1
|
Serdo DF. Insects' perception and behavioral responses to plant semiochemicals. PeerJ 2024; 12:e17735. [PMID: 39035155 PMCID: PMC11260073 DOI: 10.7717/peerj.17735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024] Open
Abstract
Insect-plant interactions are shaped by the exchange of chemical cues called semiochemicals, which play a vital role in communication between organisms. Plants release a variety of volatile organic compounds in response to environmental cues, such as herbivore attacks. These compounds play a crucial role in mediating the interactions between plants and insects. This review provides an in-depth analysis of plant semiochemicals, encompassing their classification, current understanding of extraction, identification, and characterization using various analytical techniques, including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. The article also delves into the manner in which insects perceive and respond to plant semiochemicals, as well as the impact of environmental factors on plant odor emission and insect orientation. Furthermore, it explores the underlying mechanisms by which insects perceive and interpret these chemical cues, and how this impacts their behavioral responses, including feeding habits, oviposition patterns, and mating behaviors. Additionally, the potential applications of plant semiochemicals in integrated pest management strategies are explored. This review provides insight into the intricate relationships between plants and insects mediated by semiochemicals, highlighting the significance of continued research in this field to better understand and leverage these interactions for effective pest control.
Collapse
|
2
|
Nag A, van Breugel F. Odour source distance is predictable from a time history of odour statistics for large scale outdoor plumes. J R Soc Interface 2024; 21:20240169. [PMID: 39079675 PMCID: PMC11288670 DOI: 10.1098/rsif.2024.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
Odour plumes in turbulent environments are intermittent and sparse. Laboratory-scaled experiments suggest that information about the source distance may be encoded in odour signal statistics, yet it is unclear whether useful and continuous distance estimates can be made under real-world flow conditions. Here, we analyse odour signals from outdoor experiments with a sensor moving across large spatial scales in desert and forest environments to show that odour signal statistics can yield useful estimates of distance. We show that achieving accurate estimates of distance requires integrating statistics from 5 to 10 s, with a high temporal encoding of the olfactory signal of at least 20 Hz. By combining distance estimates from a linear model with wind-relative motion dynamics, we achieved source distance estimates in a 60 × 60 m2 search area with median errors of 3-8 m, a distance at which point odour sources are often within visual range for animals such as mosquitoes.
Collapse
Affiliation(s)
- Arunava Nag
- Computer Science Engineering Department, University of Nevada, Reno, NV, USA
| | - Floris van Breugel
- Integrative Neuroscience Program, University of Nevada, Reno, NV, USA
- Ecology Evolution and Conservation Biology Program, University of Nevada, Reno, NV, USA
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| |
Collapse
|
3
|
Lazebnik T, Golov Y, Gurka R, Harari A, Liberzon A. Exploration-exploitation model of moth-inspired olfactory navigation. J R Soc Interface 2024; 21:20230746. [PMID: 39013419 PMCID: PMC11251768 DOI: 10.1098/rsif.2023.0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/25/2024] [Indexed: 07/18/2024] Open
Abstract
Navigation of male moths towards females during the mating search offers a unique perspective on the exploration-exploitation (EE) model in decision-making. This study uses the EE model to explain male moth pheromone-driven flight paths. Wind tunnel measurements and three-dimensional tracking using infrared cameras have been leveraged to gain insights into male moth behaviour. During the experiments in the wind tunnel, disturbance to the airflow has been added and the effect of increased fluctuations on moth flights has been analysed, in the context of the proposed EE model. The exploration and exploitation phases are separated using a genetic algorithm to the experimentally obtained dataset of moth three-dimensional trajectories. First, the exploration-to-exploitation rate (EER) increases with distance from the source of the female pheromone is demonstrated, which can be explained in the context of the EE model. Furthermore, our findings reveal a compelling relationship between EER and increased flow fluctuations near the pheromone source. Using an olfactory navigation simulation and our moth-inspired navigation model, the phenomenon where male moths exhibit an enhanced EER as turbulence levels increase is explained. This research extends our understanding of optimal navigation strategies based on general biological EE models and supports the development of bioinspired navigation algorithms.
Collapse
Affiliation(s)
- Teddy Lazebnik
- Department of Mathematics, Ariel University, Ariel, Israel
- Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Yiftach Golov
- Department of Entomology, The Volcani Center, Israel
| | - Roi Gurka
- Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, USA
| | - Ally Harari
- Department of Entomology, The Volcani Center, Israel
| | - Alex Liberzon
- Turbulence Structure Laboratory, School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Hoffmann A, Couzin-Fuchs E. Active smelling in the American cockroach. J Exp Biol 2023; 226:jeb245337. [PMID: 37750327 PMCID: PMC10651109 DOI: 10.1242/jeb.245337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Motion plays an essential role in sensory acquisition. From changing the position in which information can be acquired to fine-scale probing and active sensing, animals actively control the way they interact with the environment. In olfaction, movement impacts the time and location of odour sampling as well as the flow of odour molecules around the olfactory organs. Employing a detailed spatiotemporal analysis, we investigated how insect antennae interact with the olfactory environment in a species with a well-studied olfactory system - the American cockroach. Cockroaches were tested in a wind-tunnel setup during the presentation of odours with different attractivity levels: colony extract, butanol and linalool. Our analysis revealed significant changes in antennal kinematics when odours were presented, including a shift towards the stream position, an increase in vertical movement and high-frequency local oscillations. Nevertheless, the antennal shifting occurred predominantly in a single antenna while the overall range covered by both antennae was maintained throughout. These findings hold true for both static and moving stimuli and were more pronounced for attractive odours. Furthermore, we found that upon odour encounter, there was an increase in the occurrence of high-frequency antennal sweeps and vertical strokes, which were shown to impact the olfactory environment's statistics directly. Our study lays out a tractable system for exploring the tight coupling between sensing and movement, in which antennal sweeps, in parallel to mammalian sniffing, are actively involved in facilitating odour capture and transport, generating odour intermittency in environments with low air movement where cockroaches dwell.
Collapse
Affiliation(s)
- Antoine Hoffmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- IMPRS for Quantitative Behaviour, Ecology and Evolution, 78315 Radolfzell, Germany
| | - Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
5
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
6
|
Houle J, van Breugel F. Near-surface wind variability over spatiotemporal scales relevant to plume tracking insects. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2023; 35:055145. [PMID: 37822569 PMCID: PMC10566248 DOI: 10.1063/5.0147945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Odor plume tracking is important for many organisms, and flying insects have served as popular model systems for studying this behavior both in field and laboratory settings. The shape and statistics of the airborne odor plumes that insects follow are largely governed by the wind that advects them. Prior atmospheric studies have investigated aspects of microscale wind patterns with an emphasis on characterizing pollution dispersion, enhancing weather prediction models, and for assessing wind energy potential. Here, we aim to characterize microscale wind dynamics through the lens of short-term ecological functions by focusing on spatial and temporal scales most relevant to insects actively searching for odor sources. We collected and compared near-surface wind data across three distinct environments (sage steppe, forest, and urban) in Northern Nevada. Our findings show that near-surface wind direction variability decreases with increasing wind speeds and increases in environments with greater surface complexity. Across environments, there is a strong correlation between the variability in the wind speed (i.e., turbulence intensity) and wind direction (i.e., standard deviation in wind direction). In some environments, the standard deviation in the wind direction varied as much as 15°-75° on time scales of 1-10 min. We draw insight between our findings and previous plume tracking experiments to provide a general intuition for future field research and guidance for wind tunnel design. Our analysis suggests a hypothesis that there may be an ideal range of wind speeds and environment complexity in which insects will be most successful when tracking odor plumes over long distances.
Collapse
Affiliation(s)
- Jaleesa Houle
- Department of Mechanical Engineering, University of Nevada, Reno, Nevada 89557, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
7
|
Singh SH, van Breugel F, Rao RPN, Brunton BW. Emergent behaviour and neural dynamics in artificial agents tracking odour plumes. NAT MACH INTELL 2023; 5:58-70. [PMID: 37886259 PMCID: PMC10601839 DOI: 10.1038/s42256-022-00599-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 12/01/2022] [Indexed: 01/26/2023]
Abstract
Tracking an odour plume to locate its source under variable wind and plume statistics is a complex task. Flying insects routinely accomplish such tracking, often over long distances, in pursuit of food or mates. Several aspects of this remarkable behaviour and its underlying neural circuitry have been studied experimentally. Here we take a complementary in silico approach to develop an integrated understanding of their behaviour and neural computations. Specifically, we train artificial recurrent neural network agents using deep reinforcement learning to locate the source of simulated odour plumes that mimic features of plumes in a turbulent flow. Interestingly, the agents' emergent behaviours resemble those of flying insects, and the recurrent neural networks learn to compute task-relevant variables with distinct dynamic structures in population activity. Our analyses put forward a testable behavioural hypothesis for tracking plumes in changing wind direction, and we provide key intuitions for memory requirements and neural dynamics in odour plume tracking.
Collapse
|
8
|
Matheson AMM, Lanz AJ, Medina AM, Licata AM, Currier TA, Syed MH, Nagel KI. A neural circuit for wind-guided olfactory navigation. Nat Commun 2022; 13:4613. [PMID: 35941114 PMCID: PMC9360402 DOI: 10.1038/s41467-022-32247-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
To navigate towards a food source, animals frequently combine odor cues about source identity with wind direction cues about source location. Where and how these two cues are integrated to support navigation is unclear. Here we describe a pathway to the Drosophila fan-shaped body that encodes attractive odor and promotes upwind navigation. We show that neurons throughout this pathway encode odor, but not wind direction. Using connectomics, we identify fan-shaped body local neurons called h∆C that receive input from this odor pathway and a previously described wind pathway. We show that h∆C neurons exhibit odor-gated, wind direction-tuned activity, that sparse activation of h∆C neurons promotes navigation in a reproducible direction, and that h∆C activity is required for persistent upwind orientation during odor. Based on connectome data, we develop a computational model showing how h∆C activity can promote navigation towards a goal such as an upwind odor source. Our results suggest that odor and wind cues are processed by separate pathways and integrated within the fan-shaped body to support goal-directed navigation.
Collapse
Affiliation(s)
- Andrew M M Matheson
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
- Department of Biological Sciences, Columbia University, 600 Sherman Fairchild Center, New York, NY, 10027, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Ashley M Medina
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Al M Licata
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Timothy A Currier
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
- Center for Neural Science, NYU, New York, NY, 4 Washington Place, New York, NY, 10003, USA
- Department of Neurobiology, Stanford University, 299W. Campus Drive, Stanford, CA, 94305, USA
| | - Mubarak H Syed
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
9
|
Shaikh D, Rañó I. Braitenberg Vehicles as Computational Tools for Research in Neuroscience. Front Bioeng Biotechnol 2020; 8:565963. [PMID: 33042967 PMCID: PMC7525016 DOI: 10.3389/fbioe.2020.565963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Valentino Braitenberg reported his seminal thought experiment in 1984 using reactive automatons or vehicles with relatively simple sensorimotor connections as models for seemingly complex cognitive processes in biological brains. Braitenberg's work, meant as a metaphor for biological life encompassed a deep knowledge of and served as an analogy for the multitude of neural processes and pathways that underlie animal behavior, suggesting that seemingly complex behavior may arise from relatively simple designs. Braitenberg vehicles have been adopted in robotics and artificial life research for sensor-driven navigation behaviors in robots, such as localizing sound and chemical sources, orienting toward or away from current flow under water etc. The neuroscience community has benefitted from applying Braitenberg's bottom-up approach toward understanding analogous neural mechanisms underpinning his models of animal behavior. We present a summary of the latest studies of Braitenberg vehicles for bio-inspired navigation and relate the results to experimental findings on the neural basis of navigation behavior in animals. Based on these studies, we motivate the important role of Braitenberg vehicles as computational tools to inform research in behavioral neuroscience.
Collapse
Affiliation(s)
- Danish Shaikh
- Embodied Artificial Intelligence and Neurorobotics Laboratory, University of Southern Denmark Biorobotics Research Unit, Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| | - Ignacio Rañó
- Embodied Artificial Intelligence and Neurorobotics Laboratory, University of Southern Denmark Biorobotics Research Unit, Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Moth Mating: Modeling Female Pheromone Calling and Male Navigational Strategies to Optimize Reproductive Success. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Male and female moths communicate in complex ways to search for and to select a mate. In a process termed calling, females emit small quantities of pheromones, generating plumes that spread in the environment. Males detect the plume through their antennae and navigate toward the female. The reproductive process is marked by female choice and male–male competition, since multiple males aim to reach the female but only the first can mate with her. This provides an opportunity for female selection on male traits such as chemosensitivity to pheromone molecules and mobility. We develop a mathematical framework to investigate the overall mating likelihood, the mean first arrival time, and the quality of the first male to reach the female for four experimentally observed female calling strategies unfolding over a typical one-week mating period. We present both analytical solutions of a simplified model as well as results from agent-based numerical simulations. Our findings suggest that, by adjusting call times and the amount of released pheromone, females can optimize the mating process. In particular, shorter calling times and lower pheromone titers at onset of the mating period that gradually increase over time allow females to aim for higher-quality males while still ensuring that mating occurs by the end of the mating period.
Collapse
|
11
|
Abstract
AbstractReliance on broad-spectrum insecticides and chemotherapeutic agents to control hematophagous insect vectors, and their related diseases is threatened by increasing insecticide and drug resistance, respectively. Thus, development of novel, alternative, complementary and effective technologies for surveillance and control of such insects is strongly encouraged. Semiochemicals are increasingly developed for monitoring and intervention of insect crop pests, but this has not been adequately addressed for hematophagous insects of medical and veterinary importance. This review provides an insight in the application of semiochemicals for control of hematophagous insects. Here, we provide specific information regarding the isolation and identification of semiochemical compounds, optimization approaches, detection, perception and discrimination by the insect olfactory system. Navigation of insects along wind-borne odor plumes is discussed and methods of odor application in field situations are reviewed. Finally, we discuss prospects and future challenges for the application of semiochemical-based tools with emphasis on mosquitoes. The acquired knowledge can guide development of more effective components of integrated vector management, safeguard against emerging resistance of insects to existing insecticides and reduce the burden of vector-borne diseases.
Collapse
|
12
|
Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the Investigation of Volatile Semiochemicals on Insects: From Sampling to Statistical Analysis. INSECTS 2019; 10:insects10080241. [PMID: 31390759 PMCID: PMC6723273 DOI: 10.3390/insects10080241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
The recognition of volatile organic compounds (VOCs) involved in insect interactions with plants or other organisms is essential for constructing a holistic comprehension of their role in ecology, from which the implementation of new strategies for pest and disease vector control as well as the systematic exploitation of pollinators and natural enemies can be developed. In the present paper, some of the general methods employed in this field are examined, focusing on their available technologies. An important part of the investigations conducted in this context begin with VOC collection directly from host organisms, using classical extraction methods, by the employment of adsorption materials used in solid-phase micro extraction (SPME) and direct-contact sorptive extraction (DCSE) and, subsequently, analysis through instrumental analysis techniques such as gas chromatography (GC), nuclear magnetic resonance (NMR) and mass spectrometry (MS), which provide crucial information for determining the chemical identity of volatile metabolites. Behavioral experiments, electroantennography (EAG), and biosensors are then carried out to define the semiochemicals with the best potential for performing relevant functions in ecological relationships. Chemical synthesis of biologically-active VOCs is alternatively performed to scale up the amount to be used in different purposes such as laboratory or field evaluations. Finally, the application of statistical analysis provides tools for drawing conclusions about the type of correlations existing between the diverse experimental variables and data matrices, thus generating models that simplify the interpretation of the biological roles of VOCs.
Collapse
Affiliation(s)
- Ricardo Barbosa-Cornelio
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Fernando Cantor
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| | - Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| |
Collapse
|
13
|
Olfactory Navigation and the Receptor Nonlinearity. J Neurosci 2019; 39:3713-3727. [PMID: 30846614 DOI: 10.1523/jneurosci.2512-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/29/2019] [Accepted: 02/23/2019] [Indexed: 11/21/2022] Open
Abstract
The demands on a sensory system depend not only on the statistics of its inputs but also on the task. In olfactory navigation, for example, the task is to find the plume source; allocation of sensory resources may therefore be driven by aspects of the plume that are informative about source location, rather than concentration per se. Here we explore the implications of this idea for encoding odor concentration. To formalize the notion that sensory resources are limited, we considered coding strategies that partitioned the odor concentration range into a set of discriminable intervals. We developed a dynamic programming algorithm that, given the distribution of odor concentrations at several locations, determines the partitioning that conveys the most information about location. We applied this analysis to planar laser-induced fluorescence measurements of spatiotemporal odor fields with realistic advection speeds (5-20 cm/s), with or without a nearby boundary or obstacle. Across all environments, the optimal coding strategy allocated more resources (i.e., more and finer discriminable intervals) to the upper end of the concentration range than would be expected from histogram equalization, the optimal strategy if the goal were to reconstruct the plume, rather than to navigate. Finally, we show that ligand binding, as captured by the Hill equation, transforms odorant concentration into response levels in a way that approximates information maximization for navigation. This behavior occurs when the Hill dissociation constant is near the mean odor concentration, an adaptive set-point that has been observed in the olfactory system of flies.SIGNIFICANCE STATEMENT The first step of olfactory processing is receptor binding, and the resulting relationship between odorant concentration and the bound receptor fraction is a saturating one. While this Hill nonlinearity can be viewed as a distortion that is imposed by the biophysics of receptor binding, here we show that it also plays an important information-processing role in olfactory navigation. Specifically, by combining a novel dynamic-programming algorithm with physical measurements of turbulent plumes, we determine the optimal strategy for encoding odor concentration when the goal is to determine location. This strategy is distinct from histogram equalization, the strategy that maximizes information about plume concentration, and is closely approximated by the Hill nonlinearity when the binding constant is near the ambient mean.
Collapse
|
14
|
Liberzon A, Harrington K, Daniel N, Gurka R, Harari A, Zilman G. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source. PLoS One 2018; 13:e0198422. [PMID: 29897978 PMCID: PMC5999112 DOI: 10.1371/journal.pone.0198422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/19/2018] [Indexed: 11/24/2022] Open
Abstract
Some female moths attract male moths by emitting series of pulses of pheromone filaments propagating downwind. The turbulent nature of the wind creates a complex flow environment, and causes the filaments to propagate in the form of patches with varying concentration distributions. Inspired by moth navigation capabilities, we propose a navigation strategy that enables a flier to locate an upwind pulsating odor source in a windy environment using a single threshold-based detection sensor. This optomotor anemotaxis strategy is constructed based on the physical properties of the turbulent flow carrying discrete puffs of odor and does not involve learning, memory, complex decision making or statistical methods. We suggest that in turbulent plumes from a pulsating point source, an instantaneously measurable quantity referred as a “puff crossing time”, improves the success rate as compared to the navigation strategies based on temporally regular zigzags due to intermittent contact, or an “internal counter”, that do not use this information. Using computer simulations of fliers navigating in turbulent plumes of the pulsating point source for varying flow parameters such as turbulent intensities, plume meandering and wind gusts, we obtained statistics of navigation paths towards the pheromone sources. We quantified the probability of a successful navigation as well as the flight parameters such as the time spent searching and the total flight time, with respect to different turbulent intensities, meandering or gusts. The concepts learned using this model may help to design odor-based navigation of miniature airborne autonomous vehicles.
Collapse
Affiliation(s)
- Alexander Liberzon
- School of Mechanical Engineering, Tel Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Kyra Harrington
- Department of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC, United States of America
| | - Nimrod Daniel
- School of Mechanical Engineering, Tel Aviv University, Tel-Aviv, Israel
| | - Roi Gurka
- Department of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC, United States of America
| | - Ally Harari
- Department of Entomology, The Volcani Center, Bet Dagan, Israel
| | - Gregory Zilman
- School of Mechanical Engineering, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
History dependence in insect flight decisions during odor tracking. PLoS Comput Biol 2018; 14:e1005969. [PMID: 29432454 PMCID: PMC5828511 DOI: 10.1371/journal.pcbi.1005969] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/27/2018] [Accepted: 01/07/2018] [Indexed: 11/19/2022] Open
Abstract
Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal encounters to generate goal-oriented behavioral sequences. Here we examined the trajectories of flying fruit flies (Drosophila melanogaster) and mosquitoes (Aedes aegypti) navigating in controlled plumes of attractive odorants. While it is known that mean odor-triggered flight responses are dominated by upwind turns, individual responses are highly variable. We asked whether deviations from mean responses depended on specific features of odor encounters, and found that odor-triggered turns were slightly but significantly modulated by two features of odor encounters. First, encounters with higher concentrations triggered stronger upwind turns. Second, encounters occurring later in a sequence triggered weaker upwind turns. To contextualize the latter history dependence theoretically, we examined trajectories simulated from three normative tracking strategies. We found that neither a purely reactive strategy nor a strategy in which the tracker learned the plume centerline over time captured the observed history dependence. In contrast, "infotaxis", in which flight decisions maximized expected information gain about source location, exhibited a history dependence aligned in sign with the data, though much larger in magnitude. These findings suggest that while true plume tracking is dominated by a reactive odor response it might also involve a history-dependent modulation of responses consistent with the accumulation of information about a source over multi-encounter timescales. This suggests that short-term memory processes modulating decision sequences may play a role in natural plume tracking.
Collapse
|
16
|
Gire DH, Kapoor V, Arrighi-Allisan A, Seminara A, Murthy VN. Mice Develop Efficient Strategies for Foraging and Navigation Using Complex Natural Stimuli. Curr Biol 2016; 26:1261-73. [PMID: 27112299 DOI: 10.1016/j.cub.2016.03.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/09/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
Abstract
The ability to shift between multiple decision-making strategies during natural behavior allows animals to strike a balance between flexibility and efficiency. We investigated odor-guided navigation by mice to understand how decision-making strategies are balanced during a complex natural behavior. Mice navigated to odor sources in an open arena using naturally fluctuating airborne odor cues as their positions were recorded precisely in real time. When mice had limited prior experience of source locations, their search behavior was consistent with a gradient ascent algorithm that utilized directional cues in the plume to navigate to the odor source. Gradient climbing was effective because the arena size allowed animals to conduct their search mainly within the odor plume, with frequent odor contacts. With increased experience, mice shifted their strategy from this flexible, sensory-driven search behavior to a more efficient and stereotyped foraging approach that varied little in response to odor plumes. This study demonstrates that mice use prior knowledge to adaptively balance flexibility and efficiency during complex behavior guided by dynamic natural stimuli.
Collapse
Affiliation(s)
- David H Gire
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Psychology, University of Washington, Seattle, WA 98195, USA.
| | - Vikrant Kapoor
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Annie Arrighi-Allisan
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Agnese Seminara
- CNRS, Université Nice Sophia Antipolis, Laboratoire de Physique de la Matière Condensée, UMR7336, Parc Valrose, Nice 06108, France
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|