1
|
Radenković N, Nikodijević D, Jovankić J, Blagojević S, Milutinović M. Resistance to 5-fluorouracil: The molecular mechanisms of development in colon cancer cells. Eur J Pharmacol 2024; 983:176979. [PMID: 39241942 DOI: 10.1016/j.ejphar.2024.176979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Colon cancer is a significant health problem worldwide as it is one of the most common and deadliest cancers. The standard approach for the treatment of colon cancer is 5-fluorouracil (5-FU) based chemotherapy, which is limited by the development of resistance to this drug. Therefore, our study aimed to establish 5-FU resistance in SW-480 and HT-29 colon cancer cells and to precisely determine the molecular mechanisms and biomarkers that contribute to its development, both after short-term exposure and in cells with already developed resistance (SW-480-5FUR and HT-29-5FUR). The expression of various molecules involved in the different mechanisms of resistance development was monitored at the gene (qPCR) and protein (immunocytochemistry) levels. Based on the obtained results, alterations in the 5-FU anabolic pathway, biotransformation, drug efflux, mismatch repair, and apoptosis process together contributed to the development of 5-FU resistance in SW-480 and HT-29 colon cancer cells. In addition, UMPS, ABCC1, ABCC5, and MLH1, as well as the disturbed ratio of pro-apoptotic BAX and anti-apoptotic BCL2, should be taken into consideration as potential targets for the discovery of 5-FU resistance-related biomarkers in colon cancer cells. We suggest that future investigations focus on further validation of these findings by additional in vitro and in vivo testing, which is a limitation of our study.
Collapse
Affiliation(s)
- Nikola Radenković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Danijela Nikodijević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Jovana Jovankić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Stefan Blagojević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Milena Milutinović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| |
Collapse
|
2
|
Klein MDO, Francisco LFV, Gomes INF, Serrano SV, Reis RM, Silveira HCS. Hazard assessment of antineoplastic drugs and metabolites using cytotoxicity and genotoxicity assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503704. [PMID: 37973299 DOI: 10.1016/j.mrgentox.2023.503704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Antineoplastic drugs are among the most toxic pharmaceuticals. Their release into the aquatic ecosystems has been reported, giving rise to concerns about the adverse effects, including cytotoxicity and genotoxicity, that they may have on exposed organisms. In this study, we analyzed the cytotoxicity and genotoxicity of 5-fluorouracil (5-FU) and its metabolite alpha-fluoro-beta-alanine (3-NH2-F); gemcitabine (GEM) and its metabolite 2'-deoxy-2',2'-difluorouridine (2-DOH-DiF); as well as cyclophosphamide (CP) on the HepG2 cell line. Drug concentrations were based on those previously observed in the effluent of a major cancer hospital in Brazil. The study found that GEM, 2-DOH-DiF and 5-FU resulted in reduced cell viability. No reduction in cell viability was observed for CP and 3-NH2-F. Genotoxic assessment revealed damage in the form of nucleoplasmic bridges for CP and 3-NH2-F. The tested concentrations of all compounds resulted in significantly increased MNi and NBUDs. The results showed that these compounds induced cytotoxic and genotoxic effects in HepG2 cells at concentrations found in the environment. To the best of our knowledge, this study is the first to report on the cytogenotoxic impacts of the metabolites 3-NH2-F and 2-DOH-DiF in HepG2 cells. These findings may help in the development of public policies that could minimize potential environmental contamination.
Collapse
Affiliation(s)
| | | | | | - Sergio V Serrano
- Barretos School of Health Sciences-FACISB, Barretos, São Paulo 14785-002, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; University of Cuiabá, Cuiabá, Mato Grosso, Brazil; University of Anhaguera, São Paulo, Brazil.
| |
Collapse
|
3
|
Xu M, Liu Y, Wan HL, Wong AM, Ding X, You W, Lo WS, Ng KKC, Wong N. Overexpression of nucleotide metabolic enzyme DUT in hepatocellular carcinoma potentiates a therapeutic opportunity through targeting its dUTPase activity. Cancer Lett 2022; 548:215898. [PMID: 36075487 DOI: 10.1016/j.canlet.2022.215898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/24/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
Uracil misincorporation during DNA replication is a major cell toxic event, of which cancer cells overcome by activating the dUTPase enzyme. The DUT gene is the only known dUTPase in human. Despite reports on common upregulations in cancers, the role of DUT in human hepatocellular carcinoma (HCC) remains largely undetermined. In this study, we investigated the mechanism underlying DUT biology in HCC and tumor susceptibility to drug targeting dUTPase. Overexpression of DUT was found in 42% of HCC tumors and correlated with advanced stage HCC. Knockout of DUT in HCC cell lines showed suppressed proliferation through cell cycle arrest and a spontaneous induction of DNA damage. A protective effect from oxidative stress was also demonstrated in both knockout and overexpression DUT assays. Transcriptome analysis highlighted the NF-κB survival signaling as the downstream effector pathway of DUT in overriding oxidative stress-induced cell death. Interestingly, stably expressed DUT in liver progenitor organoids conferred drug resistance to TKI Sorafenib. Targeting dUTPase activity by TAS-114, could potentiate suppression of HCC growth that synergized with Sorafenib for better treatment sensitivity. In conclusion, upregulated DUT represents a nucleotide metabolic weakness and therapeutic opportunity in HCC.
Collapse
Affiliation(s)
- Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yue Liu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ho Lee Wan
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alissa M Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaofan Ding
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenxing You
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wing Sze Lo
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kelvin K-C Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China; State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
4
|
Zhang L, Ye B, Chen Z, Chen ZS. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B 2022; 13:982-997. [PMID: 36970215 PMCID: PMC10031261 DOI: 10.1016/j.apsb.2022.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022] Open
Abstract
Chemotherapy is one of the important methods to treat cancer, and the emergence of multidrug resistance (MDR) is one major cause for the failure of cancer chemotherapy. Almost all anti-tumor drugs develop drug resistance over a period of time of application in cancer patients, reducing their effects on killing cancer cells. Chemoresistance can lead to a rapid recurrence of cancers and ultimately patient death. MDR may be induced by multiple mechanisms, which are associated with a complex process of multiple genes, factors, pathways, and multiple steps, and today the MDR-associated mechanisms are largely unknown. In this paper, from the aspects of protein-protein interactions, alternative splicing (AS) in pre-mRNA, non-coding RNA (ncRNA) mediation, genome mutations, variance in cell functions, and influence from the tumor microenvironment, we summarize the molecular mechanisms associated with MDR in cancers. In the end, prospects for the exploration of antitumor drugs that can reverse MDR are briefly discussed from the angle of drug systems with improved targeting properties, biocompatibility, availability, and other advantages.
Collapse
|
5
|
Al-Adhami HJ, Al-Majidi SMH. Design, Synthesis, and Antimicrobial and Antioxidant Activities of Some New Dihydrotetrazole, Dihydroquinazolin-4-one, and 1,3-Benzothiazin-4-one Derivatives Based on 6-Amino-1,3-dimethyluracil. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|