1
|
Lachmayr H, Merrill AH. A Brief Overview of the Toxic Sphingomyelinase Ds of Brown Recluse Spider Venom and Other Organisms and Simple Methods To Detect Production of Its Signature Cyclic Ceramide Phosphate. Mol Pharmacol 2024; 105:144-154. [PMID: 37739813 PMCID: PMC10877732 DOI: 10.1124/molpharm.123.000709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023] Open
Abstract
A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.
Collapse
Affiliation(s)
- Hannah Lachmayr
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
2
|
Gremski LH, da Justa HC, Polli NLC, Schluga PHDC, Theodoro JL, Wille ACM, Senff-Ribeiro A, Veiga SS. Systemic Loxoscelism, Less Frequent but More Deadly: The Involvement of Phospholipases D in the Pathophysiology of Envenomation. Toxins (Basel) 2022; 15:17. [PMID: 36668837 PMCID: PMC9864854 DOI: 10.3390/toxins15010017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/29/2022] Open
Abstract
Bites of Loxosceles spiders can lead to a set of clinical manifestations called loxoscelism, and are considered a public health problem in many regions. The signs and symptoms of loxoscelism are divided into cutaneous and systemic forms. The former is more frequent and includes signs of envenoming at the bite site or neighboring regions. Systemic loxoscelism, although much less frequent, is associated with complications, and can even lead to death. It may include intravascular hemolysis, acute renal failure, and thrombocytopenia. Loxosceles venoms are enriched with phospholipases D (PLDs), which are a family of isoforms found at intra-species and inter-species levels. Under experimental conditions, these enzymes reproduce the main clinical signs of loxoscelism, including an exacerbated inflammatory response at the bite site and dermonecrosis, as well as thrombocytopenia, intravascular hemolysis, and acute renal failure. The role of PLDs in cutaneous loxoscelism was described over forty years ago, when studies identified and purified toxins featured as sphingomyelinase D. More recently, the production of recombinant PLDs and discoveries about their structure and mechanism has enabled a deeper characterization of these enzymes. In this review, we describe these biochemical and functional features of Loxosceles PLDs that determine their involvement in systemic loxoscelism.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | | | | | - João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| |
Collapse
|
3
|
Arán-Sekul T, Perčić-Sarmiento I, Valencia V, Olivero N, Rojas JM, Araya JE, Taucare-Ríos A, Catalán A. Toxicological Characterization and Phospholipase D Activity of the Venom of the Spider Sicarius thomisoides. Toxins (Basel) 2020; 12:E702. [PMID: 33171968 PMCID: PMC7694614 DOI: 10.3390/toxins12110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Envenomation by Loxosceles spiders (Sicariidae family) has been thoroughly documented. However, little is known about the potential toxicity of members from the Sicarius genus. Only the venom of the Brazilian Sicarius ornatus spider has been toxicologically characterized. In Chile, the Sicarius thomisoides species is widely distributed in desert and semidesert environments, and it is not considered a dangerous spider for humans. This study aimed to characterize the potential toxicity of the Chilean S. thomisoides spider. To do so, specimens of S. thomisoides were captured in the Atacama Desert, the venom was extracted, and the protein concentration was determined. Additionally, the venoms were analyzed by electrophoresis and Western blotting using anti-recombinant L. laeta PLD1 serum. Phospholipase D enzymatic activity was assessed, and the hemolytic and cytotoxic effects were evaluated and compared with those of the L. laeta venom. The S. thomisoides venom was able to hydrolyze sphingomyelin as well as induce complement-dependent hemolysis and the loss of viability of skin fibroblasts with a dermonecrotic effect of the venom in rabbits. The venom of S. thomisoides showed intraspecific variations, with a similar protein pattern as that of L. laeta venom at 32-35 kDa, recognized by serum anti-LlPLD1. In this context, we can conclude that the venom of Sicarius thomisoides is similar to Loxosceles laeta in many aspects, and the dermonecrotic toxin present in their venom could cause severe harm to humans; thus, precautions are necessary to avoid exposure to their bite.
Collapse
Affiliation(s)
- Tomás Arán-Sekul
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Ivanka Perčić-Sarmiento
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Verónica Valencia
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Nelly Olivero
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - José M. Rojas
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Jorge E. Araya
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Andrés Taucare-Ríos
- Facultad de Ciencias, Universidad Arturo Prat, Iquique 1110939, Chile;
- Centro de Investigación en Medio Ambiente (CENIMA), Universidad Arturo Prat, Iquique 1110939, Chile
| | - Alejandro Catalán
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| |
Collapse
|
4
|
Gremski LH, da Justa HC, da Silva TP, Polli NLC, Antunes BC, Minozzo JC, Wille ACM, Senff-Ribeiro A, Arni RK, Veiga SS. Forty Years of the Description of Brown Spider Venom Phospholipases-D. Toxins (Basel) 2020; 12:toxins12030164. [PMID: 32155765 PMCID: PMC7150852 DOI: 10.3390/toxins12030164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/24/2023] Open
Abstract
Spiders of the genus Loxosceles, popularly known as Brown spiders, are considered a serious public health issue, especially in regions of hot or temperate climates, such as parts of North and South America. Although the venoms of these arachnids are complex in molecular composition, often containing proteins with distinct biochemical characteristics, the literature has primarily described a family of toxins, the Phospholipases-D (PLDs), which are highly conserved in all Loxosceles species. PLDs trigger most of the major clinical symptoms of loxoscelism i.e., dermonecrosis, thrombocytopenia, hemolysis, and acute renal failure. The key role played by PLDs in the symptomatology of loxoscelism was first described 40 years ago, when researches purified a hemolytic toxin that cleaved sphingomyelin and generated choline, and was referred to as a Sphingomyelinase-D, which was subsequently changed to Phospholipase-D when it was demonstrated that the enzyme also cleaved other cellular phospholipids. In this review, we present the information gleaned over the last 40 years about PLDs from Loxosceles venoms especially with regard to the production and characterization of recombinant isoforms. The history of obtaining these toxins is discussed, as well as their molecular organization and mechanisms of interaction with their substrates. We will address cellular biology aspects of these toxins and how they can be used in the development of drugs to address inflammatory processes and loxoscelism. Present and future aspects of loxoscelism diagnosis will be discussed, as well as their biotechnological applications and actions expected for the future in this field.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Hanna Câmara da Justa
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Thaís Pereira da Silva
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Nayanne Louise Costacurta Polli
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Bruno César Antunes
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
- Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Piraquara 83302-200, PR, Brazil;
| | - João Carlos Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Piraquara 83302-200, PR, Brazil;
| | - Ana Carolina Martins Wille
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | - Andrea Senff-Ribeiro
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Raghuvir Krishnaswamy Arni
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Silvio Sanches Veiga
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
- Correspondence: ; Tel.: +55-(41)-3361-1776
| |
Collapse
|
5
|
Grashof D, Zdenek CN, Dobson JS, Youngman NJ, Coimbra F, Benard-Valle M, Alagon A, Fry BG. A Web of Coagulotoxicity: Failure of Antivenom to Neutralize the Destructive (Non-Clotting) Fibrinogenolytic Activity of Loxosceles and Sicarius Spider Venoms. Toxins (Basel) 2020; 12:toxins12020091. [PMID: 32019058 PMCID: PMC7076800 DOI: 10.3390/toxins12020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Envenomations are complex medical emergencies that can have a range of symptoms and sequelae. The only specific, scientifically-validated treatment for envenomation is antivenom administration, which is designed to alleviate venom effects. A paucity of efficacy testing exists for numerous antivenoms worldwide, and understanding venom effects and venom potency can help identify antivenom improvement options. Some spider venoms can produce debilitating injuries or even death, yet have been largely neglected in venom and antivenom studies because of the low venom yields. Coagulation disturbances have been particularly under studied due to difficulties in working with blood and the coagulation cascade. These circumstances have resulted in suboptimal spider bite treatment for medically significant spider genera such as Loxosceles and Sicarius. This study identifies and quantifies the anticoagulant effects produced by venoms of three Loxoscles species (L. reclusa, L. boneti, and L. laeta) and that of Sicarius terrosus. We showed that the venoms of all studied species are able to cleave the fibrinogen Aα-chain with varying degrees of potency, with L. reclusa and S. terrosus venom cleaving the Aα-chain most rapidly. Thromboelastography analysis revealed that only L. reclusa venom is able to reduce clot strength, thereby presumably causing anticoagulant effects in the patient. Using the same thromboelastography assays, antivenom efficacy tests revealed that the commonly used Loxoscles-specific SMase D recombinant based antivenom failed to neutralize the anticoagulant effects produced by Loxosceles venom. This study demonstrates the fibrinogenolytic activity of Loxosceles and Sicarius venom and the neutralization failure of Loxosceles antivenom, thus providing impetus for antivenom improvement.
Collapse
Affiliation(s)
- Dwin Grashof
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Nicholas J. Youngman
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Francisco Coimbra
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Melisa Benard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (M.B.-V.); (A.A.)
| | - Alejandro Alagon
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (M.B.-V.); (A.A.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
- Correspondence:
| |
Collapse
|
6
|
Abbott DM, Brunetti E, Barruscotti S, Brazzelli V. Brown recluse ( L. rufescens) can bite in Northern Italy, too: first case report and review of the literature. BMJ Case Rep 2019; 12:12/8/e230000. [PMID: 31401585 DOI: 10.1136/bcr-2019-230000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The brown recluse, or fiddleback (violin) spider, is a poisonous spider of the Loxosceles genus that resides in warmer regions and old structures making the warm Mediterranean climate a natural habitat for the European species, L. rufescens Even in infested households, however, bites are rare, as they are nocturnal and unaggressive. In 2015, the first supposed death by L. rufescens occurred in Italy, but before and even after such bite, the literature on these spiders has been under-represented. This case report documents a confirmed bite by a violin spider on a medical student in Pavia, Italy. The presentation in this case was initially with general systemic, flu-like symptoms, then as cellulitis with lymphangitis that persisted for nearly 2 weeks until resolving without prolonged or complicated pathology. We present the first documented case of a L. rufescens bite in Northern Italy, to the best of our knowledge.
Collapse
Affiliation(s)
- David Michael Abbott
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, Institute of Dermatology, IRCCS Fondazione Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Enrico Brunetti
- Unit of Infectious and Tropical Diseases, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Stefania Barruscotti
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, Institute of Dermatology, PhD Experimental Medicine, IRCCS Fondazione Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Valeria Brazzelli
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, Institute of Dermatology, IRCCS Fondazione Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|