1
|
Pan C, Cheng S, Liu L, Chen Y, Meng P, Yang X, Li C, Zhang J, Zhang Z, Zhang H, Cheng B, Wen Y, Jia Y, Zhang F. Identification of novel rare variants for anxiety: an exome-wide association study in the UK Biobank. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110928. [PMID: 38154517 DOI: 10.1016/j.pnpbp.2023.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Rare variants are believed to play a substantial role in the genetic architecture of mental disorders, particularly in coding regions. However, limited evidence supports the impact of rare variants on anxiety. METHODS Using whole-exome sequencing data from 200,643 participants in the UK Biobank, we investigated the contribution of rare variants to anxiety. Firstly, we computed genetic risk score (GRS) of anxiety utilizing genotype data and summary data from a genome-wide association study (GWAS) on anxiety disorder. Subsequently, we identified individuals within the lowest 50% GRS, a subgroup more likely to carry pathogenic rare variants. Within this subgroup, we classified individuals with the highest 10% 7-item Generalized Anxiety Disorder scale (GAD-7) score as cases (N = 1869), and those with the lowest 10% GAD-7 score were designated as controls (N = 1869). Finally, we conducted gene-based burden tests and single-variant association analyses to assess the relationship between rare variants and anxiety. RESULTS Totally, 47,800 variants with MAF ≤0.01 were annotated as non-benign coding variants, consisting of 42,698 nonsynonymous SNVs, 489 nonframeshift substitution, 236 frameshift substitution, 617 stop-gain and 40 stop-loss variants. After variation aggregation, 5066 genes were included in gene-based association analysis. Totally, 11 candidate genes were detected in burden test, such as RNF123 (PBonferroni adjusted = 3.40 × 10-6), MOAP1(PBonferroni adjusted = 4.35 × 10-4), CCDC110 (PBonferroni adjusted = 5.83 × 10-4). Single-variant test detected 9 rare variants, such as rs35726701(RNF123)(PBonferroni adjusted = 3.16 × 10-10) and rs16942615(CAMTA2) (PBonferroni adjusted = 4.04 × 10-4). Notably, RNF123, CCDC110, DNAH2, and CSKMT gene were identified in both tests. CONCLUSIONS Our study identified novel candidate genes for anxiety in protein-coding regions, revealing the contribution of rare variants to anxiety.
Collapse
Affiliation(s)
- Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.
| |
Collapse
|
2
|
Jagota P, Ugawa Y, Aldaajani Z, Ibrahim NM, Ishiura H, Nomura Y, Tsuji S, Diesta C, Hattori N, Onodera O, Bohlega S, Al-Din A, Lim SY, Lee JY, Jeon B, Pal PK, Shang H, Fujioka S, Kukkle PL, Phokaewvarangkul O, Lin CH, Shambetova C, Bhidayasiri R. Nine Hereditary Movement Disorders First Described in Asia: Their History and Evolution. J Mov Disord 2023; 16:231-247. [PMID: 37309109 PMCID: PMC10548072 DOI: 10.14802/jmd.23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Cid Diesta
- Section of Neurology, Department of Neuroscience, Makati Medical Center, NCR, Makati City, Philippines
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Riyad, Saudi Arabia
| | - Amir Al-Din
- Mid Yorkshire Hospitals National Health Services Trust, Wakefield, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson’s & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University Medical College, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University, Seoul, Korea
- Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - Prashanth Lingappa Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
3
|
Lenka A, Pandey S. Dystonia and tremor: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:413-439. [PMID: 37482399 DOI: 10.1016/bs.irn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia and tremor are the two most commonly encountered hyperkinetic movement disorders encountered in clinical practice. While there has been substantial progress in the research on these two disorders, there also exists a lot of gray areas. Entities such as dystonic tremor and tremor associated with dystonia occupy a major portion of the "gray zone". In addition, there is a marked clinical heterogeneity and overlap of several clinical and epidemiological features among dystonia and tremor. These facts raise the possibility that dystonia and tremor could be having shared biology. In this chapter, we revisit critical aspects of this possibility that may have important clinical and research implications in the future. We comprehensively review the points in favor and against the theory that dystonia and tremor have shared biology from clinical, epidemiological, genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, United States
| | - Sanjay Pandey
- Department of Neurology, Amrita Hospital, Faridabad, Delhi National Capital Region, India.
| |
Collapse
|
4
|
Fan K, Zhang BH, Han D, Sun YC. EZH2 as a prognostic-related biomarker in lung adenocarcinoma correlating with cell cycle and immune infiltrates. BMC Bioinformatics 2023; 24:149. [PMID: 37069494 PMCID: PMC10111667 DOI: 10.1186/s12859-023-05271-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUNDS It has been observed that high levels of enhancer of zeste homolog 2 (EZH2) expression are associated with unsatisfactory prognoses and can be found in a wide range of malignancies. However, the effects of EZH2 on Lung Adenocarcinoma (LUAD) remain elusive. Through the integration of bioinformatic analyses, the present paper sought to ascertain the effects of EZH2 in LUAD. METHODS The TIMER and UALCAN databases were applied to analyze mRNA and protein expression data for EZH2 in LUAD. The result of immunohistochemistry was obtained from the HPA database, and the survival curve was drawn according to the library provided by the HPA database. The LinkedOmics database was utilized to investigate the co-expressed genes and signal transduction pathways with EZH2. Up- and down-regulated genes from The Linked Omics database were introduced to the CMap database to predict potential drug targets for LUAD using the CMap database. The association between EZH2 and cancer-infiltrating immunocytes was studied through TIMER and TISIDB. In addition, this paper explores the relationship between EZH2 mRNA expression and NSCLC OS using the Kaplan-Meier plotter database to further validate and complement the research. Furthermore, the correlation between EZH2 expression and EGFR genes, KRAS genes, BRAF genes, and smoking from the Cancer Genome Atlas (TCGA) database is analyzed. RESULTS In contrast to paracancer specimens, the mRNA and protein levels of EZH2 were higher in LUAD tissues. Significantly, high levels of EZH2 were associated with unsatisfactory prognoses in LUAD patients. Additionally, the coexpressed genes of EZH2 were predominantly associated with numerous cell growth-associated pathways, including the cell cycle, DNA replication, RNA transport, and the p53 signaling pathway, according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The results of TCGA database revealed that the expression of EZH2 was lower in normal tissues than in lung cancer tissues (p < 0.05). Smoking was associated with elevated EZH2 expression (p < 0.001). EZH2 was highly expressed in lung cancers with positive KRAS expression, and the correlation was significant in lung adenocarcinoma (r = 0.3129, p < 0.001). CMap was applied to determine the top 15 positively correlated drugs/molecules and the top 15 negatively correlated drugs/molecules. MK-1775, MK-5108, fenbendazole, albendazole, BAY-K8644, evodiamine, purvalanol-a, mycophenolic-acid, PHA-793887, and cyclopamine are potential drugs for patients with lung adenocarcinoma and high EZH2 expression. CONCLUSIONS Highly expressed EZH2 is a predictor of a suboptimal prognosis in LUAD and may serve as a prognostic marker and target gene for LUAD. The underlying cause may be associated with the synergistic effect of KRAS, immune cell infiltration, and metabolic processes.
Collapse
Affiliation(s)
- Kui Fan
- Department of Radiation Oncology, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine-Hebei Province, No. 31, Huanghe West Road, Yunhe District, Cangzhou, 061000, Hebei, China
| | - Bo-Hui Zhang
- Department of Neurology, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine-Hebei Province, Cangzhou, 061000, Hebei, China
| | - Deng Han
- Division of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yun-Chuan Sun
- Department of Radiation Oncology, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine-Hebei Province, No. 31, Huanghe West Road, Yunhe District, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
5
|
Henneman P, Mul AN, Li Yim AY, Krzyzewska IM, Alders M, Adelia A, Mizee MR, Mannens MM. Prenatal NeuN+ neurons of Down syndrome display aberrant integrative DNA methylation and gene expression profiles. Epigenomics 2022; 14:375-390. [PMID: 35232286 DOI: 10.2217/epi-2021-0523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To detect expression quantitative trait methylation (eQTM) loci within the cerebrum of prenatal Down syndrome (DS) and controls. Material & methods: DNA methylation gene expression profiles were acquired from NeuN+ nuclei, obtained from cerebrum sections of DS and controls. Linear regression models were applied to both datasets and were subsequently applied in an integrative analysis model to detect DS-associated eQTM loci. Results & conclusion: Widespread aberrant DNA methylation and gene expression were observed in DS. A substantial number of differentially methylated loci were replicated according to a previously reported study. Subsequent integrative analyses (eQTM) yielded numerous associated DS loci. the authors associated DNA methylation, gene expression and eQTM loci with DS that may underlie particular DS phenotypical characteristics.
Collapse
Affiliation(s)
- Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Adri N Mul
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Andrew Yf Li Yim
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Adelia Adelia
- Neuroimmunology Research Group & Netherlands Brain Bank, Netherlands Institute for Neuroscience, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Mark R Mizee
- Neuroimmunology Research Group & Netherlands Brain Bank, Netherlands Institute for Neuroscience, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| | - Marcel M Mannens
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, Amsterdam, AZ, 1105, The Netherlands
| |
Collapse
|
6
|
Vilor-Tejedor N, Alemany S, Cáceres A, Bustamante M, Mortamais M, Pujol J, Sunyer J, González JR. Sparse multiple factor analysis to integrate genetic data, neuroimaging features, and attention-deficit/hyperactivity disorder domains. Int J Methods Psychiatr Res 2018; 27:e1738. [PMID: 30105890 PMCID: PMC6877273 DOI: 10.1002/mpr.1738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/17/2018] [Accepted: 06/26/2018] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES We proposed the application of a multivariate cross-sectional framework based on a combination of a variable selection method and a multiple factor analysis (MFA) in order to identify complex meaningful biological signals related to attention-deficit/hyperactivity disorder (ADHD) symptoms and hyperactivity/inattention domains. METHODS The study included 135 children from the general population with genomic and neuroimaging data. ADHD symptoms were assessed using a questionnaire based on ADHD-DSM-IV criteria. In all analyses, the raw sum scores of the hyperactivity and inattention domains and total ADHD were used. The analytical framework comprised two steps. First, zero-inflated negative binomial linear model via penalized maximum likelihood (LASSO-ZINB) was performed. Second, the most predictive features obtained with LASSO-ZINB were used as input for the MFA. RESULTS We observed significant relationships between ADHD symptoms and hyperactivity and inattention domains with white matter, gray matter regions, and cerebellum, as well as with loci within chromosome 1. CONCLUSIONS Multivariate methods can be used to advance the neurobiological characterization of complex diseases, improving the statistical power with respect to univariate methods, allowing the identification of meaningful biological signals in Imaging Genetic studies.
Collapse
Affiliation(s)
- Natàlia Vilor-Tejedor
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alejandro Cáceres
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marion Mortamais
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Jesús Pujol
- MRI Research Unit, Hospital del Mar, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Juan R González
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|