1
|
Muazzen Z, Moghrabi W, Bakheet T, Mahmoud L, Al-Saif M, Khabar KSA, Hitti EG. Global analysis of the abundance of AU-rich mRNAs in response to glucocorticoid treatment. Sci Rep 2024; 14:913. [PMID: 38195703 PMCID: PMC10776588 DOI: 10.1038/s41598-024-51301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Glucocorticoids (GC) like dexamethasone (Dex) are potent anti-inflammatory agents with diverse cellular functions including the potentiation of the activity of AU-rich elements (AREs). AREs are cis-acting instability sequence elements located in the 3'UTRs of many inflammatory mediator mRNAs. Here, available RNA-seq data were used to investigate the effect of GCs on the ARE-mRNA-transcriptome. At a global scale, ARE-mRNAs had a tendency to be downregulated after GC-treatment of the A549 lung cancer cell-line, but with notable cases of upregulation. mRNA stability experiments indicated that not only the downregulated, but also the upregulated ARE-mRNAs are destabilized by Dex-treatment. Several of the most upregulated ARE-mRNAs code for anti-inflammatory mediators including the established GC targets DUSP1 and ZFP36; both code for proteins that target ARE-containing mRNAs for destruction. GCs are widely used in the treatment of COVID-19 patients; we show that ARE-mRNAs are more likely to regulate in opposite directions between Dex-treatment and SARS-CoV-2 infections compared to non-ARE mRNAs. The effect of GC treatment on ARE-mRNA abundance was also investigated in blood monocytes of COVID-19 patients. The results were heterogeneous; however, in agreement with in vitro observations, ZFP36 and DUSP1 were often amongst the most differentially expressed mRNAs. The results of this study propose a universal destabilization of ARE-mRNAs by GCs, but a diverse overall outcome in vitro likely due to induced transcription or due to the heterogeneity of COVID-19 patient's responses in vivo.
Collapse
Affiliation(s)
- Zeyad Muazzen
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Walid Moghrabi
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Tala Bakheet
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Linah Mahmoud
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Maher Al-Saif
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia
| | - Edward G Hitti
- Molecular BioMedicine Department, Research and Innovation, King Faisal Specialist Hospital and Research Centre, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|