1
|
Li J, Gao L, Ye Y. HiSV: A control-free method for structural variation detection from Hi-C data. PLoS Comput Biol 2023; 19:e1010760. [PMID: 36608109 DOI: 10.1371/journal.pcbi.1010760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/24/2022] [Indexed: 01/07/2023] Open
Abstract
Structural variations (SVs) play an essential role in the evolution of human genomes and are associated with cancer genetics and rare disease. High-throughput chromosome capture (Hi-C) technology probed all genome-wide crosslinked chromatin to study the spatial architecture of chromosomes. Hi-C read pairs can span megabases, making the technology useful for detecting large-scale SVs. So far, the identification of SVs from Hi-C data is still in the early stages with only a few methods available. Especially, no algorithm has been developed that can detect SVs without control samples. Therefore, we developed HiSV (Hi-C for Structural Variation), a control-free method for identifying large-scale SVs from a Hi-C sample. Inspired by the single image saliency detection model, HiSV constructed a saliency map of interaction frequencies and extracted saliency segments as large-scale SVs. By evaluating both simulated and real data, HiSV not only detected all variant types, but also achieved a higher level of accuracy and sensitivity than existing methods. Moreover, our results on cancer cell lines showed that HiSV effectively detected eight complex SV events and identified two novel SVs of key factors associated with cancer development. Finally, we found that integrating the result of HiSV helped the WGS method to identify a total number of 94 novel SVs in two cancer cell lines.
Collapse
Affiliation(s)
- Junping Li
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lin Gao
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yusen Ye
- Department of Computer Science, School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Chang X, Wang J, Bian J, Liu Z, Guo M, Li Z, Wu Y, Zhai X, Zuo D. 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42) inhibits cell proliferation and induces apoptosis via inhibiting ALK and its downstream pathways in Karpas299 cells. Toxicol Appl Pharmacol 2022; 450:116156. [PMID: 35803438 DOI: 10.1016/j.taap.2022.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Anaplastic lymphoma kinase (ALK) belongs to the family of receptor tyrosine kinases. Recently, the incidence of anaplastic large cell lymphoma (ALCL) with ALK rearrangement has raised considerably. The application of ALK-targeted inhibitors such as ceritinib provides an effective therapy for the treatment of ALK-positive cancers. However, with the prolongation of treatment time, the emergence of resistance is inevitable. We found that 1-(4-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-3-methoxyphenyl)-3-(2-(dimethylamino)ethyl)imidazolidin-2-one (ZX-42), a novel ceritinib derivative, could inhibit the proliferation of ALK-positive ALCL cells, induce the apoptosis of Karpas299 cells through the mitochondrial pathway in a caspase-dependent manner. In addition, ZX-42 could suppress ALK and downstream pathways including PI3K/Akt, Erk and JAK3/STAT3 and reduce the nuclear translocation of NFκB by inhibiting TRAF2/IKK/IκB pathway. Taken together, our findings indicate that ZX-42 shows more effective activity than ceritinib against ALK-positive ALCL. We hope this study can provide a direction for the structural modification of ceritinib and lay the foundation for the further development of clinical research in ALK-positive ALCL.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Junfang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jiang Bian
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|