1
|
Manoharan S, Perumal E. Chemotherapeutic potential of radotinib against blood and solid tumors: A beacon of hope in drug repurposing. Bioorg Chem 2024; 154:108017. [PMID: 39647393 DOI: 10.1016/j.bioorg.2024.108017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) represent a pivotal class of targeted therapies in oncology, with multiple generations developed to address diverse molecular targets. Imatinib is the first TKI developed to target the BCR-ABL1 chimeric protein, which is the key driver oncogene implicated in Philadelphia chromosome-positive chronic myeloid leukemia (CML). Several second-generation tyrosine kinase inhibitors (2GTKIs), such as nilotinib, dasatinib, bosutinib, and radotinib (RTB), followed the groundbreaking introduction of imatinib. RTB occupies the unique position of being the least explored member of this class. While nilotinib, dasatinib, and bosutinib have garnered significant attention and extensive research focus, RTB remains relatively uncharted in comparison to its counterparts. Fundamental drug characteristics, such as the pharmacokinetic and pharmacodynamic properties of RTB, remain unavailable in existing sources. Compared to other 2GTKIs, RTB has been less utilized in combinatorial drug studies, and no investigations have been reported on its effects on solid tumors to date. However, the effects of RTB have been studied in acute myeloid leukemia (AML), multiple myeloma (MM), Parkinson's disease, and idiopathic pulmonary fibrosis (IPF). Although RTB has been investigated in some conditions, these studies are still in their preliminary stages and are comparatively lesser than studies on other 2GTKIs. This review is the first attempt that extensively presents a compilation of data on RTB and describes its therapeutic potential against blood and solid tumors. Further investigations on RTB could expand its chemotherapeutic usage in various solid tumors and enhance the possibility of drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
2
|
Manoharan S, Santhakumar A, Perumal E. Targeting STAT3, FOXO3a, and Pim-1 kinase by FDA-approved tyrosine kinase inhibitor-Radotinib: An in silico and in vitro approach. Arch Pharm (Weinheim) 2024:e2400429. [PMID: 39428846 DOI: 10.1002/ardp.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024]
Abstract
Cancer, a multifactorial pathological condition, is primarily caused due to mutations in multiple genes. Hepatocellular carcinoma (HCC) is a form of primary liver cancer that is often diagnosed at the advanced stage. Current treatment strategies for advanced HCC involve systemic therapies which are often hindered due to the emergence of resistance and toxicity. Therefore, a multitarget approach might prove more effective in HCC treatment. The present study focuses on targeting signal transducer and activator of transcription 3 (STAT3), forkhead box class O3a (FOXO3a), and proviral integration site for Moloney murine leukemia virus-1 (Pim-1) kinase, using a Food and Drug Administration (FDA)-approved anticancer drug library. Two compounds, namely, radotinib and capmatinib, were identified as top compounds using molecular docking. Among the two compounds, radotinib exhibited significant binding values towards the targeted proteins and their heterodimers. Furthermore, in vitro experiments involving 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live/dead, 4',6-diamidino-2-phenylindole, and clonogenic assays were performed to evaluate the effect of radotinib in human hepatoblastoma cell line/hepatocellular carcinoma cells. The gene expression data indicated reduced expression of FOXO3a and Pim-1, but no basal-level alteration of STAT3. The Western blot analysis assay showed that the phosphorylation level of STAT3 was significantly decreased upon radotinib treatment. Taken together, our findings suggest that radotinib, which is currently used in the treatment of chronic myeloid leukemia (CML), could be considered as a potential candidate for repurposing in the treatment of HCC.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
3
|
Altharawi A, Alqahatani SM, Alanazi MM, Tahir Ul Qamar M. Unveiling MurE ligase potential inhibitors for treating multi-drug resistant Acinetobacter baumannii. J Biomol Struct Dyn 2024; 42:2358-2368. [PMID: 37099644 DOI: 10.1080/07391102.2023.2204499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen with ability to cause serious infection such as bacteremia, ventilator associated pneumonia, and wound infections. As strains of A. baumannii are resistant to almost all clinically used antibiotics and with the emergence of carbapenems resistant phenotypes warrants the search for novel antibiotics. Considering this, herein, a series of computer aided drug designing approach was utilized to search novel chemical scaffolds that bind stronger to MurE ligase enzyme of A. baumannii, which is involved peptidoglycan synthesis. The work identified LAS_22461675, LAS_34000090 and LAS_51177972 compounds as promising binding molecules with MurE enzyme having binding energy score of -10.5 kcal/mol, -9.3 kcal/mol and -8.6 kcal/mol, respectively. The compounds were found to achieve docked inside the MurE substrate binding pocket and established close distance chemical interactions. The interaction energies were dominated by van der Waals and less contributions were seen from hydrogen bonding energy. The dynamic simulation assay predicted the complexes stable with no major global and local changes noticed. The docked stability was also validated by MM/PBSA and MM/GBSA binding free energy methods. The net MM/GBSA binding free energy of LAS_22461675 complex, LAS_34000090 complex and LAS_51177972 complex is -26.25 kcal/mol, -27.23 kcal/mol and -29.64 kcal/mol, respectively. Similarly in case of MM-PBSA, the net energy value was in following order; LAS_22461675 complex (-27.67 kcal/mol), LAS_34000090 complex (-29.94 kcal/mol) and LAS_51177972 complex (-27.32 kcal/mol). The AMBER entropy and WaterSwap methods also confirmed stable complexes formation. Further, molecular features of the compounds were determined that predicted compounds to have good druglike properties and pharmacokinetic favorable. The study concluded the compounds to good candidates to be tested by in vivo and in vitro experimental assays.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safar M Alqahatani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Pakistan
| |
Collapse
|
4
|
Baek S, Kim J, Nam MH, Park SM, Lee TS, Kang SY, Kim JY, Yoon HJ, Kwon SH, Park J, Lee SJ, Oh SJ, Lim K, Kim BS, Lee KP, Moon BS. Saengmaeksan, a traditional polyherbal formulation containing Panax ginseng, improves energy metabolism during exercise. PLoS One 2024; 19:e0296487. [PMID: 38285695 PMCID: PMC10824426 DOI: 10.1371/journal.pone.0296487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
Saengmaeksan (SMS), a representative oriental medicine that contains Panax ginseng Meyer, Liriope muscari, and Schisandra chinensis (1:2:1), is used to improve body vitality and enhance physical activity. However, there is limited scientific evidence to validate the benefits of SMS. Here, we investigated the in vitro and in vivo regulatory effects of SMS and its constituents on energy metabolism and the underlying molecular mechanisms. For this, quantitative real-time polymerase chain reaction, 3D holotomographic microscopy, western blotting, and glucose uptake experiments using 18F-fluoro-2-deoxy-D-glucose (18F-FDG) were performed using L6 cells to investigate in vitro energy metabolism changes. In addition, 18F-fluorocholine (18F-FCH) and 18F-FDG positron emission tomography/computed tomography (PET/CT) analyses, immunohistochemistry, and respiratory gas analysis were performed in mice post-endurance exercise on a treadmill. In the energy metabolism of L6 cells, a significant reversal in glucose uptake was observed in the SMS-treated group, as opposed to an increase in uptake over time compared to the untreated control group. Furthermore, P. ginseng alone and SMS significantly decreased the volume of lipid droplets. SMS also regulated the phosphorylation of extracellular signal-regulated kinase (ERK), phosphorylation of p38, mitochondrial morphology, and the expression of apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE/Ref-1) in H2O2-stimulated L6 cells. In addition, SMS treatment was found to regulate whole body and muscle energy metabolism in rats subjected to high-intensity exercise, as well as glucose and lipid metabolism in skeletal muscle. Therefore, SMS containing P. ginseng ameliorated imbalanced energy metabolism through oxidative stress-induced APE/Ref-1 expression. SMS may be a promising supplemental option for metabolic performance.
Collapse
Affiliation(s)
- Suji Baek
- Research & Development Center, UMUST R&D Corporation, Seoul, Korea
| | - Jisu Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Sun Mi Park
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Tae Sup Lee
- Division of RI Applications, Korea Institute Radiological and Medical Sciences, Seoul, Korea
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung Hae Kwon
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Jonghoon Park
- Department of Physical Education, Korea University, Seoul, Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul, Korea
- Department of Sports Medicine and Science in Graduated School, Konkuk University, Seoul, Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kang Pa Lee
- Research & Development Center, UMUST R&D Corporation, Seoul, Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| |
Collapse
|