1
|
Gorule PA, Šmejkal M, Tapkir S, Stepanyshyna Y, Stejskal V, Follesa MC, Cau A. Long-term sublethal exposure to polyethylene and tire wear particles: Effects on risk-taking behaviour in invasive and native fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168233. [PMID: 37923265 DOI: 10.1016/j.scitotenv.2023.168233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/21/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenic polymeric particles pollute even the most remote ecosystems and may compromise organisms' behaviour and movement skills. It is expected that invasive species cope better with pollutants than native species (i.e., pollution resistance hypothesis). In this study, invasive gibel carp (Carassius gibelio) and native crucian carp (Carassius carassius) were used as model organisms. Specimens were fed daily with food pellets (1 % body weight) added with 0.1 % polyethylene (PE), tire wear particles (TWPs) and control. Their behavioural parameters were compared before and after 14 and 60 days of exposure. Additionally, we evaluated burst swimming capacity after 60 days of exposure to the treatments. The fishes exposed to the PE and TWPs treatments showed significant trends toward increased boldness scores and, in the PE treatment, higher utilization of the open field, and both behavioural changes are associated with higher risk-taking. Invasive gibel carp had substantially better swimming performance than crucian carp, but the expected trend in relation to the treatments was not found. Fish exposed to sublethal doses of PE and TWPs showed signs of behavioural changes after two months of exposure that may affect risk-taking behaviour, which might impact species interactions with predators.
Collapse
Affiliation(s)
- Pankaj A Gorule
- Department of Life and Environmental Sciences, University of Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| | - Sandip Tapkir
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Yevdokiia Stepanyshyna
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Vlastimil Stejskal
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| | - Maria Cristina Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy; ConISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Alessandro Cau
- Department of Life and Environmental Sciences, University of Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy; ConISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
2
|
Jarić I, Lennox RJ, Prchalová M, Monk CT, Říha M, Nathan R, Arlinghaus R. The power and promise of interdisciplinary international research networks to advance movement ecology. MOVEMENT ECOLOGY 2023; 11:67. [PMID: 37872567 PMCID: PMC10591396 DOI: 10.1186/s40462-023-00428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Affiliation(s)
- Ivan Jarić
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif sur Yvette, France.
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic.
| | - Robert J Lennox
- Ocean Tracking Network, Department of Biology, Dalhousie University, Halifax, Canada
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Marie Prchalová
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | | | - Milan Říha
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Ran Nathan
- Movement Ecology Lab, A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert Arlinghaus
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences and Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Pease JE, Losee JP, Caromile S, Madel G, Lucero M, Kagley A, Bertram MG, Martin JM, Quinn TP, Palm D, Hellström G. Comparison of triploid and diploid rainbow trout (Oncorhynchus mykiss) fine-scale movement, migration and catchability in lowland lakes of western Washington. MOVEMENT ECOLOGY 2023; 11:57. [PMID: 37710345 PMCID: PMC10503170 DOI: 10.1186/s40462-023-00418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Fisheries managers stock triploid (i.e., infertile, artificially produced) rainbow trout Oncorhynchus mykiss in North American lakes to support sport fisheries while minimizing the risk of genetic introgression between hatchery and wild trout. In Washington State, the Washington Department of Fish and Wildlife (WDFW) allocates approximately US $3 million annually to stock hatchery-origin rainbow trout in > 600 lakes, yet only about 10% of them are triploids. Many lakes in Washington State drain into waters that support wild anadromous steelhead O. mykiss that are listed as threatened under the U.S. Endangered Species Act. As a result, there is a strong interest in understanding the costs and benefits associated with stocking sterile, triploid rainbow trout as an alternative to traditional diploids. The objectives of this study were to compare triploid and diploid rainbow trout in terms of: (1) contribution to the sport fishery catch, (2) fine-scale movements within the study lakes, (3) rate of emigration from the lake, and (4) natural mortality. Our results demonstrated that triploid and diploid trout had similar day-night distribution patterns, but triploid trout exhibited a lower emigration rate from the lake and lower catch rates in some lakes. Overall, triploid rainbow trout represent a viable alternative to stocking of diploids, especially in lakes draining to rivers, because they are sterile, have comparable home ranges, and less often migrate.
Collapse
Affiliation(s)
- Jessica E Pease
- Washington Department of Fish and Wildlife, OlympiaWashington, WA, USA
| | - James P Losee
- Washington Department of Fish and Wildlife, OlympiaWashington, WA, USA.
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Stephen Caromile
- Washington Department of Fish and Wildlife, OlympiaWashington, WA, USA
| | - Gabriel Madel
- Washington Department of Fish and Wildlife, OlympiaWashington, WA, USA
| | - Michael Lucero
- Washington Department of Fish and Wildlife, OlympiaWashington, WA, USA
| | - Anna Kagley
- NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA, USA
| | - Michael G Bertram
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jake M Martin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Daniel Palm
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gustav Hellström
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
4
|
Lennox RJ, Dahlmo LS, Ford AT, Sortland LK, Vogel EF, Vollset KW. Predation research with electronic tagging. WILDLIFE BIOLOGY 2022. [DOI: 10.1002/wlb3.01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Robert J. Lennox
- Norwegian Inst. for Nature Research Trondheim Norway
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries Bergen Norway
| | - Lotte S. Dahlmo
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries Bergen Norway
- Dept of Biological Sciences, Univ. of Bergen Bergen Norway
| | - Adam T. Ford
- Univ. of British Columbia Okanagan Kelowna BC Canada
| | - Lene K. Sortland
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries Bergen Norway
- Dept of Biological Sciences, Univ. of Bergen Bergen Norway
| | - Emma F. Vogel
- UiT − The Arctic Univ. of Norway, Faculty of Biosciences, Fisheries and Economics Tromsø Norway
| | - Knut Wiik Vollset
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries Bergen Norway
| |
Collapse
|
5
|
Nathan R, Monk CT, Arlinghaus R, Adam T, Alós J, Assaf M, Baktoft H, Beardsworth CE, Bertram MG, Bijleveld AI, Brodin T, Brooks JL, Campos-Candela A, Cooke SJ, Gjelland KØ, Gupte PR, Harel R, Hellström G, Jeltsch F, Killen SS, Klefoth T, Langrock R, Lennox RJ, Lourie E, Madden JR, Orchan Y, Pauwels IS, Říha M, Roeleke M, Schlägel UE, Shohami D, Signer J, Toledo S, Vilk O, Westrelin S, Whiteside MA, Jarić I. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 2022; 375:eabg1780. [PMID: 35175823 DOI: 10.1126/science.abg1780] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal "movement ecology" (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data on movements of animals in the wild. These high-throughput wildlife tracking systems now allow more thorough investigation of variation among individuals and species across space and time, the nature of biological interactions, and behavioral responses to the environment. Movement ecology is rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks, providing improved opportunities for conservation and insights into the movements of wild animals, and their causes and consequences.
Collapse
Affiliation(s)
- Ran Nathan
- Movement Ecology Lab, A. Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel.,Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christopher T Monk
- Institute of Marine Research, His, Norway.,Centre for Coastal Research (CCR), Department of Natural Sciences, University of Agder, Kristiansand, Norway.,Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Robert Arlinghaus
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Faculty of Life Sciences and Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
| | - Timo Adam
- Centre for Research into Ecological and Environmental Modelling, School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Josep Alós
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Michael Assaf
- Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Henrik Baktoft
- National Institute of Aquatic Resources, Section for Freshwater Fisheries and Ecology, Technical University of Denmark, Silkeborg, Denmark
| | - Christine E Beardsworth
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Den Burg, The Netherlands.,Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Allert I Bijleveld
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Den Burg, The Netherlands
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrea Campos-Candela
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | | | - Pratik R Gupte
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Den Burg, The Netherlands.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Roi Harel
- Movement Ecology Lab, A. Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel.,Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Florian Jeltsch
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow UK
| | - Thomas Klefoth
- Ecology and Conservation, Faculty of Nature and Engineering, Hochschule Bremen, City University of Applied Sciences, Bremen, Germany
| | - Roland Langrock
- Department of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Robert J Lennox
- NORCE Norwegian Research Centre, Laboratory for Freshwater Ecology and Inland Fisheries, Bergen, Norway
| | - Emmanuel Lourie
- Movement Ecology Lab, A. Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel.,Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joah R Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
| | - Yotam Orchan
- Movement Ecology Lab, A. Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel.,Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ine S Pauwels
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Milan Říha
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - Manuel Roeleke
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ulrike E Schlägel
- Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - David Shohami
- Movement Ecology Lab, A. Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel.,Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Johannes Signer
- Wildlife Sciences, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany
| | - Sivan Toledo
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Ohad Vilk
- Movement Ecology Lab, A. Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel.,Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem, Israel.,Racah Institute of Physics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samuel Westrelin
- INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER, Aix-en-Provence, France
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK.,School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Ivan Jarić
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic.,University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Lennox RJ, Westrelin S, Souza AT, Šmejkal M, Říha M, Prchalová M, Nathan R, Koeck B, Killen S, Jarić I, Gjelland K, Hollins J, Hellstrom G, Hansen H, Cooke SJ, Boukal D, Brooks JL, Brodin T, Baktoft H, Adam T, Arlinghaus R. Correction to: A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems. MOVEMENT ECOLOGY 2021; 9:52. [PMID: 34670608 PMCID: PMC8529752 DOI: 10.1186/s40462-021-00285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries (LFI) at NORCE Norwegian Research Centre, Nygårdsporten 112, 5008, Bergen, Norway.
| | - Samuel Westrelin
- INRAE, Aix Marseille UnivPôle R&D ECLA, RECOVER, 3275 Route de Cézanne - CS 40061, 13182, Cedex 5 Aix-en-Provence, France
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Prchalová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 102 Berman Bldg, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ivan Jarić
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Karl Gjelland
- Norwegian Institute of Nature Research, Tromsø, Norway
| | - Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
- University of Windsor, Windsor, ON, Canada
| | - Gustav Hellstrom
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henry Hansen
- Karlstads University, Universitetsgatan 2, 651 88, Karlstad, Sweden
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Boukal
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henrik Baktoft
- Technical University of Denmark, Vejlsøvej 39, Building Silkeborg-039, 8600, Silkeborg, Denmark
| | - Timo Adam
- Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität Zu Berlin, Bergen, Germany
| |
Collapse
|
7
|
Vanovac S, Howard D, Monk CT, Arlinghaus R, Giabbanelli PJ. Network analysis of intra- and interspecific freshwater fish interactions using year-around tracking. J R Soc Interface 2021; 18:20210445. [PMID: 34665974 PMCID: PMC8526167 DOI: 10.1098/rsif.2021.0445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 01/23/2023] Open
Abstract
A long-term, yet detailed view into the social patterns of aquatic animals has been elusive. With advances in reality mining tracking technologies, a proximity-based social network (PBSN) can capture detailed spatio-temporal underwater interactions. We collected and analysed a large dataset of 108 freshwater fish from four species, tracked every few seconds over 1 year in their natural environment. We calculated the clustering coefficient of minute-by-minute PBSNs to measure social interactions, which can happen among fish sharing resources or habitat preferences (positive/neutral interactions) or in predator and prey during foraging interactions (agonistic interactions). A statistically significant coefficient compared to an equivalent random network suggests interactions, while a significant aggregated clustering across PBSNs indicates prolonged, purposeful social behaviour. Carp (Cyprinus carpio) displayed within- and among-species interactions, especially during the day and in the winter, while tench (Tinca tinca) and catfish (Silurus glanis) were solitary. Perch (Perca fluviatilis) did not exhibit significant social behaviour (except in autumn) despite being usually described as a predator using social facilitation to increase prey intake. Our work illustrates how methods for building a PBSN can affect the network's structure and highlights challenges (e.g. missing signals, different burst frequencies) in deriving a PBSN from reality mining technologies.
Collapse
Affiliation(s)
- Sara Vanovac
- Computer Science Department, Furman University, Greenville, SC 29613, USA
| | - Dakota Howard
- Computer Science Department, Furman University, Greenville, SC 29613, USA
| | - Christopher T. Monk
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences and Integrative Research Institute on Transformations of Human-Environmental Systems, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Philippe J. Giabbanelli
- Department of Computer Science and Software Engineering, Miami University, Benton Hall 205 W, 510 E High Street, Oxford, OH 45056, USA
| |
Collapse
|