1
|
Guan X, Bu F, Fu Y, Zhang H, Xiang H, Chen X, Chen T, Wu X, Wu K, Liu L, Dong X. Immunogenic peptides putatively from intratumor microbes: Opportunities for colorectal cancer treatment. iScience 2024; 27:111338. [PMID: 39640572 PMCID: PMC11617993 DOI: 10.1016/j.isci.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Recent evidence has confirmed the presence of intratumor microbes, yet their impact on the immunopeptidome remains largely unexplored. Here we introduced an integrated strategy to identify the immunopeptidome originated from intratumor microbes. Analyzing 10 colorectal cancer (CRC) patients, we identified 154 putative microbe-derived human leukocyte antigen (HLA)-I ligands. Predominantly bacterial in origin, these peptides were notably abundant in Fusobacterium nucleatum, the most prevalent bacterium differentiating between normal and tumor tissues. We discovered 20 peptides originating from F. nucleatum, thirteen of which, including two peptides shared across multiple patients, were tumor specific. Validation experiments confirmed that the putative microbe-derived peptide could activate CD8+ T cell responses. Our findings indicate that HLA-I molecules are capable of presenting intratumor microbe-derived peptides in CRC, potentially contributing to CD8+ T cell-mediated immunity and suggesting potential strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Guan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Fanyu Bu
- BGI Research, Hangzhou 310030, China
| | - Yunyun Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Haibo Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | | | - Xinle Chen
- BGI Research, Hangzhou 310030, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China
| | - Tai Chen
- BGI Research, Changzhou 213299, China
| | - Xiaojian Wu
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Kui Wu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Xuan Dong
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310022, China
| |
Collapse
|
2
|
Ataollahi H, Hedayati M, Zia-Jahromi N, Daneshpour M, Siadat SD. Investigating the role of the intratumoral microbiome in thyroid cancer development and progression. Crit Rev Oncol Hematol 2024; 204:104545. [PMID: 39476992 DOI: 10.1016/j.critrevonc.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.
Collapse
Affiliation(s)
- Hanieh Ataollahi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran.
| | - Noosha Zia-Jahromi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center(MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Thomas CJ, Delgado K, Sawant K, Roy J, Gupta U, Song CS, Poojary R, de Figueiredo P, Song J. Harnessing Bacterial Agents to Modulate the Tumor Microenvironment and Enhance Cancer Immunotherapy. Cancers (Basel) 2024; 16:3810. [PMID: 39594765 PMCID: PMC11593222 DOI: 10.3390/cancers16223810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer immunotherapy has revolutionized cancer treatment by leveraging the immune system to attack tumors. However, its effectiveness is often hindered by the immunosuppressive tumor microenvironment (TME), where a complex interplay of tumor, stromal, and immune cells undermines antitumor responses and allows tumors to evade immune detection. This review explores innovative strategies to modify the TME and enhance immunotherapy outcomes, focusing on the therapeutic potential of engineered bacteria. These bacteria exploit the unique characteristics of the TME, such as abnormal vasculature and immune suppression, to selectively accumulate in tumors. Genetically modified bacteria can deliver therapeutic agents, including immune checkpoint inhibitors and cytokines, directly to tumor sites. This review highlights how bacterial therapeutics can target critical immune cells within the TME, such as myeloid-derived suppressor cells and tumor-associated macrophages, thereby promoting antitumor immunity. The combination of bacterial therapies with immune checkpoint inhibitors or adoptive cell transfer presents a promising strategy to counteract immune suppression. Continued research in this area could position bacterial agents as a powerful new modality to reshape the TME and enhance the efficacy of cancer immunotherapy, particularly for tumors resistant to conventional treatments.
Collapse
Affiliation(s)
- Christina James Thomas
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Kaylee Delgado
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Kamlesh Sawant
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Jacob Roy
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Udit Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Carly Shaw Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Rayansh Poojary
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| | - Paul de Figueiredo
- Department of Molecular Microbiology and Immunology, The University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, MREB II, Room 3344, 8447 John Sharp Parkway, Bryan, TX 77807, USA; (C.J.T.); (K.D.)
| |
Collapse
|
4
|
Liu Z, Sun Y, Li Y, Ma A, Willaims NF, Jahanbahkshi S, Hoyd R, Wang X, Zhang S, Zhu J, Xu D, Spakowicz D, Ma Q, Liu B. An Explainable Graph Neural Framework to Identify Cancer-Associated Intratumoral Microbial Communities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403393. [PMID: 39225619 PMCID: PMC11538693 DOI: 10.1002/advs.202403393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/26/2024] [Indexed: 09/04/2024]
Abstract
Microbes are extensively present among various cancer tissues and play critical roles in carcinogenesis and treatment responses. However, the underlying relationships between intratumoral microbes and tumors remain poorly understood. Here, a MIcrobial Cancer-association Analysis using a Heterogeneous graph transformer (MICAH) to identify intratumoral cancer-associated microbial communities is presented. MICAH integrates metabolic and phylogenetic relationships among microbes into a heterogeneous graph representation. It uses a graph transformer to holistically capture relationships between intratumoral microbes and cancer tissues, which improves the explainability of the associations between identified microbial communities and cancers. MICAH is applied to intratumoral bacterial data across 5 cancer types and 5 fungi datasets, and its generalizability and reproducibility are demonstrated. After experimentally testing a representative observation using a mouse model of tumor-microbe-immune interactions, a result consistent with MICAH's identified relationship is observed. Source tracking analysis reveals that the primary known contributor to a cancer-associated microbial community is the organs affected by the type of cancer. Overall, this graph neural network framework refines the number of microbes that can be used for follow-up experimental validation from thousands to tens, thereby helping to accelerate the understanding of the relationship between tumors and intratumoral microbiomes.
Collapse
Affiliation(s)
- Zhaoqian Liu
- School of MathematicsShandong UniversityJinanShandong250100China
- College of SciencesXi'an University of Science and TechnologyXi'anShanxi710054China
| | - Yuhan Sun
- School of MathematicsShandong UniversityJinanShandong250100China
| | - Yingjie Li
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | - Anjun Ma
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOH43210USA
| | - Nyelia F. Willaims
- Department of Internal MedicineCollege of MedicineThe Ohio State UniversityColumbusOH43210USA
| | - Shiva Jahanbahkshi
- Department of Food Science and TechnologyCollege of FoodAgricultural, and Environmental SciencesThe Ohio State UniversityColumbusOH43210USA
| | - Rebecca Hoyd
- Department of Internal MedicineCollege of MedicineThe Ohio State UniversityColumbusOH43210USA
| | - Xiaoying Wang
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOH43210USA
| | - Shiqi Zhang
- Department of Human SciencesCollege of Education and Human EcologyThe Ohio State UniversityColumbusOH43210USA
| | - Jiangjiang Zhu
- Department of Human SciencesCollege of Education and Human EcologyThe Ohio State UniversityColumbusOH43210USA
| | - Dong Xu
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMO65201USA
- Christopher S. Bond Life Sciences CenterUniversity of MissouriColumbiaMO65201USA
| | - Daniel Spakowicz
- Pelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOH43210USA
- Department of Internal MedicineCollege of MedicineThe Ohio State UniversityColumbusOH43210USA
| | - Qin Ma
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOH43210USA
| | - Bingqiang Liu
- School of MathematicsShandong UniversityJinanShandong250100China
- Shandong National Center for Applied MathematicsJinanShandong250199China
| |
Collapse
|
5
|
Wang Y, Zhang L, Xu J, Ma J. The Proteomic Landscape of Monocytes in Response to Colorectal Cancer Cells. J Proteome Res 2024; 23:4067-4081. [PMID: 39106312 PMCID: PMC11385372 DOI: 10.1021/acs.jproteome.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Colorectal cancer (CRC) involves a complex interaction between tumor cells and immune cells, notably monocytes, leading to immunosuppression. This study explored these interactions using in vitro coculture systems of THP-1 cells and CRC cell lines, employing quantitative proteomics to analyze protein changes in monocytes. Multiple analytical methods were utilized to delineate the altered proteomic landscape, identify key proteins, and their associated functional pathways for comprehensive data analysis. Differentially expressed proteins (DEPs) were selected and validated by cross-referencing them with publicly available TCGA and GEO data sets to explore their potential clinical significance. Our analysis identified 161 up-regulated and 130 down-regulated DEPs. The enrichment results revealed impairments in adhesion and innate immune functions in monocytes, potentially facilitating cancer progression. The down-regulation of FN1, THSB1, and JUN may contribute to these impairments. Furthermore, the overexpression of ADAMTSL4, PRAM1, GPNMB, and NPC2 on monocytes was associated with unfavorable prognostic outcomes in CRC patients, suggesting potential biomarkers or therapeutic targets. This study illustrated the proteomic landscape of monocytes in response to CRC cells, providing clues for future investigations of the crosstalk between cancer cells and monocytes within the tumor microenvironment.
Collapse
Affiliation(s)
- Yiran Wang
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Luyao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Ma
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
6
|
Luo Z, Lv S, Lou F, Yan L, Xu J, Kang N, Dong Y, Jin X. Roles of intralesional bacteria in the initiation and progression of oral squamous cell carcinoma. Cancer Med 2024; 13:e70209. [PMID: 39300932 PMCID: PMC11413416 DOI: 10.1002/cam4.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the predominant form of head and neck cancer, often diagnosed at late stages, resulting in a poor prognosis. Recent studies indicate a potential association between OSCC and microbial presence. Microorganisms have been identified in various tumors and lesions, including OSCC and oral potentially malignant disorders (OPMDs). Intralesional microbiota are considered important components of the tumor microenvironment (TME) and may contribute to carcinogenesis. METHODS Sources were collected through thorough searches of databases PubMed and Embase. The review focused on microbial characteristics, potential origins, and their impact on cancer progression. RESULTS Bacteria display varying abundance and diversity throughout the stages of OSCC and OPMDs. Intraleisional bacteria may have diverse sources, including not only oral plaque and saliva but also potentially the gut. Intralesional bacteria have both pro-carcinogenic and anti-carcinogenic effects, affecting processes like cell proliferation, invasion, and immune response. CONCLUSIONS Intralesional microbiota are crucial in OSCC and OPMDs, influencing both disease progression and treatments. Despite their significance, challenges like inconsistent sampling and microbial identification remain. Future research is required to fully understand their role and improve clinical applications.
Collapse
Affiliation(s)
- Zhuoyan Luo
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Shiping Lv
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Fangzhi Lou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Li Yan
- College of Medical InformaticsChongqing Medical UniversityChongqingChina
| | - Jingyi Xu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Ning Kang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Yunmei Dong
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Xin Jin
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| |
Collapse
|
7
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
8
|
Hu J, Ran S, Huang Z, Liu Y, Hu H, Zhou Y, Ding X, Yin J, Zhang Y. Antibacterial tellurium-containing polycarbonate drug carriers to eliminate intratumor bacteria for synergetic chemotherapy against colorectal cancer. Acta Biomater 2024; 185:323-335. [PMID: 38964527 DOI: 10.1016/j.actbio.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Intratumor microbes have attracted great attention in cancer research due to its influence on the tumorigenesis, progression and metastasis of cancer. However, the therapeutic strategies targeting intratumoral microbes are still in their infancy. Specific microorganisms, such as Fusobacterium nucleatum (F. nucleatum), are abundant in various cancer and always result in the CRC progression and chemotherapy resistance. Here, a combined anticancer and antibacterial therapeutic strategy is proposed to deliver antitumor drug to the tumors containing intratumor microbiota by the antibacerial polymeric drug carriers. We construct oral tellurium-containing drug carriers using a complex of tellurium-containing polycarbonate with cisplatin (PTE@CDDP). The results show that the particle size of the prepared nanoparticles could be maintained at about 105 nm in the digestive system environment, which is in line with the optimal particle size of oral nanomedicine. In vitro mechanism study indicates that the tellurium-containing polymers are highly effective in killing F.nucleatum through a membrane disruption mechanism. The pharmacokinetic experiments confirmed that PTE@CDDP has the potential function of enhancing the oral bioavailability of cisplatin. Both in vitro and in vivo studies show that PTE@CDDP could inhibit intratumor F.nucleatum and lead to a reduction in cell proliferation and inflammation in the tumor site. Together, the study identifies that the CDDP-loaded tellurium-containing nanoparticles have great potential for treating the F.nucleatum-promoted colorectal cancer (CRC) by combining intratumor microbiota modulation and chemotherapy. The synergistic therapeutic strategy provide new insight into treating various cancers combined with bacterial infection. STATEMENT OF SIGNIFICANCE: The synthesized antibacterial polymer was first employed to remodel the intratumor microbes in tumor microenvironment (TME). Moreover, it was the first report of tellurium-containing polymers against F.nucleatum and employed for treatment of the CRC. A convenient oral dosage form of cisplatin (CDDP)-loaded tellurium-containing nanoparticles (PTE@CDDP) was adopted here, and the synergistic antibacterial/chemotherapy effect occurred. The PTE@CDDP could quickly and completely eliminate F.nucleatum in a safe dose. In the CRC model, PTE@CDDP effectively reversed the inflammation level and even restored the intestinal barrier damaged by F.nucleatum. The ultrasensitive ROS-responsiveness of PTE@CDDP triggered the fast oxidation and efficient drug release of CDDP and thus a highly efficient apoptosis of the tumors. Therefore, the tellurium-containing polymers are expected to serve as novel antibacterial agents in vivo and have great potential in the F.nucleatum-associated cancers. The achievements provided new insight into treating CRC and other cancers combined with bacterial infection.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanyuan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyan Hu
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China.
| | - Yan Zhou
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Xiaomin Ding
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Junyi Yin
- M.D. Clinical trial center of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Xu J, Cheng M, Liu J, Cui M, Yin B, Liang J. Research progress on the impact of intratumoral microbiota on the immune microenvironment of malignant tumors and its role in immunotherapy. Front Immunol 2024; 15:1389446. [PMID: 39034996 PMCID: PMC11257860 DOI: 10.3389/fimmu.2024.1389446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Microbiota has been closely related to human beings, whose role in tumor development has also been widely investigated. However, previous studies have mainly focused on the gut, oral, and/or skin microbiota. In recent years, the study of intratumoral microbiota has become a hot topic in tumor-concerning studies. Intratumoral microbiota plays an important role in the occurrence, development, and response to treatment of malignant tumors. In fact, increasing evidence has suggested that intratumoral microbiota is associated with malignant tumors in various ways, such as promoting the tumor development and affecting the efficacy of chemotherapy and immunotherapy. In this review, the impact of intratumoral microbiota on the immune microenvironment of malignant tumors has been analyzed, as well as its role in tumor immunotherapy, with the hope that it may contribute to the development of diagnostic tools and treatments for related tumors in the future.
Collapse
Affiliation(s)
- Jiamei Xu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Min Cheng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jie Liu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Mengqi Cui
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
10
|
Senchukova MA. Colorectal cancer and dormant metastases: Put to sleep or destroy? World J Gastrointest Oncol 2024; 16:2304-2317. [PMID: 38994146 PMCID: PMC11236221 DOI: 10.4251/wjgo.v16.i6.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
After reading the review by An et al "Biological factors driving colorectal cancer metastasis", which covers the problem of the metastasis of colorectal cancer (CRC), I had a desire to discuss with readers one of the exciting problems associated with dormant metastases. Most deaths from CRCs are caused by metastases, which can be detected both at diagnosis of the primary tumor and several years or even decades after treatment. This is because tumor cells that enter the bloodstream can be destroyed by the immune system, cause metastatic growth, or remain dormant for a long time. Dormant tumor cells may not manifest themselves throughout a person's life or, after some time and under appropriate conditions, may give rise to the growth of metastases. In this editorial, we will discuss the most important features of dormant metastases and the mechanisms of premetastatic niche formation, as well as factors that contribute to the activation of dormant metastases in CRCs. We will pay special attention to the possible mechanisms involved in the formation of circulating tumor cell complexes and the choice of therapeutic strategies that promote the dormancy or destruction of tumor cells in CRCs.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
11
|
Yalamarty R, Magesh S, John D, Chakladar J, Li WT, Brumund KT, Wang-Rodriguez J, Ongkeko WM. The intratumor microbiome varies by geographical location and anatomical site in head and neck squamous cell carcinoma. Curr Probl Cancer 2024; 50:101100. [PMID: 38820649 DOI: 10.1016/j.currproblcancer.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a highly heterogeneous cancer that is characterized by distinct phenotypes based on anatomical site and etiological agents. Recently, the intratumor microbiome has been implicated in cancer pathogenesis and progression. Although it is well established that the gut microbiome varies with geographical location and is highly influenced by factors such as diet, environment, and genetics, the intratumor microbiome is not very well characterized. In this review, we aim to characterize the HNSCC intratumor microbiome by geographical location and anatomical site. We conducted a review of primary literature from PubMed and assessed studies based on relevancy and recency. To the best of our knowledge, we are the first to comprehensively examine the tumor microenvironment of HNSCC with respect to these two primary factors on a large scale. Our results suggest that there are unique bacterial and fungal biomarkers for HNSCC for each of the following geographical locations: North America, Asia, Europe, Australia, and Africa. We also identified a panel of microbial biomarkers that are unique to two primary HNSCC anatomic sites, as well as microbial biomarkers associated with various etiological agents of HNSCC. Future study of these microbes may improve HNSCC diagnostic and therapeutic modalities by accounting for differences based on geographic regions and anatomical sites.
Collapse
Affiliation(s)
- Rishabh Yalamarty
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Shruti Magesh
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Daniel John
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jaideep Chakladar
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wei Tse Li
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kevin T Brumund
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Division of Head and Neck Surgery, Department of Surgery, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jessica Wang-Rodriguez
- Pathology Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; Department of Pathology, UC San Diego School of Medicine, San Diego, CA 92093, USA
| | - Weg M Ongkeko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, CA 92093, USA; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
12
|
Shen H, Zhang C, Li S, Liang Y, Lee LT, Aggarwal N, Wun KS, Liu J, Nadarajan SP, Weng C, Ling H, Tay JK, Wang DY, Yao SQ, Hwang IY, Lee YS, Chang MW. Prodrug-conjugated tumor-seeking commensals for targeted cancer therapy. Nat Commun 2024; 15:4343. [PMID: 38773197 PMCID: PMC11109227 DOI: 10.1038/s41467-024-48661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery. We identify an oral commensal strain of Lactobacillus plantarum with an intrinsic cancer-binding mechanism and engineer the strain to enable the surface loading of anticancer prodrugs, with nasopharyngeal carcinoma (NPC) as a model cancer. The engineered commensals show specific binding to NPC via OppA-mediated recognition of surface heparan sulfate, and the loaded prodrugs are activated by tumor-associated biosignals to release SN-38, a chemotherapy compound, near NPC. In vitro experiments demonstrate that the prodrug-loaded microbes significantly increase the potency of SN-38 against NPC cell lines, up to 10-fold. In a mouse xenograft model, intravenous injection of the engineered L. plantarum leads to bacterial colonization in NPC tumors and a 67% inhibition in tumor growth, enhancing the efficacy of SN-38 by 54%.
Collapse
Affiliation(s)
- Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Changyu Zhang
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shengjie Li
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Ting Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Kwok Soon Wun
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Saravanan Prabhu Nadarajan
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Weng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Wilmar International Limited, Singapore, Singapore
| | - Joshua K Tay
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore, Singapore.
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National Centre for Engineering Biology (NCEB), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Kim S, Lee M, Kim NY, Kwon YS, Nam GS, Lee K, Kwon KM, Kim DK, Hwang IH. Oxidative tryptamine dimers from Corynebacterium durum directly target survivin to induce AIF-mediated apoptosis in cancer cells. Biomed Pharmacother 2024; 173:116335. [PMID: 38422661 DOI: 10.1016/j.biopha.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Accumulating evidence indicates that microbial communities in the human body crucially affect health through the production of chemical messengers. However, the relationship between human microbiota and cancer has been underexplored. As a result of a biochemical investigation of the commensal oral microbe, Corynebacterium durum, we identified the non-enzymatic transformation of tryptamine into an anticancer compound, durumamide A (1). The structure of 1 was determined using LC-MS and NMR data analysis as bis(indolyl)glyoxylamide, which was confirmed using one-pot synthesis and X-ray crystallographic analysis, suggesting that 1 is an oxidative dimer of tryptamine. Compound 1 displayed cytotoxic activity against various cancer cell lines with IC50 values ranging from 25 to 35 μM. A drug affinity responsive target stability assay revealed that survivin is the direct target protein responsible for the anticancer effect of 1, which subsequently induces apoptosis-inducing factor (AIF)-mediated apoptosis. Inspired by the chemical structure and bioactivity of 1, a new derivative, durumamide B (2), was synthesized using another indole-based neurotransmitter, serotonin. The anticancer properties of 2 were similar to those of 1; however, it was less active. These findings reinforce the notion of human microbiota-host interplay by showing that 1 is naturally produced from the human microbial metabolite, tryptamine, which protects the host against cancer.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 38066, Republic of Korea
| | - Munseon Lee
- Department of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea
| | - Nam-Yi Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 38066, Republic of Korea
| | - Yun-Suk Kwon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Jeju-do 63240, Republic of Korea
| | - Gi Suk Nam
- Department of Biomedical Laboratory Science, Honam University, 120, Honamdae-gil, Gwangsan-gu, Gwangju 62399, Republic of Korea
| | - Kyounghoon Lee
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
| | - Kang Mu Kwon
- Department of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea
| | - Dae Keun Kim
- Department of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea; Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - In Hyun Hwang
- Department of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea; Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
15
|
Kumai T, Shinomiya H, Shibata H, Takahashi H, Kishikawa T, Okada R, Fujieda S, Sakashita M. Translational research in head and neck cancer: Molecular and immunological updates. Auris Nasus Larynx 2024; 51:391-400. [PMID: 37640594 DOI: 10.1016/j.anl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a poor prognosis. Each year, approximately 880,000 patients are newly diagnosed with HNSCC worldwide, and 450,000 patients with HNSCC die. Risk factors for developing HNSCC have been identified, with cigarette smoking, alcohol consumption, and viral infections being the major factors. Owing to the prevalence of human papillomavirus infection, the number of HNSCC cases is increasing considerably. Surgery and chemoradiotherapy are the primary treatments for HNSCC. With advancements in tumor biology, patients are eligible for novel treatment modalities, namely targeted therapies, immunotherapy, and photoimmunotherapy. Because this area of research has rapidly progressed, clinicians should understand the basic biology of HNSCC to choose an appropriate therapy in the upcoming era of personalized medicine. This review summarized recent developments in tumor biology, focusing on epidemiology, genetic/epigenetic factors, the tumor microenvironment, microbiota, immunity, and photoimmunotherapy in HNSCC, as well as how these findings can be translated into clinical settings.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Hirotaka Shinomiya
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan.
| | - Toshihiro Kishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan.
| | - Ryuhei Okada
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Masafumi Sakashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
16
|
Liu J, Qu Y, Li YY, Xu YL, Yan YF, Qin H. Exploring prognostic microbiota markers in patients with endometrial carcinoma: Intratumoral insights. Heliyon 2024; 10:e27879. [PMID: 38515713 PMCID: PMC10955307 DOI: 10.1016/j.heliyon.2024.e27879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Endometrial cancer, a leading gynecological malignancy, is profoundly influenced by the uterine microbiota, a key factor in disease prognosis and treatment. Our study underscores the distinct microbial compositions in endometrial cancer compared to adjacent non-cancerous tissues, revealing a dominant presence of p_Actinobacteria in cancerous tissues as opposed to p_Firmicutes in surrounding areas. Through comprehensive analysis, we identified 485 unique microorganisms in cancer tissues, 26 of which correlate with patient prognosis. Employing univariate Cox regression and LASSO regression analyses, we devised a microbial risk scoring model, effectively stratifying patients into high and low-risk categories, thereby providing predictive insights into their overall survival. We further developed a nomogram that incorporates the microbial risk score along with age, grade, and clinical stage, significantly enhancing the accuracy of our clinical prediction model for endometrial cancer. Moreover, our study delves into the differential immune landscapes of high-risk and low-risk patients. The low-risk group displayed a higher prevalence of activated B cells and increased T cell co-stimulation, indicative of a robust immune response. Conversely, high-risk patients showed elevated tumor immune dysfunction and exclusion scores, suggesting less favorable outcomes in immunotherapy. Notably, the efficacy of IPS-CTLA4 and PD1/PD-L1/PD-L2 blockers was substantially higher in the low-risk group, pointing to a more responsive immunotherapeutic approach. In summary, our research elucidates the unique microbial patterns in endometrial cancer and adjacent tissues, and establishes both a microbial risk score model and a clinical prediction nomogram. These findings highlight the potential of uterine microbiota as a biomarker for customizing treatment strategies, enabling precise interventions for high-risk patients while preventing overtreatment in low-risk cases. This study emphasizes the microbiota's role in tailoring immunotherapy, offering a novel perspective in the treatment and prognosis of endometrial cancer. Significantly, our study's expansive sample analysis from the TCGA-UCEC cohort, employing linear discriminant analysis effect size methodology, not only validates but also enhances our understanding of the microbiota's role in endometrial cancer, paving the way for novel diagnostic and therapeutic approaches in its management.
Collapse
Affiliation(s)
- Jie Liu
- Department of Medical Records, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yi Qu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang-Yang Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Lan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Guo C, Liu J, Zhang Y. Current advances in bacteria-based cancer immunotherapy. Eur J Immunol 2024; 54:e2350778. [PMID: 38105295 DOI: 10.1002/eji.202350778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
As the understanding of the tumor microenvironment has deepened, immunotherapy has become a promising strategy for cancer treatment. In contrast to traditional therapies, immunotherapy is more precise and induces fewer adverse effects. In this field, some bacteria have attracted increased attention because of their natural ability to preferentially colonize and proliferate inside tumor sites and exert antitumor effects. Moreover, bacterial components may activate innate and adaptive immunity to resist tumor progression. However, the application of bacteria-based cancer immunotherapy is hampered by potential infection-associated toxicity and unpredictable behavior in vivo. Owing to modern developments in genetic engineering, bacteria can be modified to weaken their toxicity and enhance their ability to eliminate tumor cells or activate the antitumor immune response. This review summarizes the roles of bacteria in the tumor microenvironment, current strategies for bacterial engineering, and the synergistic efficiency of bacteria with other immunotherapies. In addition, the prospects and challenges of the clinical translation of engineered bacteria are summarized.
Collapse
Affiliation(s)
- Caijuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & and Treatment, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Wu J, Zhang P, Mei W, Zeng C. Intratumoral microbiota: implications for cancer onset, progression, and therapy. Front Immunol 2024; 14:1301506. [PMID: 38292482 PMCID: PMC10824977 DOI: 10.3389/fimmu.2023.1301506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Significant advancements have been made in comprehending the interactions between the microbiome and cancer. However, prevailing research predominantly directs its focus toward the gut microbiome, affording limited consideration to the interactions of intratumoral microbiota and tumors. Within the tumor microenvironment (TME), the intratumoral microbiome and its associated products wield regulatory influence, directing the modulation of cancer cell properties and impacting immune system functionality. However, to grasp a more profound insight into the intratumoral microbiota in cancer, further research into its underlying mechanisms is necessary. In this review, we delve into the intricate associations between intratumoral microbiota and cancer, with a specific focus on elucidating the significant contribution of intratumoral microbiota to the onset and advancement of cancer. Notably, we provide a detailed exploration of therapeutic advances facilitated by intratumoral microbiota, offering insights into recent developments in this burgeoning field.
Collapse
Affiliation(s)
- Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Pengfei Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
19
|
Chintalapati SSVV, Iwata S, Miyahara M, Miyako E. Tumor-isolated Cutibacterium acnes as an effective tumor suppressive living drug. Biomed Pharmacother 2024; 170:116041. [PMID: 38113626 DOI: 10.1016/j.biopha.2023.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
The two major challenges in cancer treatment are reducing the side effects and minimizing the cost of cancer treatment. A better therapy to treat cancer remains to be developed despite the presence of many therapeutic options. Here, we present bacterial therapy for treating cancer using tumor-isolated Cutibacterium acnes, which is safe to use, has minimal side effects compared to chemotherapeutic drugs, and most importantly, targets the tumor microenvironment due to the bacterium's anaerobic nature. It activates the immune system, and the immune cells effectively penetrate through the tumor tissue and form an immunologic hub inside, explicitly targeting the tumor and destroying the cells. This bacterial therapy is a new cost-effective innovative treatment.
Collapse
Affiliation(s)
| | - Seigo Iwata
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Mikako Miyahara
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
20
|
Feng K, Ren F, Xing Z, Zhao Y, Yang C, Liu J, Shang Q, Wang X, Wang X. Microbiome and its implications in oncogenesis: a Mendelian randomization perspective. Am J Cancer Res 2023; 13:5785-5804. [PMID: 38187050 PMCID: PMC10767327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
The human microbiome, an intricate ecological network, has garnered significant attention due to its potential implications in oncogenesis. This paper delves into the multifaceted relationships between the microbiome, its metabolites, and cancer development, emphasizing the human intestinal tract as the primary microbial habitat. Highlighting the potential causative associations between microbial disturbances and cancer progression, we underscore the role of specific bacterial strains in various cancers, such as stomach and colorectal cancer. Traditional causality assessment methods, like randomized controlled trials (RCTs), have limitations. Therefore, we advocate using Mendelian Randomization (MR) as a powerful alternative to study causal relationships, leveraging genetic variants as instrumental variables. With the proliferation of genome-wide association studies, MR harnesses genetic variations to infer causality, which is especially beneficial when addressing confounders like diet and lifestyle that can skew microbial research. We systematically review MR's application in understanding the microbiome-cancer nexus, emphasizing its strengths and challenges. While MR offers a unique perspective on causality, it faces hurdles like horizontal pleiotropy and weak instrumental variable bias. Integrating MR with multi-omics data, encompassing genomics, transcriptomics, proteomics, and metabolomics, holds promise for future research, potentially heralding groundbreaking discoveries in microbiology and genetics. This comprehensive review underscores the critical role of the human microbiome in oncogenesis and champions MR as an indispensable tool for advancing our understanding in this domain.
Collapse
Affiliation(s)
- Kexin Feng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Fei Ren
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Zeyu Xing
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yifan Zhao
- School of Engineering, RMIT UniversityBundoora, VIC 3083, Australia
| | - Chenxuan Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Qingyao Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
21
|
Souza VGP, Forder A, Pewarchuk ME, Telkar N, de Araujo RP, Stewart GL, Vieira J, Reis PP, Lam WL. The Complex Role of the Microbiome in Non-Small Cell Lung Cancer Development and Progression. Cells 2023; 12:2801. [PMID: 38132121 PMCID: PMC10741843 DOI: 10.3390/cells12242801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, there has been a growing interest in the relationship between microorganisms in the surrounding environment and cancer cells. While the tumor microenvironment predominantly comprises cancer cells, stromal cells, and immune cells, emerging research highlights the significant contributions of microbial cells to tumor development and progression. Although the impact of the gut microbiome on treatment response in lung cancer is well established, recent investigations indicate complex roles of lung microbiota in lung cancer. This article focuses on recent findings on the human lung microbiome and its impacts in cancer development and progression. We delve into the characteristics of the lung microbiome and its influence on lung cancer development. Additionally, we explore the characteristics of the intratumoral microbiome, the metabolic interactions between lung tumor cells, and how microorganism-produced metabolites can contribute to cancer progression. Furthermore, we provide a comprehensive review of the current literature on the lung microbiome and its implications for the metastatic potential of tumor cells. Additionally, this review discusses the potential for therapeutic modulation of the microbiome to establish lung cancer prevention strategies and optimize lung cancer treatment.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araujo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Juliana Vieira
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil (P.P.R.)
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
22
|
Liu J, Liu J, Qin G, Li J, Fu Z, Li J, Li M, Guo C, Zhao M, Zhang Z, Li F, Zhao X, Wang L, Zhang Y. MDSCs-derived GPR84 induces CD8 + T-cell senescence via p53 activation to suppress the antitumor response. J Immunother Cancer 2023; 11:e007802. [PMID: 38016719 PMCID: PMC10685939 DOI: 10.1136/jitc-2023-007802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUNDS G-protein-coupled receptor 84 (GPR84) marks a subset of myeloid-derived suppressor cells (MDSCs) with stronger immunosuppression in the tumor microenvironment. Yet, how GPR84 endowed the stronger inhibition of MDSCs to CD8+ T cells function is not well established. In this study, we aimed to identify the underlying mechanism behind the immunosuppression of CD8+ T cells by GPR84+ MDSCs. METHODS The role and underlying mechanism that MDSCs or exosomes (Exo) regulates the function of CD8+ T cells were investigated using immunofluorescence, fluorescence activating cell sorter (FACS), quantitative real-time PCR, western blot, ELISA, Confocal, RNA-sequencing (RNA-seq), etc. In vivo efficacy and mechanistic studies were conducted with wild type, GPR84 and p53 knockout C57/BL6 mice. RESULTS Here, we showed that the transfer of GPR84 from MDSCs to CD8+ T cells via the Exo attenuated the antitumor response. This inhibitory effect was also observed in GPR84-overexpressed CD8+ T cells, whereas depleting GPR84 elevated CD8+ T cells proliferation and function in vitro and in vivo. RNA-seq analysis of CD8+ T cells demonstrated the activation of the p53 signaling pathway in CD8+ T cells treated with GPR84+ MDSCs culture medium. While knockout p53 did not induce senescence in CD8+ T cells treated with GPR84+ MDSCs. The per cent of GPR84+ CD8+ T cells work as a negative indicator for patients' prognosis and response to chemotherapy. CONCLUSIONS These data demonstrated that the transfer of GPR84 from MDSCs to CD8+ T cells induces T-cell senescence via the p53 signaling pathway, which could explain the strong immunosuppression of GPR84 endowed to MDSCs.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiayin Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiahui Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziyi Fu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jieyao Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Miaomiao Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Caijuan Guo
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & and Treatment, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Colbert LE, El Alam MB, Wang R, Karpinets T, Lo D, Lynn EJ, Harris TA, Elnaggar JH, Yoshida-Court K, Tomasic K, Bronk JK, Sammouri J, Yanamandra AV, Olvera AV, Carlin LG, Sims T, Delgado Medrano AY, Napravnik TC, O'Hara M, Lin D, Abana CO, Li HX, Eifel PJ, Jhingran A, Joyner M, Lin L, Ramondetta LM, Futreal AM, Schmeler KM, Mathew G, Dorta-Estremera S, Zhang J, Wu X, Ajami NJ, Wong M, Taniguchi C, Petrosino JF, Sastry KJ, Okhuysen PC, Martinez SA, Tan L, Mahmud I, Lorenzi PL, Wargo JA, Klopp AH. Tumor-resident Lactobacillus iners confer chemoradiation resistance through lactate-induced metabolic rewiring. Cancer Cell 2023; 41:1945-1962.e11. [PMID: 37863066 PMCID: PMC10841640 DOI: 10.1016/j.ccell.2023.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types.
Collapse
Affiliation(s)
- Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Molly B El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Lo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erica J Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A Harris
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jacob H Elnaggar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; LSU School of Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katarina Tomasic
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julianna K Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julie Sammouri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ananta V Yanamandra
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adilene V Olvera
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lily G Carlin
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Travis Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea Y Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tatiana Cisneros Napravnik
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Madison O'Hara
- Department of Thoracic Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chike O Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hannah X Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melissa Joyner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lilie Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lois M Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew M Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Geena Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew Wong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cullen Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - K Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pablo C Okhuysen
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara A Martinez
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; LSU School of Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Wang C, Li W, Shao L, Zhou A, Zhao M, Li P, Zhang Z, Wu J. Both extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles are involved in gastric/extragastric diseases. Eur J Med Res 2023; 28:484. [PMID: 37932800 PMCID: PMC10626716 DOI: 10.1186/s40001-023-01458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Bacterial-derived extracellular vesicles (EVs) have emerged as crucial mediators in the cross-talk between hosts and pathogens, playing a significant role in infectious diseases and cancers. Among these pathogens, Helicobacter pylori (H. pylori) is a particularly important bacterium implicated in various gastrointestinal disorders, gastric cancers, and systemic illnesses. H. pylori achieves these effects by stimulating host cells to secrete EVs and generating internal outer membrane vesicles (OMVs). The EVs derived from H. pylori-infected host cells modulate inflammatory signaling pathways, thereby affecting cell proliferation, apoptosis, cytokine release, immune cell modification, and endothelial dysfunction, as well as disrupting cellular junctional structures and inducing cytoskeletal reorganization. In addition, OMVs isolated from H. pylori play a pivotal role in shaping subsequent immunopathological responses. These vesicles incite both inflammatory and immunosuppressive reactions within the host environment, facilitating pathogen evasion of host defenses and invasion of host cells. Despite this growing understanding, research involving H. pylori-derived EVs remains in its early stages across different domains. In this comprehensive review, we present recent advancements elucidating the contributions of EV components, such as non-coding RNAs (ncRNAs) and proteins, to the pathogenesis of gastric and extragastric diseases. Furthermore, we highlight their potential utility as biomarkers, therapeutic targets, and vehicles for targeted delivery.
Collapse
Affiliation(s)
- Chengyao Wang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wenkun Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Linlin Shao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Anni Zhou
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mengran Zhao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Peng Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zheng Zhang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Jing Wu
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
25
|
Halle-Smith JM, Hall LA, Powell-Brett SF, Merali N, Frampton AE, Beggs AD, Moss P, Roberts KJ. Pancreatic Exocrine Insufficiency and the Gut Microbiome in Pancreatic Cancer: A Target for Future Diagnostic Tests and Therapies? Cancers (Basel) 2023; 15:5140. [PMID: 37958314 PMCID: PMC10649877 DOI: 10.3390/cancers15215140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic exocrine insufficiency (PEI) is common amongst pancreatic cancer patients and is associated with poorer treatment outcomes. Pancreatic enzyme replacement therapy (PERT) is known to improve outcomes in pancreatic cancer, but the mechanisms are not fully understood. The aim of this narrative literature review is to summarise the current evidence linking PEI with microbiome dysbiosis, assess how microbiome composition may be impacted by PERT treatment, and look towards possible future diagnostic and therapeutic targets in this area. Early evidence in the literature reveals that there are complex mechanisms by which pancreatic secretions modulate the gut microbiome, so when these are disturbed, as in PEI, gut microbiome dysbiosis occurs. PERT has been shown to return the gut microbiome towards normal, so called rebiosis, in animal studies. Gut microbiome dysbiosis has multiple downstream effects in pancreatic cancer such as modulation of the immune response and the response to chemotherapeutic agents. It therefore represents a possible future target for future therapies. In conclusion, it is likely that the gut microbiome of pancreatic cancer patients with PEI exhibits dysbiosis and that this may potentially be reversible with PERT. However, further human studies are required to determine if this is indeed the case.
Collapse
Affiliation(s)
- James M. Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK (K.J.R.)
- Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2GW, UK;
| | - Lewis A. Hall
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK (K.J.R.)
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Sarah F. Powell-Brett
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK (K.J.R.)
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Nabeel Merali
- Section of Oncology, Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7WG, UK (A.E.F.); (P.M.)
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford GU2 7WG, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Adam E. Frampton
- Section of Oncology, Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7WG, UK (A.E.F.); (P.M.)
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford GU2 7WG, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Andrew D. Beggs
- Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2GW, UK;
- Colorectal Surgery Department, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Paul Moss
- Section of Oncology, Department of Clinical & Experimental Medicine, University of Surrey, Guildford GU2 7WG, UK (A.E.F.); (P.M.)
| | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK (K.J.R.)
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
26
|
Wang S, Liu P, Yu J, Liu T. Multi-Omics Analysis Elucidates The Immune And Intratumor Microbes Characteristics Of Ubiquitination Subtypes In Lung Adenocarcinoma. Transl Oncol 2023; 36:101754. [PMID: 37549605 PMCID: PMC10423929 DOI: 10.1016/j.tranon.2023.101754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Ubiquitination modification is closely related to cancer and participates in the regulation of tumor microenvironment. However, the role of ubiquitination modification in the immune response and prognosis of lung adenocarcinoma has not been elucidated. This study aims to establish a disease classification associated with ubiquitination and reveal the landscape of intratumor microbes in patients with lung adenocarcinoma for the first time. A total of 1314 patients with lung adenocarcinoma in the GEO and TCGA databases were included in our study. We constructed a ubiquitination scoring model using WGCNA and constructed ubiquitination subtypes using unsupervised clustering, analyzed the clinical characteristics, immune characteristics, and intratumor microbes characteristics, and screened out the relevant gene signatures, which were verified by RT-qPCR in human cancer cells. The results showed that the high ubiquitination subtype had poor prognosis, low degree of immune infiltration, high index of tumor stemness, and poor effect of immunotherapy. The subtypes with lower ubiquitination scores have better prognosis, higher tumor microenvironment score and better immunotherapy effect. The C2 subtype has high level of immune infiltration, lower intratumor microbes diversity and abundance, and good prognosis. The C3 subtype has low level of immune infiltration, higher intratumor microbes diversity and abundance, and poor prognosis. The C1 subtype has characteristics between C2 and C3. In summary, this paper constructs a scoring system and several subtypes based on ubiquitination genes, and analyzed the characteristics, which can help provide new methods for clinical treatment.
Collapse
Affiliation(s)
- Siqi Wang
- School of pharmacy, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Pei Liu
- School of pharmacy, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Jie Yu
- School of pharmacy, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China
| | - Tongxiang Liu
- School of pharmacy, Minzu University of China, Beijing 100081, China; Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
27
|
Wang Q, Liu Z, Ma A, Li Z, Liu B, Ma Q. Computational methods and challenges in analyzing intratumoral microbiome data. Trends Microbiol 2023; 31:707-722. [PMID: 36841736 PMCID: PMC10272078 DOI: 10.1016/j.tim.2023.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
The human microbiome is intimately related to cancer biology and plays a vital role in the efficacy of cancer treatments, including immunotherapy. Extraordinary evidence has revealed that several microbes influence tumor development through interaction with the host immune system, that is, immuno-oncology-microbiome (IOM). This review focuses on the intratumoral microbiome in IOM and describes the available data and computational methods for discovering biological insights of microbial profiling from host bulk, single-cell, and spatial sequencing data. Critical challenges in data analysis and integration are discussed. Specifically, the microorganisms associated with cancer and cancer treatment in the context of IOM are collected and integrated from the literature. Lastly, we provide our perspectives for future directions in IOM research.
Collapse
Affiliation(s)
- Qi Wang
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Zhaoqian Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China; Shandong National Center for Applied Mathematics, Jinan, Shandong, 250100, China.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
28
|
Ji H, Jiang Z, Wei C, Ma Y, Zhao J, Wang F, Zhao B, Wang D, Tang D. Intratumoural microbiota: from theory to clinical application. Cell Commun Signal 2023; 21:164. [PMID: 37381018 DOI: 10.1186/s12964-023-01134-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/22/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is a major cause of high morbidity and mortality worldwide. Several environmental, genetic and lifestyle factors are associated with the development of cancer in humans and result in suboptimal treatment. The human microbiota has been implicated in the pathophysiological process of cancer and has been used as a diagnostic, prognostic and risk assessment tool in cancer management. Notably, both extratumoural and intratumoural microbiota are important components of the tumor microenvironment, subtly influencing tumorigenesis, progression, treatment and prognosis. The potential oncogenic mechanisms of action of the intratumoural microbiota include induction of DNA damage, influence on cell signaling pathways and impairment of immune responses. Some naturally occurring or genetically engineered microorganisms can specifically accumulate and replicate in tumors and then initiate various anti-tumor programs, ultimately promoting the therapeutic effect of tumor microbiota and reducing the toxic and side effects of conventional tumor treatments, which may be conducive to the pursuit of accurate cancer treatment. In this review, we summarise evidence revealing the impact of the intratumoural microbiota on cancer occurrence and progress and potential therapeutic and diagnostic applications, which may be a promising novel strategy to inhibit tumor development and enhance therapeutic efficacy. Video Abstract.
Collapse
Affiliation(s)
- Hao Ji
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Chen Wei
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Yichao Ma
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Jiahao Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Fei Wang
- Clinical Medical College, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bin Zhao
- Clinical Medical College, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
29
|
Song R, Liu F, Ping Y, Zhang Y, Wang L. Potential non-invasive biomarkers in tumor immune checkpoint inhibitor therapy: response and prognosis prediction. Biomark Res 2023; 11:57. [PMID: 37268978 DOI: 10.1186/s40364-023-00498-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICI administration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immunology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response and the potential for widespread clinical application, we review the recent research in this field with the aim of contributing to the identification of patients who may derive the greatest benefit from ICI therapy.
Collapse
Affiliation(s)
- Ruixia Song
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
30
|
Hilmi M, Kamal M, Vacher S, Dupain C, Ibadioune S, Halladjian M, Sablin MP, Marret G, Ajgal ZC, Nijnikoff M, Salomon A, El Beaino Z, Servant N, Dureau S, Sokol H, Nicolle R, Le Tourneau C, Bieche I, Neuzillet C. Intratumoral microbiome is driven by metastatic site and associated with immune histopathological parameters: An ancillary study of the SHIVA clinical trial. Eur J Cancer 2023; 183:152-161. [PMID: 36868056 DOI: 10.1016/j.ejca.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Data on the role of the microbiota in cancer have accumulated in recent years, with particular interest in intratumoral bacteria. Previous results have shown that the composition of intratumoral microbiome is different depending on the type of primary tumour and that bacteria from the primary tumour could migrate to metastatic sites. METHODS Seventy-nine patients with breast, lung, or colorectal cancer and available biopsy samples from lymph node, lung, or liver site, treated in the SHIVA01 trial were analysed. We performed bacterial 16S rRNA gene sequencing on these samples to characterise the intratumoral microbiome. We assessed the association between microbiome composition, clinicopathological characteristics, and outcomes. RESULTS Microbial richness (Chao1 index), evenness (Shannon index) and beta-diversity (Bray Curtis distance) were associated with biopsy site (p = 0.0001, p = 0.03 and p < 0.0001, respectively) but not with primary tumour type (p = 0.52, p = 0.54 and p = 0.82, respectively). Furthermore, microbial richness was inversely associated with tumour-infiltrating lymphocytes (TILs, p = 0.02), and PD-L1 expression on immune cells (p = 0.03), or assessed by Tumor Proportion Score (TPS, p = 0.02) or Combined Positive Score (CPS, p = 0.04). Beta-diversity was also associated with these parameters (p < 0.05). Patients with lower intratumoral microbiome richness had shorter overall survival (p = 0.03) and progression-free survival (p = 0.02) in multivariate analysis. CONCLUSION Biopsy site, rather than primary tumour type, was strongly associated with microbiome diversity. Immune histopathological parameters such as PD-L1 expression and TILs were significantly associated with alpha and beta-diversity supporting the cancer-microbiome-immune axis hypothesis.
Collapse
Affiliation(s)
- Marc Hilmi
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris 75005, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France; Medical Oncology Department, Institut Curie, Saint-Cloud 92210, France.
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris 75005, France
| | - Célia Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Sabrina Ibadioune
- Department of Genetics, Institut Curie, PSL Research University, Paris 75005, France
| | - Maral Halladjian
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Marie Paule Sablin
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Grégoire Marret
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Zahra Castel Ajgal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Michèle Nijnikoff
- Institut Curie, PSL Research University, Biological Resource Center, Paris 75248, France
| | - Anne Salomon
- Pathology Department, Institut Curie, 75005 Paris, France
| | | | - Nicolas Servant
- INSERM U900, Mines Paris Tech, Institut Curie, Paris 75000, France
| | - Sylvain Dureau
- Statistics Department, Institut Curie, Saint-Cloud 92210, France
| | - Harry Sokol
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France; Sorbonne University, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris 75012, France; INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
| | - Remy Nicolle
- Université Paris Cité, Centre de Recherche sur L'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris F-75018, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Ivan Bieche
- Department of Genetics, Institut Curie, PSL Research University, Paris 75005, France; INSERM U1016, Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | - Cindy Neuzillet
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris 75005, France; Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France; Medical Oncology Department, Institut Curie, Saint-Cloud 92210, France
| |
Collapse
|
31
|
Jiang Z, Zhang W, Zhang Z, Sha G, Wang D, Tang D. Intratumoral microbiota: A new force in diagnosing and treating pancreatic cancer. Cancer Lett 2023; 554:216031. [PMID: 36481214 DOI: 10.1016/j.canlet.2022.216031] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is an increasingly growing source of cancer-related deaths and is often diagnosed at advanced stages. Its treatment is difficult because of the poor results of conventional treatments, such as surgery, chemotherapy, and radiotherapy. Microbiota and their products can regulate the microenvironment of pancreatic tumors, the biological behavior of pancreatic cancer cells, and the functionality of the immune system. Promising results have been achieved in treating pancreatic cancer by regulating microbiota. However, intratumoral microbiota is still in its infancy as a new field of discovery for pancreatic cancer. This review summarizes the mechanisms by which intratumoral microbiota causes pancreatic cancer tumorigenesis, progression, and metastasis and demonstrates their significant potential in diagnosing and treating pancreatic cancer. Additionally, we present an outlook on the future of intratumoral microbiota in treating pancreatic cancer.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
32
|
Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther 2023; 8:35. [PMID: 36646684 PMCID: PMC9842669 DOI: 10.1038/s41392-022-01304-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
Microorganisms, including bacteria, viruses, fungi, and other eukaryotes, play critical roles in human health. An altered microbiome can be associated with complex diseases. Intratumoral microbial components are found in multiple tumor tissues and are closely correlated with cancer initiation and development and therapy efficacy. The intratumoral microbiota may contribute to promotion of the initiation and progression of cancers by DNA mutations, activating carcinogenic pathways, promoting chronic inflammation, complement system, and initiating metastasis. Moreover, the intratumoral microbiota may not only enhance antitumor immunity via mechanisms including STING signaling activation, T and NK cell activation, TLS production, and intratumoral microbiota-derived antigen presenting, but also decrease antitumor immune responses and promote cancer progression through pathways including upregulation of ROS, promoting an anti-inflammatory environment, T cell inactivation, and immunosuppression. The effect of intratumoral microbiota on antitumor immunity is dependent on microbiota composition, crosstalk between microbiota and the cancer, and status of cancers. The intratumoral microbiota may regulate cancer cell physiology and the immune response by different signaling pathways, including ROS, β-catenin, TLR, ERK, NF-κB, and STING, among others. These viewpoints may help identify the microbiota as diagnosis or prognosis evaluation of cancers, and as new therapeutic strategy and potential therapeutic targets for cancer therapy.
Collapse
|
33
|
Arnone AA, Cook KL. Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology 2022; 164:6772818. [PMID: 36282876 PMCID: PMC9923803 DOI: 10.1210/endocr/bqac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/16/2023]
Abstract
Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme β-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Katherine L Cook
- Correspondence: Katherine L. Cook, PhD, Wake Forest School of Medicine, 575 N Patterson Ave, Ste 340, Winston-Salem, NC 27157, USA.
| |
Collapse
|