desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid generation and online analysis of high-density (6144 samples/array) TMAs, at rates better than 1 sample/second. Direct open-air analysis of tissue samples (hundreds of nanograms) not subjected to prior preparation, plus the ability to provide molecular characterization by tandem mass spectrometry (MS/MS), make this experiment versatile and applicable to both targeted and untargeted analysis in a label-free manner. These capabilities are demonstrated in a proof-of-concept study of frozen brain tissue biopsies where we showcase (i) a targeted MS/MS application aimed at identification of isocitrate dehydrogenase mutation in glioma samples and (ii) an untargeted MS tissue type classification using lipid profiles and correlation with tumor cell percentage estimates from histopathology. The small sample sizes and large sample numbers accessible with this methodology make for a powerful analytical system that facilitates the identification of molecular markers for later use in intraoperative applications to guide precision surgeries and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Nicolás M. Morato
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| | - Hannah Marie Brown
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA ,grid.4367.60000 0001 2355 7002Present Address: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO USA
| | - Diogo Garcia
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | - Erik H. Middlebrooks
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA ,grid.417467.70000 0004 0443 9942Department of Radiology, Mayo Clinic, Jacksonville, FL USA
| | - Mark Jentoft
- grid.417467.70000 0004 0443 9942Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA
| | - Kaisorn Chaichana
- grid.417467.70000 0004 0443 9942Department of Neurosurgery, Mayo Clinic, Jacksonville, FL USA
| | | | - R. Graham Cooks
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue Center for Cancer Research, and Bindley Bioscience Center, Purdue University, 560 Oval Drive, West Lafayette, IN 47907 USA
| |
Collapse
|
7
|
Jiang B, Zhang J, Zhao G, Liu M, Hu J, Lin F, Wang J, Zhao W, Ma H, Zhang C, Wu C, Yao L, Liu Q, Chen X, Cao Y, Zheng Y, Zhang C, Han A, Lin D, Li Q. Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Mol Cell 2022; 82:1821-1835.e6. [PMID: 35381197 DOI: 10.1016/j.molcel.2022.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/30/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022]
Abstract
GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.
Collapse
Affiliation(s)
- Bin Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guohui Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengjue Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jielu Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Caiming Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yating Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yi Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chensong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
8
|
Halama A, Suhre K. Advancing Cancer Treatment by Targeting Glutamine Metabolism-A Roadmap. Cancers (Basel) 2022; 14:553. [PMID: 35158820 PMCID: PMC8833671 DOI: 10.3390/cancers14030553] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Tumor growth and metastasis strongly depend on adapted cell metabolism. Cancer cells adjust their metabolic program to their specific energy needs and in response to an often challenging tumor microenvironment. Glutamine metabolism is one of the metabolic pathways that can be successfully targeted in cancer treatment. The dependence of many hematological and solid tumors on glutamine is associated with mitochondrial glutaminase (GLS) activity that enables channeling of glutamine into the tricarboxylic acid (TCA) cycle, generation of ATP and NADPH, and regulation of glutathione homeostasis and reactive oxygen species (ROS). Small molecules that target glutamine metabolism through inhibition of GLS therefore simultaneously limit energy availability and increase oxidative stress. However, some cancers can reprogram their metabolism to evade this metabolic trap. Therefore, the effectiveness of treatment strategies that rely solely on glutamine inhibition is limited. In this review, we discuss the metabolic and molecular pathways that are linked to dysregulated glutamine metabolism in multiple cancer types. We further summarize and review current clinical trials of glutaminolysis inhibition in cancer patients. Finally, we put into perspective strategies that deploy a combined treatment targeting glutamine metabolism along with other molecular or metabolic pathways and discuss their potential for clinical applications.
Collapse
Affiliation(s)
- Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| |
Collapse
|
9
|
Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021; 18:645-661. [PMID: 34131315 DOI: 10.1038/s41571-021-00521-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Mutations in the genes encoding the cytoplasmic and mitochondrial forms of isocitrate dehydrogenase (IDH1 and IDH2, respectively; collectively referred to as IDH) are frequently detected in cancers of various origins, including but not limited to acute myeloid leukaemia (20%), cholangiocarcinoma (20%), chondrosarcoma (80%) and glioma (80%). In all cases, neomorphic activity of the mutated enzyme leads to production of the oncometabolite D-2-hydroxyglutarate, which has profound cell-autonomous and non-cell-autonomous effects. The broad effects of IDH mutations on epigenetic, differentiation and metabolic programmes, together with their high prevalence across a variety of cancer types, early presence in tumorigenesis and uniform expression in tumour cells, make mutant IDH an ideal therapeutic target. Herein, we describe the current biological understanding of IDH mutations and the roles of mutant IDH in the various associated cancers. We also present the available preclinical and clinical data on various methods of targeting IDH-mutant cancers and discuss, based on the underlying pathogenesis of different IDH-mutated cancer types, whether the treatment approaches will converge or be context dependent.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
10
|
Di Gregorio E, Miolo G, Saorin A, Steffan A, Corona G. From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. Int J Mol Sci 2021; 22:5574. [PMID: 34070384 PMCID: PMC8197491 DOI: 10.3390/ijms22115574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| |
Collapse
|
11
|
From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells 2021; 10:cells10051225. [PMID: 34067729 PMCID: PMC8157002 DOI: 10.3390/cells10051225] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ.
Collapse
|
12
|
Ruiz-Rodado V, Brender JR, Cherukuri MK, Gilbert MR, Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:23-41. [PMID: 33632416 PMCID: PMC7910526 DOI: 10.1016/j.pnmrs.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 05/04/2023]
Abstract
Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Murali K Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| |
Collapse
|