1
|
Rieder GS, Duarte T, Delgado CP, Rodighiero A, Nogara PA, Orian L, Aschner M, Dalla Corte CL, Da Rocha JBT. Interplay between diphenyl diselenide and copper: Impact on D. melanogaster survival, behavior, and biochemical parameters. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109899. [PMID: 38518983 DOI: 10.1016/j.cbpc.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Copper (Cu2+) is a biologically essential element that participates in numerous physiological processes. However, elevated concentrations of copper have been associated with cellular oxidative stress and neurodegenerative diseases. Organo‑selenium compounds such as diphenyl diselenide (DPDS) have in vitro and in vivo antioxidant properties. Hence, we hypothesized that DPDS may modulate the toxicity of Cu2+ in Drosophila melanogaster. The acute effects (4 days of exposure) caused by a high concentration of Cu2+ (3 mM) were studied using endpoints of toxicity such as survival and behavior in D. melanogaster. The potential protective effect of low concentration of DPDS (20 μM) against Cu2+ was also investigated. Adult flies aged 1-5 days post-eclosion (both sexes) were divided into four groups: Control, DPDS (20 μM), CuSO4 (3 mM), and the combined exposure of DPDS (20 μM) and CuSO4 (3 mM). Survival, biochemical, and behavioral parameters were determined. Co-exposure of DPDS and CuSO4 increased acetylcholinesterase (AChE) activity and the generation of reactive oxygen species (ROS as determined by DFCH oxidation). Contrary to our expectation, the co-exposure reduced survival, body weight, locomotion, catalase activity, and cell viability in relation to control group. Taken together, DPDS potentiated the Cu2+ toxicity.
Collapse
Affiliation(s)
- G S Rieder
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/RiederSchmitt
| | - T Duarte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/tttamie
| | - C P Delgado
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil. https://twitter.com/cassiapdelgado
| | - A Rodighiero
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - P A Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul), Av. Leonel de Moura Brizola, 2501, 96418-400 Bagé, RS, Brazil. https://twitter.com/nogara_pablo
| | - L Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy. https://twitter.com/_LauraOrian
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - C L Dalla Corte
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - J B T Da Rocha
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry, Institute of Basic Health Science, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| |
Collapse
|
2
|
He CF, Xiong W, Li XF, Jiang GZ, Zhang L, Liu ZS, Liu WB. The P4' Peptide-Carrying Bacillus subtilis in Cottonseed Meal Improves the Chinese Mitten Crab Eriocheir sinensis Innate Immunity, Redox Defense, and Growth Performance. AQUACULTURE NUTRITION 2024; 2024:3147505. [PMID: 38374819 PMCID: PMC10876306 DOI: 10.1155/2024/3147505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.
Collapse
Affiliation(s)
- Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Zi-Shang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
3
|
Bianchini MC, Soares LFW, Sousa JMFM, Ramborger BP, Gayer MC, Bridi JC, Roehrs R, Pinton S, Aschner M, Ávila DS, Puntel RL. MeHg exposure impairs both the catecholaminergic and cholinergic systems resulting in motor and non-motor behavioral changes in Drosophila melanogaster. Chem Biol Interact 2022; 365:110121. [PMID: 35995257 DOI: 10.1016/j.cbi.2022.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
Human exposure to the natural environmental contaminant methylmercury (MeHg) has been associated to adverse health effects. Importantly, the mechanisms by which this organomercurial exerts its neurotoxicity have yet to be fully clarified. Therefore, the aim of this study was to evaluate whether exposure to MeHg alters dopamine (DA) and octopamine (OA) levels, acetylcholinesterase (AChE) activity and impacts both motor and non-motor behaviours. We studied the effect of MeHg by feeding 1-2 d old flies (male and females) with 25 and 50 μM MeHg for 4 d and determined effects on survival, motor and non-motor behaviours, oxidative stress, AChE and tyrosine hydroxylase (TH) activities, as well as DA and OA levels. We found that Drosophila melanogaster (D. melanogaster) exposed to MeHg showed a reduction in survival rate, associated with the inhibition of AChE and TH activities in head of flies and decreased DA and OA levels. These changes were accompanied by behavioural alterations, such as locomotor deficit and increased grooming behaviour, in addition to an increase in oxidative stress markers both in head and in body of flies, and an increase in glutathione-S-transferase (GST) activity in head of flies. Collectively, our data support the hypothesis that MeHg neurotoxicity is associated with altered OA and DA levels, AChE inhibition, which may serve, at least in part, as the underpinnings of both motor and non-motor behavioural changes.
Collapse
Affiliation(s)
- Matheus C Bianchini
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Luiz F W Soares
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - João M F M Sousa
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Bruna P Ramborger
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Mateus C Gayer
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Jessika C Bridi
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, 10461, NY, United States
| | - Daiana S Ávila
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Robson L Puntel
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil.
| |
Collapse
|
4
|
Oliveira CS, Nogara PA, Lima LS, Galiciolli ME, Souza JV, Aschner M, Rocha JB. Toxic metals that interact with thiol groups and alteration in insect behavior. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100923. [PMID: 35462063 DOI: 10.1016/j.cois.2022.100923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Toxic metals, such as mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu), are widespread in the biosphere, and human activities have contributed to their continuous release into the ecosystems. Metal-induced toxicity has been extensively studied in mammals; however, the effects of these metals on insects' behavior have been explored to far lesser degree. As the main mechanism of toxicity, the cationic metals, explored in this review, have high affinity for thiol-containing molecules, disrupting the function of several proteins and low-molecular-weight thiol-containing molecules. Existing literature has corroborated that Hg, Pb, Cd, and Cu can disrupt locomotor and mating behaviors, but their effects on insects' memory and learning have yet to be fully characterized. Though field studies on metal-induced toxicity in insects are limited, results from Drosophila melanogaster as an experimental model suggest that insects living in contaminated environments can have behavioral foraging and reproductive deficits, which may cause population decline. In this review, we address the interaction between metals and endogenous thiol groups, with emphasis on alterations in insect behavior.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Pablo A Nogara
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luíza S Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Maria Ea Galiciolli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - João Bt Rocha
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Fasae KD, Abolaji AO. Interactions and toxicity of non-essential heavy metals (Cd, Pb and Hg): lessons from Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100900. [PMID: 35272079 DOI: 10.1016/j.cois.2022.100900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Some heavy metals are essential in trace amounts, enhancing enzyme functioning and other intracellular molecules. Others are explicitly toxic at low concentrations, increasing the risk of organ-related toxicity. Non-essential metals have similar mechanisms of toxicity to essential metals. These include the modifiable change in oxidation states, interaction with sulfhydryl moieties of proteins and indirect modification of nucleic acids. Ultimately, oxidative stress is generated, and potentiation of damage ensues. The susceptibility, sensitivity, genetic resources, and cellular response of Drosophila melanogaster to heavy metal exposure and toxicity have made this insect appropriate for toxicological studies. In this review, we focus on the toxicological impacts of non-essential metals (Cd, Pb, and Hg) in Drosophila and discuss its cellular and developmental responses to increasing concentrations of these metals. We also suggest current or proposed therapeutic alternatives, as well as dimensions that may improve the studies of non-essential metal biology.
Collapse
Affiliation(s)
- Kehinde D Fasae
- Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria; Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Amos O Abolaji
- Drosophila Laboratory, Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Nigeria.
| |
Collapse
|
6
|
Ogunsuyi O, Olasehinde T, Oboh G. Neuroprotective properties of Solanum leaves in Transgenic Drosophila melanogaster model of Alzheimer's disease. Biomarkers 2022; 27:587-598. [PMID: 35546534 DOI: 10.1080/1354750x.2022.2077446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION We investigated the effect of African eggplant (AE) (Solanum macrocarpon L) and Black nightshade (BN) (Solanum nigrum L) leaves; two tropical vegetables consumed by humans on behavioral, biochemical and histological indices in Drosophila melanogaster model of Alzheimer's disease (AD). MATERIALS AND METHOD Transgenic flies expressing human Amyloid Precursor Protein (hAPP) and β-secretase (hBACE 1) were exposed to the pulverized leaf samples (0.1 and 1.0%) in their diets for fourteen days. Thereafter, the flies were assessed for their behavioral indices and routine histology of brain cells. Furthermore, fly head homogenates were assayed for β-amyloid level, activities of acetylcholinesterase (AChE) and β-secretase (BACE-1), as well as oxidative stress markers. RESULTS Result showed that the significantly lower (p < 0.05) behavioral parameters (survival, locomotor performance and memory index), higher AChE and BACE-1 activities, β-amyloid, ROS and lipid peroxidation levels, as well as reduced antioxidant indices observed in the AD flies, were significantly ameliorated (p < 0.05) in AD flies treated with the leaf samples. DISCUSSION This study has showed that leaves of AE and BN ameliorated behavioral and biochemical indices in AD flies via neural enzyme modulatory, and antioxidant mechanisms. CONCLUSION Hence, this study further justifies the neuroprotective properties of both AE and BN.
Collapse
Affiliation(s)
- Opeyemi Ogunsuyi
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Tosin Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Lagos, Nigeria.,Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Westville, Durban, Kwazulu-Natal Province, South Africa
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
7
|
Ogunsuyi OB, Olagoke OC, Afolabi BA, Loreto JS, Ademiluyi AO, Aschner M, Oboh G, Barbosa NV, da Rocha JBT. Effect of Solanum vegetables on memory index, redox status, and expressions of critical neural genes in Drosophila melanogaster model of memory impairment. Metab Brain Dis 2022; 37:729-741. [PMID: 34994925 DOI: 10.1007/s11011-021-00871-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
African eggplant (Solanum macrocarpon L) (AE) and Black Nightshade (Solanum nigrum L) (BN) leaves are green leafy vegetables with nutritional and ethnobotanical values. We have previously characterized the vegetables via HPLC/LC-MS to reveal notable phenolic acids, flavonoids and alkaloids. In this present study, we addressed the efficacy of the two vegetables in mitigating mercuric chloride (HgCl2)-induced neurotoxicity and memory impairment in Drosophila melanogaster. Flies were exposed to HgCl2 (0.30 mg/g) alone or in combination with the vegetables (0.1 and 1.0%) of both samples in their diets for seven days. The results showed that HgCl2 (Hg)-exposed flies had significantly reduced survival rate and memory index, which were ameliorated in the Hg-exposed flies fed AE or BN. This was accompanied by increased reactive oxygen species (ROS) levels, reduced total thiol, as well as catalase, glutathione transferase (GST) and acetylcholine esterase (AChE) activities in Hg-exposed fly heads, but ameliorated in Hg-exposed flies fed dietary inclusions of the vegetables. In addition, the Hg-induced alterations in SOD, NF-ҝB/Relish, Dronc and Reaper mRNA levels were statistically indistinguishable from controls in Hg-treated flies fed diets containing AE or BN. Normalization of cnc/Nrf2 and FOXO were observed only in Hg-treated flies fed BN. These findings suggest that dietary AE or BN leaves offer protection against Hg-induced memory impairment and neurotoxicity in D. melanogaster, and further justify them as functional foods with neuroprotective properties.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Programa de Pos-graduacao em Bioquimica Toxicologica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Olawande C Olagoke
- Programa de Pos-graduacao em Bioquimica Toxicologica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Blessing A Afolabi
- Department of Biochemistry, Bowen University Iwo, Iwo, Osun State, Nigeria
| | - Julia S Loreto
- Programa de Pos-graduacao em Bioquimica Toxicologica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Adedayo O Ademiluyi
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Nilda V Barbosa
- Programa de Pos-graduacao em Bioquimica Toxicologica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B T da Rocha
- Programa de Pos-graduacao em Bioquimica Toxicologica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
8
|
Wildner G, Loreto JS, de Almeida P, Claro MT, Ferreira SA, Barbosa NV. Short exposure to ethyl and methylmercury prompts similar toxic responses in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109216. [PMID: 34710619 DOI: 10.1016/j.cbpc.2021.109216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022]
Abstract
Methylmercury (MeHg) and ethylmercury (EtHg) are important mercury organic forms in terms of human poisoning. Since the comparative effects of compounds are mainly in vitro, this study was designed to investigate the toxicities induced by MeHg and EtHg in an in vivo study using adult Drosophila melanogaster (D. melanogaster). Firstly, we performed a survival curve, where the flies were fed on a medium containing MeHg and EtHg at concentrations ranging from 2.5 to 200 μM, until the end of their lifespan. After that, the concentrations 25 and 200 μM of MeHg and EtHg were chosen to be tested in a short exposure for 5 days. The analysis of survival by Kaplan-Meier plot revealed that all concentrations of MeHg and EtHg reduced significantly the lifespan of the flies. Short exposure to both concentrations of MeHg and EtHg impaired the ability of flies in the climbing assay and induced lipid peroxidation. Only the flies exposed to the highest concentration had viability loss, thiol depletion, and increased reactive species (RS) and Hg levels in the whole body. Our findings indicate that MeHg and EtHg exhibit similar toxic effects in vivo, and that oxidative stress is a phenomenon behind the toxicity of both mercurials. The data obtained also reinforce the use of D. melanogaster as a useful organism for basic toxicological research.
Collapse
Affiliation(s)
- Guilherme Wildner
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Julia Sepel Loreto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Pamela de Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Mariana Torri Claro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Sabrina Antunes Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Ogunsuyi OB, Olagoke OC, Afolabi BA, Oboh G, Ijomone OM, Barbosa NV, da Rocha JBT. Dietary inclusions of Solanum vegetables mitigate aluminum-induced redox and inflammation-related neurotoxicity in Drosophila melanogaster model. Nutr Neurosci 2021; 25:2077-2091. [PMID: 34057051 DOI: 10.1080/1028415x.2021.1933331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND This study investigated the modulatory capacity of two Solanum green leafy vegetables; S. macrocarpon L. (African eggplant AE) and S. nigrum L. (Black nightshade BN) on dysregulation of some antioxidant, pro-apoptotic, pro-inflammatory-like, acetylcholinesterase gene expression and redox status in the Drosophila melanogaster model of aluminum-induced neurotoxicity. METHODS Flies were exposed to AlCl3 (6.7 mM) alone or in combination with the leaves (0.1 and 1.0%) from both samples in their diet for seven days. Thereafter, the fly heads were rapidly separated, homogenized, and used to assay for reactive oxygen species (ROS), total thiol content, catalase, glutathione-S-transferase (GST), acetylcholinesterase (AChE) activities, and the expression of antioxidant-mediators (Hsp70, catalase, cnc/Nrf2, Jafrac1 and FOXO), acetylcholinesterase (Ace1), pro-apoptotic caspase-like (Dronc) and its regulator (reaper), as well as inflammation-related (NF-kB/Relish) genes. RESULTS Results showed that AlCl3-exposed flies had significantly reduced survival rate which were ameliorated by AlCl3 also elevated ROS, GST and reduced AChE activities in fly heads while dietary inclusions of AE and BN ameliorated survial rate and oxidative stress in AlCl3-exposed flies. In addition, Hsp70, Jafrac1, reaper and NF-kҝB/Relish were significantly upregulated in AlCl3-exposed fly heads, while cnc/Nrf2 and FOXO were significantly downregulated, but catalase, Dronc and Ace were, not significantly modulated. Nevertheless, these impairments in gene expression levels were ameliorated by dietary inclusions of AE and BN during AlCl3 exposure. CONCLUSION These findings showed that dietary inclusions of AE and BN leaves offer protection against Al-induced neurotoxicity in D. melanogaster and thus, could serve as functional foods with neuroprotective properties.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil.,Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Olawande C Olagoke
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Blessing A Afolabi
- Department of Biochemistry, Bowen University Iwo, Iwo, Osun State, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- Neuroscience Laboratory, Human Anatomy Department, Federal University of Technology, Akure, Nigeria
| | - Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João B T da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
10
|
Ameliorative role of diets fortified with Curcumin in a Drosophila melanogaster model of aluminum chloride-induced neurotoxicity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|