1
|
Peng J, Ding X, Shih PY, Meng Q, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Discovery of 1(2H)-phthalazinone and 1(2H)-isoquinolinone derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2024; 279:116877. [PMID: 39303515 DOI: 10.1016/j.ejmech.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have been a revelation for treating several cancers, an unmet need remains to broaden ICI therapeutic scope and increase their response rates in clinical trials. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell activation and has previously been identified as a promising target for immunotherapy. Herein, we report the discovery of a series of HPK1 inhibitors with novel 1(2H)-phthalazinone and 1(2H)-isoquinolinone scaffolds. Among them, compound 24 demonstrated potent in vitro activity (HPK1 IC50 value of 10.4 nM) and cellular activity (pSLP76 EC50 = 41 nM & IL-2 EC50 = 108 nM). Compound 24 exhibited favorable mouse and rat pharmacokinetic profiles with reasonable oral exposure. Compound 24 showed potent in vivo anti-tumor activity in a CT26 syngeneic tumor model with 95 % tumor growth inhibition in combination with anti-PD-1.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Pei-Yu Shih
- Insilico Medicine Taiwan Ltd, Suite 1303, No. 333, Sec. 1, Keelung Rd, Xinyi District, Taipei, 110, Taiwan
| | - Qingyuan Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China; Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates.
| |
Collapse
|
2
|
Luo Y, Sheikh TMM, Li X, Yuan Y, Yao F, Wang M, Guo X, Wu J, Shafiq M, Xie Q, Jiao X. Exploring the dynamics of gut microbiota, antibiotic resistance, and chemotherapy impact in acute leukemia patients: A comprehensive metagenomic analysis. Virulence 2024; 15:2428843. [PMID: 39620486 PMCID: PMC11622590 DOI: 10.1080/21505594.2024.2428843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/24/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024] Open
Abstract
Leukemia poses significant challenges to its treatment, and understanding its complex pathogenesis is crucial. This study used metagenomic sequencing to investigate the interplay between chemotherapy, gut microbiota, and antibiotic resistance in patients with acute leukemia (AL). Pre- and post-chemotherapy stool samples from patients revealed alterations in microbial richness, taxa, and antibiotic resistance genes (ARGs). The analysis revealed a decreased alpha diversity, increased dispersion in post-chemotherapy samples, and changes in the abundance of specific bacteria. Key bacteria such as Enterococcus, Klebsiella, and Escherichia coli have been identified as prevalent ARG carriers. Correlation analysis between gut microbiota and blood indicators revealed potential links between microbial species and inflammatory biomarkers, including C-reactive protein (CRP) and adenosine deaminase (ADA). This study investigated the impact of antibiotic dosage on microbiota and ARGs, revealing networks connecting co-occurring ARGs with microbial species (179 nodes, 206 edges), and networks associated with ARGs and antibiotic dosages (50 nodes, 50 edges). Antibiotics such as cephamycin and sulfonamide led to multidrug-resistant Klebsiella colonization. Our analyses revealed distinct microbial profiles with Salmonella enterica elevated post-chemotherapy in NF patients and Akkermansia muciniphila elevated pre-chemotherapy. These microbial signatures could inform strategies to modulate the gut microbiome, potentially mitigating the risk of neutropenic fever in patients undergoing chemotherapy. Finally, a comprehensive analysis of KEGG modules shed light on disrupted metabolic pathways after chemotherapy, providing insights into potential targets for managing side effects. Overall, this study revealed intricate relationships between gut microbiota, chemotherapy, and antibiotic resistance, providing new insights into improving therapy and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - YuMeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Jilong Wu
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| |
Collapse
|
3
|
Badani A, Ozair A, Khasraw M, Woodworth GF, Tiwari P, Ahluwalia MS, Mansouri A. Immune checkpoint inhibitors for glioblastoma: emerging science, clinical advances, and future directions. J Neurooncol 2024:10.1007/s11060-024-04881-2. [PMID: 39570554 DOI: 10.1007/s11060-024-04881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GBM), the most common and aggressive primary central nervous system (CNS) tumor in adults, continues to have a dismal prognosis. Across hundreds of clinical trials, few novel approaches have translated to clinical practice while survival has improved by only a few months over the past three decades. Randomized controlled trials of immune checkpoint inhibitors (ICIs), which have seen impressive success for advanced or metastatic extracranial solid tumors, have so far failed to demonstrate a clinical benefit for patients with GBM. This has been secondary to GBM heterogeneity, the unique immunosuppressive CNS microenvironment, immune-evasive strategies by cancer cells, and the rapid evolution of tumor on therapy. This review aims to summarize findings from major clinical trials of ICIs for GBM, review historic failures, and describe currently promising avenues of investigation. We explore the biological mechanisms driving ICI responses, focusing on the role of the tumor microenvironment, immune evasion, and molecular biomarkers. Beyond conventional monotherapy approaches targeting PD-1, PD-L1, CTLA-4, we describe emerging approaches for GBM, such as dual-agent ICIs, and combination of ICIs with oncolytic virotherapy, antigenic peptide vaccines, chimeric antigenic receptor (CAR) T-cell therapy, along with nanoparticle-based delivery systems to enhance ICI efficacy. We highlight potential strategies for improving patient selection and treatment personalization, along with real-time, longitudinal monitoring of therapeutic responses through advanced imaging and liquid biopsy techniques. Integrated radiomics, tissue, and plasma-based analyses, may potentially uncover immunotherapeutic response signatures, enabling early, adaptive therapeutic adjustments. By specifically targeting current therapeutic challenges, outcomes for GBM patients may potentially be improved.
Collapse
Affiliation(s)
- Aarav Badani
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neuroscience, University of California, Berkeley, CA, USA
| | - Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mustafa Khasraw
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Center, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- University of Maryland - Medicine Institute for Neuroscience Discovery (UM-MIND), Baltimore, MD, USA
| | - Pallavi Tiwari
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Affairs (VA) Healthcare, Madison, WI, USA
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
4
|
Cao Z, Zhu J, Wang Z, Peng Y, Zeng L. Comprehensive pan-cancer analysis reveals ENC1 as a promising prognostic biomarker for tumor microenvironment and therapeutic responses. Sci Rep 2024; 14:25331. [PMID: 39455818 PMCID: PMC11512054 DOI: 10.1038/s41598-024-76798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Accumulating research showed that ENC1 plays a critical role in maintaining the physiological functions. However, little is known about its role in predicting prognosis and immunotherapy response across cancers. In our results, compared to normal tissues, most cancer tissues exhibit increased ENC1 expression. We found that the most common type of genetic variation was gene mutation. In addition, a positive correlation was found between CNV and ENC1 expression. Moreover, the overexpression of ENC1 was positively correlated with poor clinical outcomes. The GSEA results showed that ENC1 is closely correlated with tumor-promoting biological functions in most cancers. ENC1 is also closely negatively associated with the infiltration levels of T cells, activated NK cells, and B cells. Most immunomodulators are positively associated with ENC1. Further, we verified that inhibition of ENC1 expression suppressed the proliferation and migration of breast cancer, pancreatic cancer and glioma cells. In conclusion, our study demonstrated that ENC1 plays a protumorigenic role in most cancers. Additionally, ENC1 is closely correlated with tumor microenvironment features and immune checkpoint inhibitors expression. Overall, ENC1 could serve as a promising potential prognostic biomarker in various tumors.
Collapse
Affiliation(s)
- Zhenyu Cao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Jinfeng Zhu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, China
| | - Zicheng Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuhuai Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Liyun Zeng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China.
| |
Collapse
|
5
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
6
|
Guo SB, Hu LS, Huang WJ, Zhou ZZ, Luo HY, Tian XP. Comparative investigation of neoadjuvant immunotherapy versus adjuvant immunotherapy in perioperative patients with cancer: a global-scale, cross-sectional, and large-sample informatics study. Int J Surg 2024; 110:4660-4671. [PMID: 38652128 PMCID: PMC11325894 DOI: 10.1097/js9.0000000000001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Neoadjuvant and adjuvant immunotherapies for cancer have evolved through a series of remarkable and critical research advances; however, addressing their similarities and differences is imperative in clinical practice. Therefore, this study aimed to examine their similarities and differences from the perspective of informatics analysis. METHODS This cross-sectional study retrospectively analyzed extensive relevant studies published between 2014 and 2023 using stringent search criteria, excluding nonpeer-reviewed and non-English documents. The main outcome variables are publication volume, citation volume, connection strength, occurrence frequency, relevance percentage, and development percentage. Furthermore, an integrated comparative analysis was conducted using unsupervised hierarchical clustering, spatiotemporal analysis, regression statistics, and Walktrap algorithm analysis. RESULTS This analysis included 1373 relevant studies. Advancements in neoadjuvant and adjuvant immunotherapies have been promising over the last decade, with an annual growth rate of 25.18 vs. 6.52% and global collaboration (International Co-authorships) of 19.93 vs. 19.84%. Respectively, five dominant research clusters were identified through unsupervised hierarchical clustering based on machine learning, among which Cluster 4 (Balance of neoadjuvant immunotherapy efficacy and safety) and Cluster 2 (Adjuvant immunotherapy clinical trials) [Average Publication Year (APY): 2021.70±0.70 vs. 2017.54±4.59] are emerging research populations. Burst and regression curve analyses uncovered domain pivotal research signatures, including microsatellite instability (R 2 =0.7500, P =0.0025) and biomarkers (R 2 =0.6505, P =0.0086) in neoadjuvant scenarios, and the tumor microenvironment (R 2 =0.5571, P =0.0209) in adjuvant scenarios. The Walktrap algorithm further revealed that 'neoadjuvant immunotherapy, nonsmall cell lung cancer (NSCLC), immune checkpoint inhibitors, melanoma' and 'adjuvant immunotherapy, melanoma, hepatocellular carcinoma, dendritic cells' (Relevance Percentage: 100 vs. 100%, Development Percentage: 37.5 vs. 17.1%) are extremely relevant to this field but remain underdeveloped, highlighting the need for further investigation. CONCLUSION This study identified pivotal research signatures and provided substantial predictions for neoadjuvant and adjuvant cancer immunotherapies. In addition, comprehensive quantitative comparisons revealed a notable shift in focus within this field, with neoadjuvant immunotherapy taking precedence over adjuvant immunotherapy after 2020; such a qualitative finding facilitate proper decision-making for subsequent research and mitigate the wastage of healthcare resources.
Collapse
Affiliation(s)
- Song-Bin Guo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Le-Sheng Hu
- Department of Plastic Surgery, Shantou Central Hospital, Shantou
| | - Wei-Juan Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou
| | - Zhen-Zhong Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| |
Collapse
|
7
|
Li T, Sun S, Li Y, Zhang Y, Wei L. Immunotherapy revolutionizing brain metastatic cancer treatment: personalized strategies for transformative outcomes. Front Immunol 2024; 15:1418580. [PMID: 39136027 PMCID: PMC11317269 DOI: 10.3389/fimmu.2024.1418580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Brain metastatic cancer poses a significant clinical challenge, with limited treatment options and poor prognosis for patients. In recent years, immunotherapy has emerged as a promising strategy for addressing brain metastases, offering distinct advantages over conventional treatments. This review explores the evolving landscape of tumor immunotherapy in the context of brain metastatic cancer, focusing on the intricate interplay between the tumor microenvironment (TME) and immunotherapeutic approaches. By elucidating the complex interactions within the TME, including the role of immune cells, cytokines, and extracellular matrix components, this review highlights the potential of immunotherapy to reshape the treatment paradigm for brain metastases. Leveraging immune checkpoint inhibitors, cellular immunotherapies, and personalized treatment strategies, immunotherapy holds promise in overcoming the challenges posed by the blood-brain barrier and immunosuppressive microenvironment of brain metastases. Through a comprehensive analysis of current research findings and future directions, this review underscores the transformative impact of immunotherapy on the management of brain metastatic cancer, offering new insights and opportunities for personalized and precise therapeutic interventions.
Collapse
Affiliation(s)
- Ting Li
- Medical Oncology Department of Thoracic Cancer 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Shichen Sun
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yubing Li
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Yanyu Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Linlin Wei
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
9
|
Wu X, Fan J, Zhang X, Li T, Song J. Global trends of single cell sequence associated in cancer from 2011 to 2024: A bibliometric analysis. Heliyon 2024; 10:e32847. [PMID: 38975217 PMCID: PMC11226897 DOI: 10.1016/j.heliyon.2024.e32847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Objective Exploring the different molecular and clinicopathological features of nodal cancer based on single cell sequencing can reveal the intertumoral heterogeneity in cancer, and provide new ideas for early diagnosis, treatment and prognosis analysis of cancer. Methods The hotspots, the features of worldwide scientific output, and the frontiers concerning single cell sequence related to cancer from 2011 to 2024 were determined using our bibliometric analysis. Web of Science Core Collection (WOSCC) database was searched for publications on single cell sequence associated with cancer that were published between 2011 and 2024. According to the journals, keywords, number of records, affiliations, citations, and countries, we conducted a bibliometric analysis. With the use of the data gathered from the WOSCC, geographic distribution was visualized, keyword, affiliation, and author cluster analyses were conducted, and co-cited references were reviewed and a descriptive analysis was also performed. Results From the analysis, it was concluded that 6189 articles that were published between 2011 and 2024 in total were identified. Frontiers in immunology is the leading journal with the most publications in field of the research. The five clusters that were identified for hotspots included immunotherapy, single-cell RNA sequencing, hepatocellular carcinoma, proliferation, gene expression appeared the most frequently. Journals, nations, organizations, scholars with most contribution and most referenced publications globally were extracted. Studies have mostly concentrated on the spatial transcriptomics, pan-cancer analysis, hepatocellular carcinoma et al. Conclusion Single-cell sequencing plays a significant role in tumor diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, 075000, China
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, 075000, China
| | - Jianchun Fan
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, 075000, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jichao Song
- Department of Gynaecology, Xinchang Country People's Hospital/Xinchang County Maternal and Child Health Hospital, 117 Gushan Middle Road, Xinchang, 312500, Zhejiang Province, China
| |
Collapse
|
10
|
Chen Z, Ding YH, Shao L, Ji XM, Qian X, Zhang AQ. Qingfei mixture mitigates immunosuppression of tumor microenvironment in non-small cell lung cancer by blocking stat1/Ido1-mediated tryptophan-kynurenine pathway. Heliyon 2024; 10:e32260. [PMID: 38882349 PMCID: PMC11176930 DOI: 10.1016/j.heliyon.2024.e32260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Programmed death-1 (PD-1) acts as a T cell checkpoint and is important in controlling T cell exhaustion. Blocking the intercommunication across PD-1 and PD-L1 is promising for advanced lung cancer treatment. However, the response rate requires being strengthened. This study aimed to determine whether the combination treatment of Qingfei mixture (QFM) and PD-1 inhibitor could improve the sensitivity of monoclonal antibody by regulating STAT1/IDO1-mediated tryptophan (Trp)-kynurenine (Kyn) pathway. The in vivo imaging system, immunofluorescence, hematoxylin-eosin staining, TUNEL, flow cytometry, HPLC, and ELISA were used to estimate the anti-tumor effects in LLC-luc tumor-bearing C57BL/6 mice treated with QFM, PD-1 inhibitor, 2-NP (enhancer of STAT1 transcription), and FICZ (AhR agonist) alone or in combination. IFN-γ-mediated A549 and LLC cells were treated with QFM-containing serum and fludarabine (FLU, STAT1 inhibitor), and cell viability, apoptosis, and Kyn content were then evaluated using CCK-8 assays, flow cytometry, and HPLC assays, respectively. Additionally, the expressions of STAT1, IDO1, AhR, NFATc1, TRIP12, PD-1, and PD-L1 were measured in vivo and in vitro. We found QFM increased the anti-cancer actions of PD-1 inhibitors by increasing the CD8+IFNγ+ T cells infiltration and decreasing the ratio of Kyn/Trp. Besides, QFM-containing serum suppressed the proliferation and promoted apoptosis in A549 and LLC cells, meanwhile, FLU boosted the effects of QFM-containing serum. Moreover, the suppression of tumor growth in the combination therapy was attenuated in the mice receiving 2-NP or FICZ. The occurrence of the above results was accompanied by a decrease in STAT1, IDO1, AhR, PD-1, and PD-L1 expressions. Collectively, the findings suggested that QFM may increase the influences of PD-1 inhibitors at least partially by blocking the STAT1/IDO1-mediated tryptophan-kynurenine pathway in lung cancer.
Collapse
Affiliation(s)
- Zhuo Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Heng Ding
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lan Shao
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Xu-Ming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiang Qian
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ai-Qin Zhang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Chen BB, Liang PC, Shih TTF, Liu TH, Shen YC, Lu LC, Lin ZZ, Hsu C, Hsu CH, Cheng AL, Shao YY. Changes in Posttreatment Spleen Volume Associated with Immunotherapy Outcomes for Advanced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1015-1029. [PMID: 38854818 PMCID: PMC11162638 DOI: 10.2147/jhc.s462470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose We investigated whether spleen volume (SV) changes were associated with treatment outcomes in advanced hepatocellular carcinoma (HCC) patients who received immunotherapy or first-line sorafenib. Patients and Methods Patients with advanced HCC who underwent immunotherapy or first-line sorafenib at our institute were retrospectively analyzed. CT was used to measure SV before and within 3 months of treatment initiation. Tumor assessment followed Response Evaluation Criteria in Solid Tumors version 1.1. The association between SV change and tumor response or progression-free survival (PFS) was analyzed. The inverse probability of treatment weighting (IPTW) was used to adjust for differences in baseline characteristics. Results The immunotherapy group comprised 143 patients (124 men, mean age, 59.8 years ± 11.2 [standard deviation]), while the sorafenib group had 57 (47 men, mean age, 59.6 years ± 9.9). SV increased in 108 (75.5%) immunotherapy and 21 (36.8%) sorafenib patients. In the immunotherapy group, patients with increased SV were more likely than those with decreased SV to have a higher disease control rate (76.9% vs 57.1%, p = 0.024) and durable clinical benefit (52.8% vs 25.7%, p = 0.005). It was also associated with extended PFS in the immunotherapy group in both the univariate (p = 0.028) and multivariate (p = 0.014) analysis. By contrast, in the sorafenib group, an increased in SV was not associated with treatment response but was presumably associated with reduced PFS (p = 0.072) in the multivariate analysis. After IPTW adjustment, the increase in SV remained a significant predictor for DCB and PFS in the immunotherapy group. Conclusion Most patients exhibited an increase in SV after the initiation of immunotherapy, which may be used to predict response and prognosis. However, this association was not observed in patients who received sorafenib.
Collapse
Affiliation(s)
- Bang-Bin Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei City, Taiwan
- Department of Radiology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Po-Chin Liang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei City, Taiwan
- Department of Radiology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, 300, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging, National Taiwan University Hospital, Taipei City, Taiwan
- Department of Radiology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Tsung-Hao Liu
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ying-Chun Shen
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Li-Chun Lu
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Zhong-Zhe Lin
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chiun Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Yun Shao
- Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
12
|
Hou J, Yang X, Xie S, Zhu B, Zha H. Circulating T cells: a promising biomarker of anti-PD-(L)1 therapy. Front Immunol 2024; 15:1371559. [PMID: 38576625 PMCID: PMC10991692 DOI: 10.3389/fimmu.2024.1371559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Anti-PD-(L)1 therapy has shown great efficacy in some patients with cancer. However, a significant proportion of patients with cancer do not respond to it. Another unmet clinical need for anti-PD-(L)1 therapy is the dynamic monitoring of treatment effects. Therefore, identifying biomarkers that can stratify potential responders before PD-(L)1 treatment and timely monitoring of the efficacy of PD-(L)1 treatment are crucial in the clinical setting. The identification of biomarkers by liquid biopsy has attracted considerable attention. Among the identified biomarkers, circulating T cells are one of the most promising because of their indispensable contribution to anti-PD-(L)1 therapy. The present review aimed to thoroughly explore the potential of circulating T cells as biomarkers of anti-PD-(L)1 therapy and its advantages and limitations.
Collapse
Affiliation(s)
- Junlei Hou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xuezhi Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shuanglong Xie
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Haoran Zha
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
13
|
Wise DR, Pachynski RK, Denmeade SR, Aggarwal RR, Deng J, Febles VA, Balar AV, Economides MP, Loomis C, Selvaraj S, Haas M, Kagey MH, Newman W, Baum J, Troxel AB, Griglun S, Leis D, Yang N, Aranchiy V, Machado S, Waalkes E, Gargano G, Soamchand N, Puranik A, Chattopadhyay P, Fedal E, Deng FM, Ren Q, Chiriboga L, Melamed J, Sirard CA, Wong KK. A Phase 1/2 multicenter trial of DKN-01 as monotherapy or in combination with docetaxel for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00798-z. [PMID: 38341461 DOI: 10.1038/s41391-024-00798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Dickkopf-related protein 1 (DKK1) is a Wingless-related integrate site (Wnt) signaling modulator that is upregulated in prostate cancers (PCa) with low androgen receptor expression. DKN-01, an IgG4 that neutralizes DKK1, delays PCa growth in pre-clinical DKK1-expressing models. These data provided the rationale for a clinical trial testing DKN-01 in patients with metastatic castration-resistant PCa (mCRPC). METHODS This was an investigator-initiated parallel-arm phase 1/2 clinical trial testing DKN-01 alone (monotherapy) or in combination with docetaxel 75 mg/m2 (combination) for men with mCRPC who progressed on ≥1 AR signaling inhibitors. DKK1 status was determined by RNA in-situ expression. The primary endpoint of the phase 1 dose escalation cohorts was the determination of the recommended phase 2 dose (RP2D). The primary endpoint of the phase 2 expansion cohorts was objective response rate by iRECIST criteria in patients treated with the combination. RESULTS 18 pts were enrolled into the study-10 patients in the monotherapy cohorts and 8 patients in the combination cohorts. No DLTs were observed and DKN-01 600 mg was determined as the RP2D. A best overall response of stable disease occurred in two out of seven (29%) evaluable patients in the monotherapy cohort. In the combination cohort, five out of seven (71%) evaluable patients had a partial response (PR). A median rPFS of 5.7 months was observed in the combination cohort. In the combination cohort, the median tumoral DKK1 expression H-score was 0.75 and the rPFS observed was similar between patients with DKK1 H-score ≥1 versus H-score = 0. CONCLUSION DKN-01 600 mg was well tolerated. DKK1 blockade has modest anti-tumor activity as a monotherapy for mCRPC. Anti-tumor activity was observed in the combination cohorts, but the response duration was limited. DKK1 expression in the majority of mCRPC is low and did not clearly correlate with anti-tumor activity of DKN-01 plus docetaxel.
Collapse
Affiliation(s)
- David R Wise
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Rahul R Aggarwal
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jiehui Deng
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Victor Adorno Febles
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- New York Harbor Veterans Healthcare System, New York, NY, USA
| | - Arjun V Balar
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Minas P Economides
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Cynthia Loomis
- Department of Pathology and DART Experimental Pathology Research Laboratory, NYU Langone Health, New York, NY, USA
| | - Shanmugapriya Selvaraj
- Department of Pathology and DART Experimental Pathology Research Laboratory, NYU Langone Health, New York, NY, USA
| | | | | | | | - Jason Baum
- Leap Therapeutics, Inc, Cambridge, MA, USA
| | - Andrea B Troxel
- Division of Biostatistics, Department of Population Health at NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah Griglun
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dayna Leis
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nina Yang
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Viktoriya Aranchiy
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Sabrina Machado
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Erika Waalkes
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Gabrielle Gargano
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nadia Soamchand
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Amrutesh Puranik
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Pratip Chattopadhyay
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Ezeddin Fedal
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Qinghu Ren
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | - Kwok-Kin Wong
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|