1
|
Wen B, Zhu H, Xu J, Xu L, Huang Y. NMDA Receptors Regulate Oxidative Damage in Keratinocytes during Complex Regional Pain Syndrome in HaCaT Cells and Male Rats. Antioxidants (Basel) 2024; 13:244. [PMID: 38397842 PMCID: PMC10886417 DOI: 10.3390/antiox13020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Complex regional pain syndrome (CRPS), a type of primary chronic pain, occurs following trauma or systemic disease and typically affects the limbs. CRPS-induced pain responses result in vascular, cutaneous, and autonomic nerve alterations, seriously impacting the quality of life of affected individuals. We previously identified the involvement of keratinocyte N-methyl-d-asparagic acid (NMDA) receptor subunit 2 B (NR2B) in both peripheral and central sensitizations in CRPS, although the mechanisms whereby NR2B functions following activation remain unclear. Using an in vivo male rat model of chronic post-ischemia pain (CPIP) and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, we discovered that oxidative injury occurs in rat keratinocytes and HaCaT cells, resulting in reduced cell viability, mitochondrial damage, oxidative damage of nucleotides, and increased apoptosis. In HaCaT cells, OGD/R induced increases in intracellular reactive oxygen species levels and disrupted the balance between oxidation and antioxidation by regulating a series of antioxidant genes. The activation of NMDA receptors via NMDA exacerbated these changes, whereas the inhibition of the NR2B subunit alleviated them. Co-administration of ifenprodil (an NR2B antagonist) and NMDA (an NMDA receptor agonist) during the reoxygenation stage did not result in any significant alterations. Furthermore, intraplantar injection of ifenprodil effectively reversed the altered gene expression that was observed in male CPIP rats, thereby revealing the potential mechanisms underlying the therapeutic effects of peripheral ifenprodil administration in CRPS. Collectively, our findings indicate that keratinocytes undergo oxidative injury in CRPS, with NMDA receptors playing regulatory roles.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (B.W.); (H.Z.)
| | - He Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (B.W.); (H.Z.)
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (B.W.); (H.Z.)
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (B.W.); (H.Z.)
| |
Collapse
|
2
|
Salama V, Geng Y, Rigert J, Fuller CD, Shete S, Moreno AC. Systematic Review of Genetic Polymorphisms Associated with Acute Pain Induced by Radiotherapy for Head and Neck Cancers. Clin Transl Radiat Oncol 2023; 43:100669. [PMID: 37954025 PMCID: PMC10634655 DOI: 10.1016/j.ctro.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 08/13/2023] [Indexed: 11/14/2023] Open
Abstract
Background/objective Pain is the most common acute symptom following radiation therapy (RT) for head and neck cancer (HNC). The multifactorial origin of RT-induced pain makes it highly challenging to manage. Multiple studies were conducted to identify genetic variants associated with cancer pain, however few of them focused on RT-induced acute pain. In this review, we summarize the potential mechanisms of acute pain after RT in HNC and identify genetic variants associated with RT-induced acute pain and relevant acute toxicities. Methods A comprehensive search of Ovid Medline, EMBASE and Web of Science databases using terms including "Variants", "Polymorphisms", "Radiotherapy", "Acute pain", "Acute toxicity" published up to February 28, 2022, was performed by two reviewers. Review articles and citations were reviewed manually. The identified SNPs associated with RT-induced acute pain and toxicities were reported, and the molecular functions of the associated genes were described based on genetic annotation using The Human Gene Database; GeneCards. Results A total of 386 articles were identified electronically and 8 more articles were included after manual search. 21 articles were finally included. 32 variants in 27 genes, of which 25% in inflammatory/immune response, 20% had function in DNA damage response and repair, 20% in cell death or cell cycle, were associated with RT-inflammatory pain and acute oral mucositis or dermatitis. 4 variants in 4 genes were associated with neuropathy and neuropathic pain. 5 variants in 4 genes were associated with RT-induced mixed types of post-RT-throat/neck pain. Conclusion Different types of pain develop after RT in HNC, including inflammatory pain; neuropathic pain; nociceptive pain; and mixed oral pain. Genetic variants involved in DNA damage response and repair, cell death, inflammation and neuropathic pathways may affect pain presentation post-RT. These variants could be used for personalized pain management in HNC patients receiving RT.
Collapse
Affiliation(s)
- Vivian Salama
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yimin Geng
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jillian Rigert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy C. Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Li S, Brimmers A, van Boekel RL, Vissers KC, Coenen MJ. A systematic review of genome-wide association studies for pain, nociception, neuropathy, and pain treatment responses. Pain 2023; 164:1891-1911. [PMID: 37144689 PMCID: PMC10436363 DOI: 10.1097/j.pain.0000000000002910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 05/06/2023]
Abstract
ABSTRACT Pain is the leading cause of disability worldwide, imposing an enormous burden on personal health and society. Pain is a multifactorial and multidimensional problem. Currently, there is (some) evidence that genetic factors could partially explain individual susceptibility to pain and interpersonal differences in pain treatment response. To better understand the underlying genetic mechanisms of pain, we systematically reviewed and summarized genome-wide association studies (GWASes) investigating the associations between genetic variants and pain/pain-related phenotypes in humans. We reviewed 57 full-text articles and identified 30 loci reported in more than 1 study. To check whether genes described in this review are associated with (other) pain phenotypes, we searched 2 pain genetic databases, Human Pain Genetics Database and Mouse Pain Genetics Database. Six GWAS-identified genes/loci were also reported in those databases, mainly involved in neurological functions and inflammation. These findings demonstrate an important contribution of genetic factors to the risk of pain and pain-related phenotypes. However, replication studies with consistent phenotype definitions and sufficient statistical power are required to validate these pain-associated genes further. Our review also highlights the need for bioinformatic tools to elucidate the function of identified genes/loci. We believe that a better understanding of the genetic background of pain will shed light on the underlying biological mechanisms of pain and benefit patients by improving the clinical management of pain.
Collapse
Affiliation(s)
- Song Li
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annika Brimmers
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Regina L.M. van Boekel
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kris C.P. Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marieke J.H. Coenen
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Raad M, López WOC, Sharafshah A, Assefi M, Lewandrowski KU. Personalized Medicine in Cancer Pain Management. J Pers Med 2023; 13:1201. [PMID: 37623452 PMCID: PMC10455778 DOI: 10.3390/jpm13081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Previous studies have documented pain as an important concern for quality of life (QoL) and one of the most challenging manifestations for cancer patients. Thus, cancer pain management (CPM) plays a key role in treating pain related to cancer. The aim of this systematic review was to investigate CPM, with an emphasis on personalized medicine, and introduce new pharmacogenomics-based procedures for detecting and treating cancer pain patients. METHODS This study systematically reviewed PubMed from 1990 to 2023 using keywords such as cancer, pain, and personalized medicine. A total of 597 publications were found, and after multiple filtering processes, 75 papers were included. In silico analyses were performed using the GeneCards, STRING-MODEL, miRTargetLink2, and PharmGKB databases. RESULTS The results reveal that recent reports have mainly focused on personalized medicine strategies for CPM, and pharmacogenomics-based data are rapidly being introduced. The literature review of the 75 highly relevant publications, combined with the bioinformatics results, identified a list of 57 evidence-based genes as the primary gene list for further personalized medicine approaches. The most frequently mentioned genes were CYP2D6, COMT, and OPRM1. Moreover, among the 127 variants identified through both the literature review and data mining in the PharmGKB database, 21 variants remain as potential candidates for whole-exome sequencing (WES) analysis. Interestingly, hsa-miR-34a-5p and hsa-miR-146a-5p were suggested as putative circulating biomarkers for cancer pain prognosis and diagnosis. CONCLUSIONS In conclusion, this study highlights personalized medicine as the most promising strategy in CPM, utilizing pharmacogenomics-based approaches to alleviate cancer pain.
Collapse
Affiliation(s)
- Mohammad Raad
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - William Omar Contreras López
- Neurosurgeon Clinica Foscal Internacional, Bucaramanga 680006, Colombia;
- Neurosurgeon Clinica Portoazul, Caribe, La Merced, Asunción, Centro, Barranquilla 680006, Colombia
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht 41937-1311, Iran;
| | - Marjan Assefi
- University of North Carolina, Greensboro, NC 27412, USA;
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, Tucson, AZ 85712, USA;
- Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá 111321, Colombia
- Department of Orthopedics, Hospital Universitário Gaffre e Guinle, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20270-004, Brazil
| |
Collapse
|
5
|
Hughes RT, Ip EH, Urbanic JJ, Hu JJ, Weaver KE, Lively MO, Winkfield KM, Shaw EG, Diaz LB, Brown DR, Strasser J, Sears JD, Lesser GJ. Smoking and Radiation-induced Skin Injury: Analysis of a Multiracial, Multiethnic Prospective Clinical Trial. Clin Breast Cancer 2022; 22:762-770. [PMID: 36216768 PMCID: PMC10003823 DOI: 10.1016/j.clbc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Smoking during breast radiotherapy (RT) may be associated with radiation-induced skin injury (RISI). We aimed to determine if a urinary biomarker of tobacco smoke exposure is associated with increased rates of RISI during and after breast RT. PATIENTS AND METHODS Women with Stage 0-IIIA breast cancer treated with breast-conserving surgery or mastectomy followed by RT to the breast or chest wall with or without regional nodal irradiation were prospectively enrolled on a multicenter study assessing acute/late RISI. 980 patients with urinary cotinine (UCot) measurements (baseline and end-RT) were categorized into three groups. Acute and late RISI was assessed using the ONS Acute Skin Reaction scale and the LENT-SOMA Criteria. RESULTS Late Grade 2+ and Grade 3+ RISI occurred in 18.2% and 1.9% of patients, respectively-primarily fibrosis, pain, edema, and hyperpigmentation. Grade 2+ late RISI was associated with UCot group (P= 006). Multivariable analysis identified UCot-based light smoker/secondhand smoke exposure (HR 1.79, P= .10) and smoking (HR 1.60, p = .06) as non-significantly associated with an increased risk of late RISI. Hypofractionated breast RT was associated with decreased risk of late RISI (HR 0.51, P=.03). UCot was not associated with acute RISI, multivariable analysis identified race, obesity, RT site/fractionation, and bra size to be associated with acute RISI. CONCLUSIONS Tobacco exposure during breast RT may be associated with an increased risk of late RISI without an effect on acute toxicity. Smoking cessation should be encouraged prior to radiotherapy to minimize these and other ill effects of smoking.
Collapse
Affiliation(s)
- Ryan T Hughes
- Department of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| | - Edward H Ip
- Department of Biostatistics & Data Science, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States; Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| | - James J Urbanic
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093, United States.
| | - Jennifer J Hu
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, 1600 NW 10th Ave #1140, Miami, FL 33136.
| | - Kathryn E Weaver
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| | | | - Karen M Winkfield
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, 1005 Dr DB Todd Jr Blvd, Nashville, TN 37208, United States.
| | | | - Luis Baez Diaz
- Puerto Rico Minority Underserved NCI Community Oncology Research Program, 89 De Diego Avenue, PMB #711, Suite 105, San Juan, Puerto Rico 00927.
| | - Doris R Brown
- Department of Radiation Oncology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| | - Jon Strasser
- Helen F Graham Cancer Center, 4701 Ogletown Stanton Rd, Newark, DE 19713, United States.
| | - Judith D Sears
- Piedmont Radiation Oncology, 1010 Bethesda Court, Winston-Salem, NC 27103, United States.
| | - Glenn J Lesser
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine.
| |
Collapse
|
6
|
Aguado-Flor E, Fuentes-Raspall MJ, Gonzalo R, Alonso C, Ramón Y Cajal T, Fisas D, Seoane A, Sánchez-Pla Á, Giralt J, Díez O, Gutiérrez-Enríquez S. Cell Senescence-Related Pathways Are Enriched in Breast Cancer Patients With Late Toxicity After Radiotherapy and Low Radiation-Induced Lymphocyte Apoptosis. Front Oncol 2022; 12:825703. [PMID: 35686103 PMCID: PMC9170959 DOI: 10.3389/fonc.2022.825703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Radiation-induced late effects are a common cause of morbidity among cancer survivors. The biomarker with the best evidence as a predictive test of late reactions is the radiation-induced lymphocyte apoptosis (RILA) assay. We aimed to investigate the molecular basis underlying the distinctive RILA levels by using gene expression analysis in patients with and without late effects and in whom we had also first identified differences in RILA levels. Patients and Methods Peripheral blood mononuclear cells of 10 patients with late severe skin complications and 10 patients without symptoms, selected from those receiving radiotherapy from 1993 to 2007, were mock-irradiated or irradiated with 8 Gy. The 48-h response was analyzed in parallel by RILA assay and gene expression profiling with Affymetrix microarrays. Irradiated and non-irradiated gene expression profiles were compared between both groups. Gene set enrichment analysis was performed to identify differentially expressed biological processes. Results Although differentially expressed mRNAs did not reach a significant adjusted p-value between patients suffering and not suffering clinical toxicity, the enriched pathways indicated significant differences between the two groups, either in irradiated or non-irradiated cells. In basal conditions, the main differentially expressed pathways between the toxicity and non-toxicity groups were the transport of small molecules, interferon signaling, and transcription. After 8 Gy, the differences lay in pathways highly related to cell senescence like cell cycle/NF-κB, G-protein-coupled receptors, and interferon signaling. Conclusion Patients at risk of developing late toxicity have a distinctive pathway signature driven by deregulation of immune and cell cycle pathways related to senescence, which in turn may underlie their low RILA phenotype.
Collapse
Affiliation(s)
- Ester Aguado-Flor
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Ricardo Gonzalo
- Statistics and Bioinformatics Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carmen Alonso
- Medical Oncology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | | | - David Fisas
- Medical Oncology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Alejandro Seoane
- Medical Physics Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Álex Sánchez-Pla
- Statistics and Bioinformatics Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Giralt
- Radiation Oncology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Radiation Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Orland Díez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
7
|
Xu X, Chen R, Zhan G, Wang D, Tan X, Xu H. Enterochromaffin Cells: Sentinels to Gut Microbiota in Hyperalgesia? Front Cell Infect Microbiol 2021; 11:760076. [PMID: 34722345 PMCID: PMC8552036 DOI: 10.3389/fcimb.2021.760076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing studies have been conducted on the mechanism of gut microbiota in neuropsychiatric diseases and non-neuropsychiatric diseases. The academic community has also recognized the existence of the microbiota-gut-brain axis. Chronic pain has always been an urgent difficulty for human beings, which often causes anxiety, depression, and other mental symptoms, seriously affecting people's quality of life. Hyperalgesia is one of the main adverse reactions of chronic pain. The mechanism of gut microbiota in hyperalgesia has been extensively studied, providing a new target for pain treatment. Enterochromaffin cells, as the chief sentinel for sensing gut microbiota and its metabolites, can play an important role in the interaction between the gut microbiota and hyperalgesia through paracrine or neural pathways. Therefore, this systematic review describes the role of gut microbiota in the pathological mechanism of hyperalgesia, learns about the role of enterochromaffin cell receptors and secretions in hyperalgesia, and provides a new strategy for pain treatment by targeting enterochromaffin cells through restoring disturbed gut microbiota or supplementing probiotics.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongmin Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Insight into the Candidate Genes and Enriched Pathways Associated with Height, Length, Length to Height Ratio and Body-Weight of Korean Indigenous Breed, Jindo Dog Using Gene Set Enrichment-Based GWAS Analysis. Animals (Basel) 2021; 11:ani11113136. [PMID: 34827868 PMCID: PMC8614278 DOI: 10.3390/ani11113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
As a companion and hunting dog, height, length, length to height ratio (LHR) and body-weight are the vital economic traits for Jindo dog. Human selection and targeted breeding have produced an extraordinary diversity in these traits. Therefore, the identification of causative markers, genes and pathways that help us to understand the genetic basis of this variability is essential for their selection purposes. Here, we performed a genome-wide association study (GWAS) combined with enrichment analysis on 757 dogs using 118,879 SNPs. The genomic heritability (h2) was 0.33 for height and 0.28 for weight trait in Jindo. At p-value < 5 × 10-5, ten, six, thirteen and eleven SNPs on different chromosomes were significantly associated with height, length, LHR and body-weight traits, respectively. Based on our results, HHIP, LCORL and NCAPG for height, IGFI and FGFR3 for length, DLK1 and EFEMP1 for LHR and PTPN2, IGFI and RASAL2 for weight can be the potential candidate genes because of the significant SNPs located in their intronic or upstream regions. The gene-set enrichment analysis highlighted here nine and seven overlapping significant (p < 0.05) gene ontology (GO) terms and pathways among traits. Interestingly, the highlighted pathways were related to hormone synthesis, secretion and signalling were generally involved in the metabolism, growth and development process. Our data provide an insight into the significant genes and pathways if verified further, which will have a significant effect on the breeding of the Jindo dog's population.
Collapse
|
9
|
Yang W, Chen S, Cheng X, Xu B, Zeng H, Zou J, Su C, Chen Z. Characteristics of genomic mutations and signaling pathway alterations in thymic epithelial tumors. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1659. [PMID: 34988168 PMCID: PMC8667121 DOI: 10.21037/atm-21-5182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND To elucidate the mechanisms of thymic epithelial tumor (TET) canceration by characterizing genomic mutations and signaling pathway alterations. METHODS Primary tumor and blood samples were collected from 21 patients diagnosed with TETs (thymoma and thymic cancer), 15 of whom were screened by nucleic acid extraction and whole exon sequencing. Bioinformatics was used to comprehensively analyze the sequencing data for these samples, including gene mutation information and the difference of tumor mutation burden (TMB) between thymoma and thymic carcinoma groups. We performed signaling pathway and functional enrichment analysis using the WebGestalt 2017 toolkit. RESULTS ZNF429 (36%) was the gene with the highest mutation frequency in thymic carcinoma. Mutations in BAP1 (14%), ABI1 (7%), BCL9L (7%), and CHEK2 (7%) were exclusively detected in thymic carcinoma, whereas ZNF721 mutations (14%) and PABPC1 (14%) were found exclusively in thymoma. The mean TMB values for thymic carcinoma and thymoma were 0.722 and 0.663 mutations per megabase (Mb), respectively, and these differences were not statistically significant. The ErbB signaling pathway was enriched in the thymoma and intersection groups, and pathways of central carbon metabolism in cancer, longevity regulating and MAPK signaling were only found in the thymoma group, while pathways in cancer (hsa05200) was found in the thymoma and thymic carcinoma groups. CONCLUSIONS Multiple differences in somatic genes and pathways have been identified. Our findings provide insights into differences between thymoma and thymic carcinoma that could aid in designing personalized clinical therapeutic strategies.
Collapse
Affiliation(s)
- Weilin Yang
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sai Chen
- Center for Private Medical Service & Healthcare, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Cheng
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Xu
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huilan Zeng
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianyong Zou
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Su
- Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenguang Chen
- Department of Cardiothoracic Surgery of East Division, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Thoracic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Tang J, Su Q, Zhang X, Qin W, Liu H, Liang M, Yu C. Brain Gene Expression Pattern Correlated with the Differential Brain Activation by Pain and Touch in Humans. Cereb Cortex 2021; 31:3506-3521. [PMID: 33693675 DOI: 10.1093/cercor/bhab028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Genes involved in pain and touch sensations have been studied extensively, but very few studies have tried to link them with neural activities in the brain. Here, we aimed to identify genes preferentially correlated to painful activation patterns by linking the spatial patterns of gene expression of Allen Human Brain Atlas with the pain-elicited neural responses in the human brain, with a parallel, control analysis for identification of genes preferentially correlated to tactile activation patterns. We identified 1828 genes whose expression patterns preferentially correlated to painful activation patterns and 411 genes whose expression patterns preferentially correlated to tactile activation pattern at the cortical level. In contrast to the enrichment for astrocyte and inhibitory synaptic transmission of genes preferentially correlated to tactile activation, the genes preferentially correlated to painful activation were mainly enriched for neuron and opioid- and addiction-related pathways and showed significant overlap with pain-related genes identified in previous studies. These findings not only provide important evidence for the differential genetic architectures of specific brain activation patterns elicited by painful and tactile stimuli but also validate a new approach to studying pain- and touch-related genes more directly from the perspective of neural responses in the human brain.
Collapse
Affiliation(s)
- Jie Tang
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Qian Su
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for China, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xue Zhang
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wen Qin
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Huaigui Liu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Meng Liang
- Tianjin Key Laboratory of Functional Imaging, School of Medical Imaging, Tianjin Medical University, Tianjin 300052, P.R. China
| | - Chunshui Yu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| |
Collapse
|
11
|
Nishizawa D, Iseki M, Arita H, Hanaoka K, Yajima C, Kato J, Ogawa S, Hiranuma A, Kasai S, Hasegawa J, Hayashida M, Ikeda K. Genome-wide association study identifies candidate loci associated with chronic pain and postherpetic neuralgia. Mol Pain 2021; 17:1744806921999924. [PMID: 33685280 PMCID: PMC8822450 DOI: 10.1177/1744806921999924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human twin studies and other studies have indicated that chronic pain has heritability that ranges from 30% to 70%. We aimed to identify potential genetic variants that contribute to the susceptibility to chronic pain and efficacy of administered drugs. We conducted genome-wide association studies (GWASs) using whole-genome genotyping arrays with more than 700,000 markers in 191 chronic pain patients and a subgroup of 89 patients with postherpetic neuralgia (PHN) in addition to 282 healthy control subjects in several genetic models, followed by additional gene-based and gene-set analyses of the same phenotypes. We also performed a GWAS for the efficacy of drugs for the treatment of pain. RESULTS Although none of the single-nucleotide polymorphisms (SNPs) were found to be genome-wide significantly associated with chronic pain (p ≥ 1.858 × 10-7), the GWAS of PHN patients revealed that the rs4773840 SNP within the ABCC4 gene region was significantly associated with PHN in the trend model (nominal p = 1.638 × 10-7). In the additional gene-based analysis, one gene, PRKCQ, was significantly associated with chronic pain in the trend model (adjusted p = 0.03722). In the gene-set analysis, several gene sets were significantly associated with chronic pain and PHN. No SNPs were significantly associated with the efficacy of any of types of drugs in any of the genetic models. CONCLUSIONS These results suggest that the PRKCQ gene and rs4773840 SNP within the ABCC4 gene region may be related to the susceptibility to chronic pain conditions and PHN, respectively.
Collapse
Affiliation(s)
- Daisuke Nishizawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideko Arita
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Kazuo Hanaoka
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Choku Yajima
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Jitsu Kato
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Setsuro Ogawa
- Nihon University, University Research Center, Tokyo, Japan
| | - Ayako Hiranuma
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Surgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Shinya Kasai
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masakazu Hayashida
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
12
|
Díaz-Gavela AA, Del Cerro Peñalver E, Sanchez García S, Leonardo Guerrero L, Sanz Rosa D, Couñago Lorenzo F. Breast cancer radiotherapy: What physicians need to know in the era of the precision medicine. Breast Dis 2021; 40:1-16. [PMID: 33554881 DOI: 10.3233/bd-201022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Breast cancer is the most common cancer in women worldwide and encompasses a broad spectrum of diseases in one with significant epidemiological, clinical, and biological heterogeneity, which determines a different natural history and prognostic profile. Although classical tumour staging (TNM) still provides valuable information, the current reality is that the clinicians must consider other biological and molecular factors that directly influence treatment decision-making. The management of breast cancer has changed radically in the last 15 years due to significant advances in our understanding of these tumours. This knowledge has brought with it a major impact regarding surgical and systemic management and has been practice-changing, but it has also created significant uncertainties regarding how best integrate the radiotherapy treatment into the therapeutic scheme. In parallel, radiotherapy itself has also experienced major advances, new radiobiological concepts have emerged, and genomic data and other patient-specific factors must now be integrated into individualised treatment approaches. In this context, "precision medicine" seeks to provide an answer to these open questions and uncertainties. The aim of the present review is to clarify the meaning of this term and to critically evaluate its role and impact on contemporary breast cancer radiotherapy.
Collapse
Affiliation(s)
- Ana Aurora Díaz-Gavela
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid, Spain
- Clinical Department, Faculty of Biomedicine, Universidad Europea, Madrid, Spain
| | - Elia Del Cerro Peñalver
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid, Spain
- Clinical Department, Faculty of Biomedicine, Universidad Europea, Madrid, Spain
| | - Sofía Sanchez García
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid, Spain
| | - Luis Leonardo Guerrero
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid, Spain
| | - David Sanz Rosa
- Clinical Department, Faculty of Biomedicine, Universidad Europea, Madrid, Spain
| | - Felipe Couñago Lorenzo
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid, Spain
- Clinical Department, Faculty of Biomedicine, Universidad Europea, Madrid, Spain
| |
Collapse
|
13
|
Jiang M, Yang J, Li K, Liu J, Jing X, Tang M. Insights into the theranostic value of precision medicine on advanced radiotherapy to breast cancer. Int J Med Sci 2021; 18:626-638. [PMID: 33437197 PMCID: PMC7797538 DOI: 10.7150/ijms.49544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. "Breast cancer" encompasses a broad spectrum of diseases (i.e., subtypes) with significant epidemiological, clinical, and biological heterogeneity. Each of these subtypes has a different natural history and prognostic profile. Although tumour staging (TNM classification) still provides valuable information in the overall management of breast cancer, the current reality is that clinicians must consider other biological and molecular factors that directly influence treatment decision-making, including extent of surgery, indication for chemotherapy, hormonal therapy, and even radiotherapy (and treatment volumes). The management of breast cancer has changed radically in the last 15 years due to significant advances in our understanding of these tumours. While these changes have been extremely positive in terms of surgical and systemic management, they have also created significant uncertainties concerning integration of local and locoregional radiotherapy into the therapeutic scheme. In parallel, radiotherapy itself has also experienced major advances. Beyond the evident technological advances, new radiobiological concepts have emerged, and genomic data and other patient-specific factors must now be integrated into individualized treatment approaches. In this context, "precision medicine" seeks to provide an answer to these open questions and uncertainties. Although precision medicine has been much discussed in the last five years or so, the concept remains somewhat ambiguous, and it often appear to be used as a "catch-all" term. The present review aims to clarify the meaning of this term and, more importantly, to critically evaluate the role and impact of precision medicine on breast cancer radiotherapy. Finally, we will discuss the current and future of precision medicine in radiotherapy.
Collapse
Affiliation(s)
- Man Jiang
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.,Department of Oncology, Longgang District People's Hospital, Shenzhen 518172, China
| | - Jianshe Yang
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Kang Li
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Jia Liu
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xigang Jing
- Medical College of Wisconsin (Milwaukee), Wisconsin 53226, USA
| | - Meiqin Tang
- 3 rd Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.,Department of Hematology, Longgang District People's Hospital, Shenzhen 518172, China
| |
Collapse
|
14
|
Naureen Z, Lorusso L, Manganotti P, Caruso P, Mazzon G, Cecchin S, Marceddu G, Bertelli M. Genetics of pain: From rare Mendelian disorders to genetic predisposition to pain. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020010. [PMID: 33170156 PMCID: PMC8023138 DOI: 10.23750/abm.v91i13-s.10682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 02/01/2023]
Abstract
Background and aim of the work: Pain is defined by the International Association for the Study of Pain as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage”. In this mini-review, we focused on the Mendelian disorders with chronic pain as the main characteristic or where pain perception is disrupted, and on the polymorphisms that can impart susceptibility to chronic pain. Methods: We searched PubMed and Online Mendelian Inheritance in Man (OMIM) databases and selected only syndromes in which pain or insensitivity to pain were among the main characteristics. Polymorphisms were selected from the database GWAS catalog (https://www.ebi.ac.uk/gwas/home). Results: We retrieved a total of 28 genes associated with Mendelian inheritance in which pain or insensitivity to pain were the main characteristics and 70 polymorphisms associated with modulation of pain perception. Conclusions: This mini-review highlights the importance of genetics in phenotypes characterized by chronic pain or pain insensitivity. We think that an effective genetic test should analyze all genes associated with Mendelian pain disorders and all SNPs that can increase the risk of pain. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | - Lorenzo Lorusso
- ASST Lecco, UOC Neurology and Stroke Unit, Merate (LC), Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | - Paola Caruso
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | - Giulia Mazzon
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | | | | | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
15
|
Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis. Animals (Basel) 2020; 10:ani10112071. [PMID: 33182249 PMCID: PMC7695335 DOI: 10.3390/ani10112071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to identify causative loci and genes enriched in pathways associated with canine obesity using a genome-wide association study (GWAS). The GWAS was first performed to identify candidate single-nucleotide polymorphisms (SNPs) associated with obesity and obesity-related traits including body weight and blood sugar in 18 different breeds of 153 dogs. A total of 10 and 2 SNPs were found to be significantly (p < 3.74 × 10-7) associated with body weight and blood sugar, respectively. None of the SNPs were identified to be significantly associated with obesity trait. We subsequently followed up the GWAS analysis with gene-set enrichment and pathway analyses. A gene-set with 1057, 1409, and 1243 SNPs annotated to 449, 933 and 820 genes for obesity, body weight, and blood sugar, respectively was created by sub-setting the GWAS result at a threshold of p < 0.01 for the gene-set enrichment analysis. In total, 84 GO and 21 KEGG pathways for obesity, 114 GO and 44 KEGG pathways for blood sugar, 120 GO and 24 KEGG pathways for body weight were found to be enriched. Among the pathways and GO terms, we highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) that were found to be shared among all the traits. Our data provide insights into the genes and pathways associated with obesity and obesity-related traits.
Collapse
|
16
|
Ramroach S, John M, Joshi A. Lung cancer type classification using differentiator genes. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Lee E, Eum SY, Slifer SH, Martin ER, Takita C, Wright JL, Hines RB, Hu JJ. Association Between Polymorphisms in DNA Damage Repair Genes and Radiation Therapy-Induced Early Adverse Skin Reactions in a Breast Cancer Population: A Polygenic Risk Score Approach. Int J Radiat Oncol Biol Phys 2020; 106:948-957. [PMID: 32007367 DOI: 10.1016/j.ijrobp.2019.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Genetic variations in DNA damage repair (DDR) genes may influence radiation therapy (RT)-induced acute normal tissue toxicity in patients with breast cancer. Identifying an individual or multiple single-nucleotide polymorphisms (SNPs) associated with RT-induced early adverse skin reactions (EASR) is critical for precision medicine in radiation oncology. METHODS AND MATERIALS At the completion of RT, EASR was assessed using the Oncology Nursing Society scale (0-6) in 416 patients with breast cancer, and Oncology Nursing Society score ≥4 was considered RT-induced EASR. PLINK set-based tests and subsequent individual SNP association analyses were conducted to identify genes and SNPs associated with EASR among the 53 DDR genes and 1968 SNPs. A weighted polygenic risk score (PRS) model was constructed to ascertain the association between the joint effect of risk alleles and EASR. RESULTS The study population consisted of 264 Hispanic whites, 86 blacks or African Americans, 55 non-Hispanic whites, and 11 others. A total of 115 patients (27.6%) developed EASR. Five genes (ATM, CHEK1, ERCC2, RAD51C, and TGFB1) were significantly associated with RT-induced EASR. Nine SNPs within these 5 genes were further identified: ATM rs61915066, CHEK1 rs11220184, RAD51C rs302877, rs405684, TBFB1 rs4803455, rs2241714, and ERCC2 rs60152947, rs10404465, rs1799786. In a multivariable-adjusted PRS model, patients in a higher quartile of PRS were more likely to develop EASR compared with patients in the lowest quartile (ORq2 vs.q1 = 1.94, 95% CI, 0.86-4.39; ORq3 vs.q1 = 3.46, 95% CI, 1.57-7.63; ORq4 vs.q1 = 8.64, 95% CI, 3.92-19.02; and Ptrend < .0001). CONCLUSIONS We newly identified the associations between 9 SNPs in ATM, CHEK1, RAD51C, TGFB1, and ERCC2 and RT-induced EASR. PRS modeling showed its potential in identifying populations at risk. Multiple SNPs in DDR genes may jointly contribute to interindividual variation in RT-induced EASR. Validation in an independent external cohort is required to determine the clinical significance of these predictive biomarkers.
Collapse
Affiliation(s)
- Eunkyung Lee
- Department of Health Sciences, University of Central Florida College of Health Professions and Sciences, Orlando, Florida.
| | - Sung Y Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Susan H Slifer
- Center for Genetic Epidemiology and Statistical Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Eden R Martin
- Dr. John T. Macdonald Department of Human Genetics, Center for Genetic Epidemiology and Statistical Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Cristiane Takita
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jean L Wright
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Robert B Hines
- Department of Population Health Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
18
|
Wang W, Liu B, Duan X, Feng X, Wang T, Wang P, Ding M, Zhang Q, Feng F, Wu Y, Yao W, Wang Q, Yang Y. Identification of Three Differentially Expressed miRNAs as Potential Biomarkers for Lung Adenocarcinoma Prognosis. Comb Chem High Throughput Screen 2020; 23:148-156. [PMID: 31976830 DOI: 10.2174/1386207323666200124123103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/29/2019] [Accepted: 01/03/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this study areto screen MicroRNAs (miRNAs) related to the prognosis of lung adenocarcinoma (LUAD) and to explore the possible molecular mechanisms. METHODS The data for a total of 535 patients with LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database. The miRNAs for LUAD prognosis were screened by both Cox risk proportional regression model and Last Absolute Shrinkage and Selection Operator (LASSO) regression model. The performances of the models were verified by time-dependent Receiver Operating Characteristic (ROC) curve. The possible biological processes linked to the miRNAs' target genes were analyzed by Gene Ontology (GO), Kyoto gene and genome encyclopedia (KEGG). RESULTS Among 127 differentially expressed miRNAs identified from the screening analysis, there are 111 up-regulated and 16 down-regulated miRNAs. Three of them, hsa-miR-1293, hsa-miR-490 and hsa-miR- 5571, were also significantly associated with the survival of the LUAD patients. The targets of the three miRNAs are significantly enriched in systemic lupus erythematosus pathways. CONCLUSION Hsa-miR-1293, hsa-miR-490 and hsa-miR-5571 can be potentially used as novel biomarkers for the prognosis prediction of LUAD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Bin Liu
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China.,The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingcui Ding
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.,Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China.,Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|