1
|
Li R, Li S, Shen L, Li J, Zhang D, Yu J, Huang L, Liu N, Lu H, Xu M. M6A-modified BFSP1 induces aerobic glycolysis to promote liver cancer growth and metastasis through upregulating tropomodulin 4. MOLECULAR BIOMEDICINE 2025; 6:17. [PMID: 40097750 PMCID: PMC11914548 DOI: 10.1186/s43556-025-00256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
RNA N6-methyladenosine (m6A) is a common RNA modification in eukaryotes, and its abnormal regulation is closely related to cancer progression. Aerobic glycolysis is a main way for cancer cells to obtain energy. It was found that beaded filament structural protein 1 (BFSP1) is a m6A related gene in liver cancer. However, the effect of m6A-modified BFSP1 on aerobic glycolysis and how it is regulated in liver cancer progression have not been explored. Here, we found that BFSP1 was upregulated in liver cancer cells and tissues. Overexpression of BFSP1 promoted the viability, invasion, and aerobic glycolysis of liver cancer cells, whereas knockdown of BFSP1 showed the opposite effects. Co-immunoprecipitation, immunofluorescence and GST pull down analyses showed that BFSP1 directly interacted with tropomodalin 4 (TMOD4), and knockdown of TMOD4 reversed BFSP1 overexpression-induced malignant phenotypes and aerobic glycolysis in liver cancer cells. Moreover, methyltransferase-like 3 (METTL3) enhanced BFSP1 stability by augmenting m6A modification of BFSP1 mRNA, which is achieved in a YTHDF1-dependent manner. In vivo experiments in mice confirmed that METTL3 increased BFSP1 stability by promoting m6A modification of BFSP1 mRNA, and knockdown of BFSP1 inhibited tumor growth and metastasis. In summary, METTL3-mediated m6A methylation of BFSP1 mRNA plays an important role in the aerobic glycolysis and progression of liver cancer, providing a potential therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, PR China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xiwu Road, Xi'an, Shaanxi, 710004, PR China
| | - Lin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xiwu Road, Xi'an, Shaanxi, 710004, PR China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xiwu Road, Xi'an, Shaanxi, 710004, PR China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xiwu Road, Xi'an, Shaanxi, 710004, PR China
| | - Jinmin Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xiwu Road, Xi'an, Shaanxi, 710004, PR China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, PR China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an JiaoTong University, 157 Xiwu Road, Xi'an, Shaanxi, 710004, PR China.
| |
Collapse
|
2
|
Yang Y, Ni WJ, Yang Y, Liao J, Yang Y, Li J, Zhu X, Guo C, Xie F, Leng XM. Research progress on N6-methyladenosine RNA modification in osteosarcoma: functions, mechanisms, and potential clinical applications. Med Oncol 2025; 42:55. [PMID: 39853585 DOI: 10.1007/s12032-024-02597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Osteosarcoma (OS) is the most commonly diagnosed primary malignant bone tumor in children and adolescents. Despite significant advancements in therapeutic strategies against OS over the past few decades, the prognosis for this disease remains poor, largely due to its high invasiveness and challenges associated with its treatment. N6-methyladenosine (m6A) modification is one of the most abundant epigenetic modifications of RNAs, and many studies have highlighted its crucial role in OS. This article provides a comprehensive summary and introduction to m6A regulators, including methyltransferases, demethylases, and binding proteins. The article emphasizes how regulated m6A modifications can either promote or inhibit OS. It also delves into the mechanisms by which m6A-modified messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs) participate in signaling pathways such as the Wnt/β-catenin, PI3K/AKT, and STAT3 pathways, and discusses these mechanisms in detail. Given the abnormal expression of m6A regulators in OS, the article also explores their potential applications as biomarkers or therapeutic targets in clinical settings. It is anticipated that this review will provide new insights into the diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Ying Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yadong Yang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Junnan Liao
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yuqian Yang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Jianwei Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Chun Guo
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, China
- Department of Human Anatomy, School of Basic Medical Sciences, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Youjiang District, Baise, 533000, Guangxi, People's Republic of China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular of Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
3
|
Hu T, Wang G, Wang D, Deng Y, Wang W. m6A methylation modification: Potential pathways to suppress osteosarcoma metastasis. Int Immunopharmacol 2025; 145:113759. [PMID: 39662272 DOI: 10.1016/j.intimp.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Osteosarcoma is a highly aggressive malignant bone tumor prone to metastasis, and its metastatic process is one of the main reasons for treatment failure and poor prognosis. Recent studies have demonstrated that modification of m6A methylation plays an important role in osteosarcoma metastasis, influencing both invasion and metastasis through various signaling pathways. Therefore, clarification of the specific effects of m6A methylation modification in osteosarcoma may reveal ways to improve the prognosis of osteosarcoma patients. The roles of various components involved in the m6A methylation modification process in osteosarcoma have been investigated, with studies focusing more on their effects than on their mechanisms. In this review, we focus on the interactions between the "writers," "erasers," and "readers" of m6A methylation and tumor metastasis-related factors to enhance the understanding of osteosarcoma and m6A methylation modification, with the aim of identifying clinical diagnostic biomarkers and potential therapeutic targets for osteosarcoma metastasis.
Collapse
Affiliation(s)
- Tianrui Hu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Guowei Wang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| | - Weiguo Wang
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
4
|
Zhang S, Cai S, Ye L, Shen L, Zhu C, Huang J, Wang Z, Chen H. METTL3 mediates m6A modification of hsa_circ_0072380 to regulate the progression of gestational diabetes mellitus. Gene 2024; 931:148894. [PMID: 39191355 DOI: 10.1016/j.gene.2024.148894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND m6A modification plays a vital role in gestational diabetes mellitus (GDM) progression. However, the role of METTL3 and differential m6A-modified circRNAs in GDMremainsto be investigated. METHODS Placental tissue samples from GDM patients and normal controls (NC) were collected to measure changes in m6A modification levels. MeRIP-seq on placental tissue was performed to detect differential m6A-modified circRNAs.High glucose (HG)-treated JEG3 cells were used to establish the GDM cell model. Differentially expressed circRNAs levels in GDM and NC groups were measured by qRT-PCR. We knocked down METTL3 to study its function. Additionally, we conducted functional recovery experiments. Dot blot assay was utilized to assess changes in m6A levels. MeRIP-qPCR was performed to evaluate the effect of knocking down METTL3 on m6A modification of hsa_circ_0072380 in JEG3 cells. RESULTS Compared with the NC group, the GDM group exhibited increased levels of m6A modification and METTL3 expression. Differences in m6A modification of circRNAs exist between the GDM and NC groups. Hsa_circ_0000994, hsa_circ_0058733, and hsa_circ_0072380 were significantly down-regulated in the GDM group while hsa_circ_0036376, hsa_circ_0000471, and hsa_circ_0001173 showed no significant differences between two groups. HG treatment promoted METTL3 expression and m6A level of JEG3 cells, and inhibited cell proliferation, migration, and invasion abilities. Knocking down METTL3 reversed these effects. After HG treatment, hsa_circ_0072380 was significantly down-regulated. Knocking down METTL3 led to up-regulation of hsa_circ_0072380, while knocking down hsa_circ_0072380 restored the function of SiMETTL3. Additionally, knocking down METTL3 significantly reduced the m6A modification of hsa_circ_0072380. CONCLUSION METTL3 mediated m6A modification of hsa_circ_0072380 to regulate GDM progression.
Collapse
Affiliation(s)
- Shaofeng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Shiqin Cai
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou 510010, China
| | - Lisha Ye
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518100, China
| | - Lixia Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Caixia Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Jingwan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China.
| | - Haitian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China.
| |
Collapse
|
5
|
Zhang Y, Xu Y, Qiu G, Luo Y, Bao Y, Lu J, Wang T, Wang Y. METTL3 Mediated MALAT1 m6A Modification Promotes Proliferation and Metastasis in Osteosarcoma Cells. Mol Biotechnol 2024; 66:3538-3548. [PMID: 37897586 DOI: 10.1007/s12033-023-00953-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND As one of the most ubiquitous types of posttranscriptional modification, N6-methyladenosine (m6A) is extensively implicated in almost all types of cancers, including osteosarcoma. Our previous research partially uncovered the role of Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) in osteosarcoma. However, the relationships between methyltransferase-like 3 (METTL3) and noncoding RNAs modified by METTL3, especially MALAT1, in osteosarcoma remain obscure. METHODS The expression of METTL3 in osteosarcoma was evaluated by online bioinformatics analysis, immunohistochemical (IHC) staining, western blotting (WB), and reverse transcription-quantitative PCR (RT‒qPCR). Cell Counting Kit 8 (CCK-8) and Transwell assays were used to evaluate the cell proliferation and invasion abilities. The expression of MALAT1 in osteosarcoma was evaluated by online bioinformatics analysis and RT‒qPCR analysis. m6A methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) was used to detect m6A modification changes in MALAT1. An actinomycin D assay was used to study changes in the stability of MALAT1. RESULTS METTL3 was upregulated in osteosarcoma tissues and cell lines. Functionally, METTL3 promoted the proliferation and migration of osteosarcoma cells. Moreover, a clear positive correlation was found between METTL3 and MALAT1 expression, and MALAT1 was upregulated in osteosarcoma tissues and cells. Mechanistically, the presence of m6A modification sites in MALAT1 and METTL3-mediated m6A modification increased the stability of MALAT1 in osteosarcoma cells and promoted their proliferation and migration. CONCLUSION In this study, it was concluded that in osteosarcoma cells, METTL3, acting as an oncogene, promoted m6A modification of MALAT1, increased the stability of MALAT, and enhanced MALAT1-mediated oncogenic function.
Collapse
Affiliation(s)
- Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, No. 5 South Seven West Road, Tiexi, Shenyang, 110024, Liaoning, P.R. China
| | - Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, No. 5 South Seven West Road, Tiexi, Shenyang, 110024, Liaoning, P.R. China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, No. 5 South Seven West Road, Tiexi, Shenyang, 110024, Liaoning, P.R. China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, No. 5 South Seven West Road, Tiexi, Shenyang, 110024, Liaoning, P.R. China
| | - Yuxin Bao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, No. 5 South Seven West Road, Tiexi, Shenyang, 110024, Liaoning, P.R. China
| | - Jie Lu
- Department of Cardiology, Shenyang Fourth People's Hospital, China Medical University, Shenyang, 110031, Liaoning, P.R. China
| | - Tao Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, No. 5 South Seven West Road, Tiexi, Shenyang, 110024, Liaoning, P.R. China.
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, No. 5 South Seven West Road, Tiexi, Shenyang, 110024, Liaoning, P.R. China.
| |
Collapse
|
6
|
Zhang L, Wang J, Gui F, Peng F, Deng W, Zhu Q. METTL3-mediated m6A modification of ZNF384 promotes hepatocellular carcinoma progression by transcriptionally activating ACSM1. Clin Transl Oncol 2024:10.1007/s12094-024-03701-3. [PMID: 39342516 DOI: 10.1007/s12094-024-03701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a lethal disease with a high mortality rate, and its development is influenced by various molecular mechanisms. Zinc finger protein 384 (ZNF384) has been reported to be involved in the progression of several cancers; however, its role in HCC remains elusive. METHODS mRNA expression levels were analyzed by quantitative real-time polymerase chain reaction, while western blotting and immunohistochemistry were performed to validate protein expression. Cell proliferation, apoptosis, and metabolic activities were examined using clonogenicity, flow cytometry, and specific assay kits. A xenograft mouse model was employed to assess the impact of acyl-CoA synthetase medium-chain family member 1 (ACSM1) depletion on HCC cell malignancy in vivo. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were conducted to explore the association between ZNF384 and ACSM1. RESULTS We found that ACSM1 and ZNF384 were significantly upregulated in HCC tissues and cells when compared with normal liver tissues and human liver immortalized cells. Knockdown of ACSM1 inhibited HCC cell proliferation and glucose metabolism and induced cell apoptosis. Furthermore, ACSM1 depletion suppressed the malignant progression of HCC cells in vivo. Our data indicated that ZNF384 transcriptionally activated ACSM1 in HCC cells. Overexpression of ACSM1 reversed the inhibitory effect of ZNF384 depletion on HCC cell malignancy. Further, methyltransferase-like 3 (METTL3) stabilized ZNF384 mRNA through m6A methylation. CONCLUSION METTL3-mediated m6A modification of ZNF384 contributed to the progression of HCC by transcriptionally activating ACSM1. This finding suggests potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Jinfu Wang
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Fenfang Gui
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Fanzhou Peng
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Weiping Deng
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China
| | - Qian Zhu
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, No.187, Guanlan Street, Shenzhen, 518110, China.
| |
Collapse
|
7
|
Yang Y, Gao Y, Liu XS, Huang ZM, Zhang Y, Zhang YH, Liu ZY, Chen YX, Pei ZJ. FASTKD1 as a diagnostic and prognostic biomarker for STAD: Insights into m6A modification and immune infiltration. Exp Ther Med 2024; 28:305. [PMID: 38873045 PMCID: PMC11170332 DOI: 10.3892/etm.2024.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Fas-activated serine/threonine kinase domain 1 (FASTKD1), a known modulator of mitochondrial-mediated cell death and survival processes, has garnered attention for its potential role in various biological contexts. However, its involvement in gastric cancer remains unclear. Thus, the present study aimed to investigate the relationship between FASTKD1 expression and key factors, including clinicopathological characteristics, immune infiltration and m6A modification in stomach adenocarcinoma (STAD). The expression of FASTKD1 was analyzed in STAD and normal adjacent tissues to assess its association with clinicopathological characteristics and survival prognosis. Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used in this study. Additionally, the findings were validated through immunohistochemical staining. Co-expression analysis of FASTKD1 was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and LinkedOmics database analysis. An in-depth analysis was conducted using databases, such as Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), GEO and TCGA to explore the potential correlation between FASTKD1 expression and immune infiltration and m6A modification in STAD. The results revealed that FASTKD1 was significantly upregulated across different tumor types, including STAD. Notably, FASTKD1 was able to distinguish between tumor and normal tissue samples with accuracy. Furthermore, the expression levels of FASTKD1 were significantly associated with clinical stage and survival. Through GO/KEGG enrichment analysis and GSEA, it was revealed that the genes co-expressed with FASTKD1 were active in a variety of biological processes. Within the TIMER, GEPIA and TCGA databases, a notable inverse correlation was observed between FASTKD1 expression and the abundance of immune cell subsets. Notably, significant correlations were established between FASTKD1 and m6A modification genes, YTHDF1 and LRPPRC, in both TCGA and GEO datasets. In conclusion, FASTKD1 may serve a significant role in m6A modification and immune infiltration processes, making it a potentially valuable diagnostic and prognostic biomarker in STAD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yan Gao
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhong-Min Huang
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zi-Yue Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Xuan Chen
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
8
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
9
|
Lin L, Zhao Y, Zheng Q, Zhang J, Li H, Wu W. Epigenetic targeting of autophagy for cancer: DNA and RNA methylation. Front Oncol 2023; 13:1290330. [PMID: 38148841 PMCID: PMC10749975 DOI: 10.3389/fonc.2023.1290330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Autophagy, a crucial cellular mechanism responsible for degradation and recycling of intracellular components, is modulated by an intricate network of molecular signals. Its paradoxical involvement in oncogenesis, acting as both a tumor suppressor and promoter, has been underscored in recent studies. Central to this regulatory network are the epigenetic modifications of DNA and RNA methylation, notably the presence of N6-methyldeoxyadenosine (6mA) in genomic DNA and N6-methyladenosine (m6A) in eukaryotic mRNA. The 6mA modification in genomic DNA adds an extra dimension of epigenetic regulation, potentially impacting the transcriptional dynamics of genes linked to autophagy and, especially, cancer. Conversely, m6A modification, governed by methyltransferases and demethylases, influences mRNA stability, processing, and translation, affecting genes central to autophagic pathways. As we delve deeper into the complexities of autophagy regulation, the importance of these methylation modifications grows more evident. The interplay of 6mA, m6A, and autophagy points to a layered regulatory mechanism, illuminating cellular reactions to a range of conditions. This review delves into the nexus between DNA 6mA and RNA m6A methylation and their influence on autophagy in cancer contexts. By closely examining these epigenetic markers, we underscore their promise as therapeutic avenues, suggesting novel approaches for cancer intervention through autophagy modulation.
Collapse
Affiliation(s)
- Luobin Lin
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuntao Zhao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qinzhou Zheng
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiayang Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huaqin Li
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong, China
| | - Wenmei Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Jin Z, Sheng J, Hu Y, Zhang Y, Wang X, Huang Y. Shining a spotlight on m6A and the vital role of RNA modification in endometrial cancer: a review. Front Genet 2023; 14:1247309. [PMID: 37886684 PMCID: PMC10598767 DOI: 10.3389/fgene.2023.1247309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
RNA modifications are mostly dynamically reversible post-transcriptional modifications, of which m6A is the most prevalent in eukaryotic mRNAs. A growing number of studies indicate that RNA modification can finely tune gene expression and modulate RNA metabolic homeostasis, which in turn affects the self-renewal, proliferation, apoptosis, migration, and invasion of tumor cells. Endometrial carcinoma (EC) is the most common gynecologic tumor in developed countries. Although it can be diagnosed early in the onset and have a preferable prognosis, some cases might develop and become metastatic or recurrent, with a worse prognosis. Fortunately, immunotherapy and targeted therapy are promising methods of treating endometrial cancer patients. Gene modifications may also contribute to these treatments, as is especially the case with recent developments of new targeted therapeutic genes and diagnostic biomarkers for EC, even though current findings on the relationship between RNA modification and EC are still very limited, especially m6A. For example, what is the elaborate mechanism by which RNA modification affects EC progression? Taking m6A modification as an example, what is the conversion mode of methylation and demethylation for RNAs, and how to achieve selective recognition of specific RNA? Understanding how they cope with various stimuli as part of in vivo and in vitro biological development, disease or tumor occurrence and development, and other processes is valuable and RNA modifications provide a distinctive insight into genetic information. The roles of these processes in coping with various stimuli, biological development, disease, or tumor development in vivo and in vitro are self-evident and may become a new direction for cancer in the future. In this review, we summarize the category, characteristics, and therapeutic precis of RNA modification, m6A in particular, with the purpose of seeking the systematic regulation axis related to RNA modification to provide a better solution for the treatment of EC.
Collapse
Affiliation(s)
- Zujian Jin
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jingjing Sheng
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yingying Hu
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Zhang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Xiaoxia Wang
- Reproductive Medicine Center, School of Medicine, The Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang, China
| | - Yiping Huang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
11
|
Luan Z, Wang Y. Association between ankylosing spondylitis and m6A methylation. J Orthop Surg Res 2023; 18:757. [PMID: 37805597 PMCID: PMC10559441 DOI: 10.1186/s13018-023-04254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND N6-methyl adenosine (m6A) is the most common reversible mRNA modification in eukaryotes implicated in key roles in various biological processes. The purpose of our analysis was to examine the association of ankylosing spondylitis (AS) with m6A methylation. METHOD We obtained 72 samples from the data set GSE73754, including 52 AS patients and 20 healthy people. We divided the samples into two groups: the experimental group and the control group, and then observed the differences of 26 m6A related genes in the two groups. We also analyzed the correlation between different m6A genes. We used a random forest tree model to screen seven m6A signature genes associated with AS to evaluate its prevalence. Next, the samples were classified according to the m6a content and differential genes. Immune analysis, gene ontology, and KEGG enrichment analyses were performed. Finally, we scored each sample with m6a and analyzed the relationship between different samples and inflammation-related factors. RESULTS AND CONCLUSION In conclusion, we screened out AS-related genes and the nomogram showed that they were negatively correlated with the incidence of AS. And we found that AS may have some relationship with immunity. Our analysis results could provide further insights into the treatment of AS.
Collapse
Affiliation(s)
- Zhiwei Luan
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yansong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
12
|
Liu D, Li Z, Zhang K, Lu D, Zhou D, Meng Y. N 6-methyladenosine reader YTHDF3 contributes to the aerobic glycolysis of osteosarcoma through stabilizing PGK1 stability. J Cancer Res Clin Oncol 2023; 149:4601-4610. [PMID: 36171455 DOI: 10.1007/s00432-022-04337-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE N6-methyladenosine (m6A) modification is a pivotal transcript chemical modification of eukaryotics, which has been identified to play critical roles on tumor metabolic reprogramming. However, the functions of m6A-reading protein YTH N6-methyladenosine RNA-binding protein 3 (YTHDF3) in osteosarcoma is still unclear. This research planned to investigate the bio-functions and mechanism in osteosarcoma tumorigenesis. METHODS The aerobic glycolysis of osteosarcoma cells were calculated by glucose uptake, lactate production analysis, ATP analysis and metabolic flux analysis for extracellular acidification rate (ECAR). Molecular binding was identified by RIP-qPCR, RNA decay analysis. RESULTS Results indicated that YTHDF3 is upregulated in the osteosarcoma tissue samples and cells, and closely correlated to the poor prognosis of osteosarcoma patients. Functionally, gain and loss-of-functional assays illustrated that YTHDF3 promoted the proliferation and aerobic glycolysis of osteosarcoma cells in vitro, and accelerated the tumor growth in vivo. Mechanistically, a m6A-modified PGK1 mRNA functioned as the target of YTHDF3, and YTHDF3 enhanced the PGK1 mRNA stability via m6A-dependent manner. CONCLUSIONS In conclusion, these findings indicated that YTHDF3 functioned as an oncogene in osteosarcoma tumorigenesis through m6A/PGK1 manner, providing a therapeutic strategy for human osteosarcoma.
Collapse
Affiliation(s)
- Deyin Liu
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Zhong Li
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Kun Zhang
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Daigang Lu
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Dawei Zhou
- Department of Orthopaedic, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China
| | - Yibin Meng
- Department of Spine Surgery, Hong Hui Hospital Xi'an Jiao Tong University, Xian, 710054, Shaanxi, China.
| |
Collapse
|
13
|
Zhang Y, Gan W, Ru N, Xue Z, Chen W, Chen Z, Wang H, Zheng X. Comprehensive multi-omics analysis reveals m7G-related signature for evaluating prognosis and immunotherapy efficacy in osteosarcoma. J Bone Oncol 2023; 40:100481. [PMID: 37139222 PMCID: PMC10149372 DOI: 10.1016/j.jbo.2023.100481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Background Osteosarcoma is one of the most prevalent bone malignancies with a poor prognosis. The N7-methylguanosine (m7G) modification facilitates the modification of RNA structure and function tightly associated with cancer. Nonetheless, there is a lack of joint exploration of the relationship between m7G methylation and immune status in osteosarcoma. Methods With the support of TARGET and GEO databases, we performed consensus clustering to characterize molecular subtypes based on m7G regulators in all osteosarcoma patients. The least absolute shrinkage and selection operator (LASSO) method, Cox regression, and receiver operating characteristic (ROC) curves were employed to construct and validate m7G-related prognostic features and derived risk scores. In addition, GSVA, ssGSEA, CIBERSORT, ESTIMATE, and gene set enrichment analysis were conducted to characterize biological pathways and immune landscapes. We explored the relationship between risk scores and drug sensitivity, immune checkpoints, and human leukocyte antigens by correlation analysis. Finally, the roles of EIF4E3 in cell function were verified through external experiments. Results Two molecular isoforms based on regulator genes were identified, which presented significant discrepancies in terms of survival and activated pathways. Moreover, the six m7G regulators most associated with prognosis in osteosarcoma patients were identified as independent predictors for the construction of prognostic signature. The model was well stabilized and outperformed traditional clinicopathological features to reliably predict 3-year (AUC = 0.787) and 5-year (AUC = 0.790) survival in osteosarcoma cohorts. Patients with increased risk scores had a poorer prognosis, higher tumor purity, lower checkpoint gene expression, and were in an immunosuppressive microenvironment. Furthermore, enhanced expression of EIF4E3 indicated a favorable prognosis and affected the biological behavior of osteosarcoma cells. Conclusions We identified six prognostic relevant m7G modulators that may provide valuable indicators for the estimation of overall survival and the corresponding immune landscape in patients with osteosarcoma.
Collapse
|
14
|
Huang Y, Tan Y, Yao Y, Gu L, Huang L, Song T. Genome-wide detection of m6A-associated SNPs in atrial fibrillation pathogenesis. Front Cardiovasc Med 2023; 10:1152851. [PMID: 37304952 PMCID: PMC10250744 DOI: 10.3389/fcvm.2023.1152851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Objective N6-Methyladenosine (m6A) modification is of great importance in both the pathological conditions and physiological process. The m6A single nucleotide polymorphisms (SNPs) are associated with cardiovascular diseases including coronary artery disease, heart failure. However, it is unclear whether m6A-SNPs are involved in atrial fibrillation (AF). Here, we aimed to explore the relationship between m6A-SNPs and AF. Method The relationship between m6A-SNPs and AF was evaluated by analyzing the AF genome-wide association study (GWAS) and m6A-SNPs annotated by the m6AVar database. Further, eQTL and gene differential expression analysis were performed to confirm the association between these identified m6A-SNPs and their target genes in the development of AF. Moreover, we did the GO enrichment analysis to figure out the potential functions of these m6A-SNPs affected genes. Result Totally, 105 m6A-SNPs were identified to be significantly associated with AF (FDR < 0.05), among which 7 showed significant eQTL signals on local genes in the atrial appendage. By using four public AF gene expression datasets, we identified genes SYNE2, USP36, and THAP9 containing SNPs rs35648226, rs900349, and rs1047564 were differentially expressed in AF population. Further, SNPs rs35648226 and rs1047564 are potentially associated with AF by affecting m6A modification and both of them might have an interaction with RNA-binding protein, PABPC1. Conclusion In summary, we identified m6A-SNPs associated with AF. Our study provided new insights into AF development as well as AF therapeutic target.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuqian Tan
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Linglong Gu
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liusong Huang
- College of Software Engineering, Maanshan Teacher's College, Maanshan, China
| | - Tao Song
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
15
|
An X, Wu W, Yang L, Dong J, Liu B, Guo J, Chen J, Guo B, Cao W, Jiang Q. ZBTB7C m6A modification incurred by METTL3 aberration promotes osteosarcoma progression. Transl Res 2023:S1931-5244(23)00072-5. [PMID: 37121538 DOI: 10.1016/j.trsl.2023.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Aberrant N6-methyladenosine (m6A) modification of mRNAs contributes significantly to the epigenetic tumorigenesis, however, its precise role and the key targets in osteosarcoma (OS) are not defined. Here we reported that selective METTL3 (methyltransferase like 3) elevation and the consequential increase of m6A modification causally affect OS progression. The fast-growing OS cells displayed preferential upregulation of METTL3 and increased m6A modification. Conversely, m6A inhibition by 3-deazaadenosine, siRNA-mediated METTL3 knockdown or a METTL3-selective inhibitor by STM2457 effectively inhibits OS cell growth and induced OS cell apoptosis. Further investigation revealed that an oncogenic protein ZBTB7C was likely a critical m6A target that mediated the oncogenic effects. ZBTB7C mRNA contains a typical m6A motif of high confidence and its mRNA and protein were enriched with increased m6A modification in OS samples/cells. In an OS xenograft model, STM2457 or siRNA-mediated METTL3 knockdown effectively lowed ZBTB7C abundance. More importantly, the anti-OS effects of STM2457 were significantly reduced when ZBTB7C was overexpressed by lentivirus. Together, our results demonstrate that the METTL3 aberration and the resultant ZBTB7C m6A modification form an important epigenetic regulatory loop that promotes OS progression, and targeting the METTL3/ZBTB7C axis may provide novel insights into the potential strategies for OS therapy.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lin Yang
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Bin Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China
| | - Junxia Guo
- Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jianmei Chen
- Institute of Translational Medicine, Medical College,Yangzhou University, Yangzhou, China..
| | - Baosheng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China..
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. Nanjing, China.; Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, China..
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, China..
| |
Collapse
|
16
|
Wang G, Wang H, Cheng S, Zhang X, Feng W, Zhang P, Wang J. N1-methyladenosine methylation-related metabolic genes signature and subtypes for predicting prognosis and immune microenvironment in osteosarcoma. Front Genet 2022; 13:993594. [PMID: 36147503 PMCID: PMC9485621 DOI: 10.3389/fgene.2022.993594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
N1-methyladenosine methylation (m1A), as an important RNA methylation modification, regulates the development of many tumours. Metabolic reprogramming is one of the important features of tumour cells, and it plays a crucial role in tumour development and metastasis. The role of RNA methylation and metabolic reprogramming in osteosarcoma has been widely reported. However, the potential roles and mechanisms of m1A-related metabolic genes (MRmetabolism) in osteosarcoma have not been currently described. All of MRmetabolism were screened, then selected two MRmetabolism by least absolute shrinkage and selection operator and multifactorial regression analysis to construct a prognostic signature. Patients were divided into high-risk and low-risk groups based on the median riskscore of all patients. After randomizing patients into train and test cohorts, the reliability of the prognostic signature was validated in the whole, train and test cohort, respectively. Subsequently, based on the expression profiles of the two MRmetabolism, we performed consensus clustering to classify patients into two clusters. In addition, we explored the immune infiltration status of different risk groups and different clusters by CIBERSORT and single sample gene set enrichment analysis. Also, to better guide individualized treatment, we analyzed the immune checkpoint expression differences and drug sensitivity in the different risk groups and clusters. In conclusion, we constructed a MRmetabolism prognostic signature, which may help to assess patient prognosis, immunotherapy response.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyi Wang
- Medical College, Hunan Normal University, Changsha, Hunan, China
| | - Sha Cheng
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobo Zhang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanjiang Feng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wanjiang Feng, ; Pan Zhang, ; Jianlong Wang,
| | - Pan Zhang
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wanjiang Feng, ; Pan Zhang, ; Jianlong Wang,
| | - Jianlong Wang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Wanjiang Feng, ; Pan Zhang, ; Jianlong Wang,
| |
Collapse
|