1
|
Puttonen M, Tynninen O, Salmikangas S, Vesterinen T, Sihto H, Böhling T. Fibroblast growth factor receptor expression in hemangioblastomas: A novel therapeutic target. PLoS One 2025; 20:e0323979. [PMID: 40393028 PMCID: PMC12092013 DOI: 10.1371/journal.pone.0323979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/17/2025] [Indexed: 05/22/2025] Open
Abstract
Hemangioblastoma is a highly vascularized, benign tumor in the central nervous system, frequently associated with von Hippel-Lindau (VHL) disease. Hemangioblastoma may cause tumor-associated hemorrhage or exert pressure on nearby structures, leading to life-threatening complications. Although surgical resection is the primary treatment, complete removal is not always feasible. Accordingly, there is a need to explore targeted or anti-angiogenic therapies. The fibroblast growth factor receptor (FGFR) family has roles in tumorigenesis and angiogenesis, making it a potential target in personalized therapy. The distribution and significance of FGFRs in hemangioblastoma have yet to be investigated. We examined 139 formalin-fixed, paraffin-embedded hemangioblastoma samples from 111 patients, including sporadic cases and those associated with VHL disease. Immunohistochemistry revealed positive staining for FGFR2 (95%) and FGFR4 (61%), while FGFR1 (0%) and FGFR3 (12%) were mainly negative. FGFR2 expression was significantly increased in VHL-mutated tumors (75%, p = 0.034) and in male patients (68%, p = 0.020). Tumors located in the cerebrum (n = 6, 5%) had a higher likelihood of positive FGFR4 staining (100%, p = 0.009). Additionally, a larger tumor diameter was associated with a higher likelihood of FGFR4 expression (median 12.0 mm vs 17.5 mm, p = 0.018), suggesting its contribution in tumor growth. Our study revealed the expression of FGFR2 and FGFR4 in a significant number of hemangioblastomas. This finding demonstrates the potential of FGFRs as promising therapeutic targets for patients with hemangioblastoma.
Collapse
Affiliation(s)
- Maya Puttonen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sami Salmikangas
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tiina Vesterinen
- Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tom Böhling
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Fabi F, Chamberland È, D’Astous M, Michaud K, Côté M, Thibault I. Radiosurgically Treated Recurrent Cerebellar Hemangioblastoma: A Case Report and Literature Review. Curr Oncol 2024; 31:3968-3977. [PMID: 39057165 PMCID: PMC11276307 DOI: 10.3390/curroncol31070293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Cystic, sporadic hemangioblastomas (HBLs) represent a unique, therapeutically challenging subset of central nervous system tumors, mainly due to their unpredictable growth patterns and potential for symptomatic progression. This study aims to explore the complexities surrounding the diagnosis, treatment, and long-term management of these lesions. METHODS A comprehensive literature review was performed, and a detailed case study of a 56-year-old patient with a cystic, sporadic cerebellar HBL was produced. RESULTS The case highlights the multiphasic growth pattern typical of cystic, sporadic HBLs, characterized by periods of dormancy and subsequent rapid expansion. An initial surgical intervention offered temporary control. Tumor recurrence, mainly through cystic enlargement, was treated by SRS. A subsequent recurrence, again caused by cystic growth, eventually led to the patient's death. The intricacies of treatment modalities, focusing on the transition from surgical resection to stereotactic radiosurgery (SRS) upon recurrence, are discussed. Parameters indicating impending tumor growth, coupled with symptomatic advances, are also explored. CONCLUSIONS The management of cystic, sporadic cerebellar HBLs requires a strategic approach that can be informed by radiological characteristics and tumoral behavior. This study underscores the importance of a proactive, individualized management plan and suggests guidelines that could inform clinical decision making.
Collapse
Affiliation(s)
- François Fabi
- Service de Radio-Oncologie du Département de Médecine Spécialisée, Centre Intégré de Cancérologie (CIC), Hôpital de l’Enfant-Jésus, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Quebec City, QC G1J 1Z4, Canada;
| | - Ève Chamberland
- Service de Physique Médicale et de Radioprotection, CHU de Québec-Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Myreille D’Astous
- Service de Neurochirurgie du Département de Chirurgie, Hôpital de l’Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Karine Michaud
- Service de Neurochirurgie du Département de Chirurgie, Hôpital de l’Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Martin Côté
- Service de Neurochirurgie du Département de Chirurgie, Hôpital de l’Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC G1J 1Z4, Canada
| | - Isabelle Thibault
- Service de Radio-Oncologie du Département de Médecine Spécialisée, Centre Intégré de Cancérologie (CIC), Hôpital de l’Enfant-Jésus, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Quebec City, QC G1J 1Z4, Canada;
| |
Collapse
|
3
|
Lippai Z, Péterfia B, Papp G, Dezső K, Bedics G, Pápai Z, Lamers MH, Kuin RC, Szuhai K, Sápi Z. A recurrent NTRK1 tyrosine kinase domain mutation pair is characteristic in a subset of dedifferentiated liposarcomas. Eur J Cancer 2024; 202:114005. [PMID: 38531265 DOI: 10.1016/j.ejca.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Dedifferentiated liposarcoma (DDLPS) is a common form of liposarcoma with challenging treatment modalities. Pan-TRK immunopositivity can be often observed without NTRK gene fusion in soft tissue sarcomas with myogenic differentiation. Expression and the role of NTRK in DDLPS are under-studied. We sought to identify activating mutations of the NTRK genes. MATERIALS AND METHODS 131 DDLPS patients were selected for pan-TRK immunohistochemistry and positive cases were analyzed by Sanger sequencing for NTRK1, NTRK2 and NTRK3 genes. Functional assays were performed using a lentiviral transduction system to study the effect of NTRK variants in fibroblast, immortalized fibroblast, and dedifferentiated liposarcoma cell lines. RESULTS Out of the 131 DDLPS cases, 75 immunohistochemical staining positive cases, 46 were successfully Sanger sequenced. A recurrent somatic mutation pair in cis position (NGS) of the NTRK1 c.1810C>T (p.H604Y) and c.1838G>T (p.G613V) was identified in six cases (13%) that have never been reported in DDLPS. NTRK fusions were excluded in all six cases by FISH and NGS. The phospho-AKT immunopositivity among the six mutated cases suggested downstream activation of the NTRK signaling pathway. Functional assays showed no transforming effects, but resistance to first- and second-line TRK inhibitors of the p.G613V and p.H604Y variant. CONCLUSIONS We detected (de novo/somatic) missense mutation variants in cis position of the NTRK1 gene in a subset of DDLPS indicating modifying mutations that may contribute to tumorigenesis in a subset of DDLPS. These variants beget resistance to TRK inhibitors indicating an interesting biomarker for other studies with TRK inhibitors.
Collapse
Affiliation(s)
- Zoltán Lippai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Hungary
| | - Gergő Papp
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Hungary
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Hungary
| | - Gábor Bedics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Hungary
| | - Zsuzsanna Pápai
- Department of Oncology, Medical Centre, Hungarian Defense Forces, Hungary
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rosan Cm Kuin
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Károly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Zoltán Sápi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Hungary.
| |
Collapse
|
4
|
Sugiyama Y, Kuramitsu S, Eguchi K, Ito M, Ando R, Matsuno H, Suzaki N, Maesawa S. Time course of tumorigenesis of a newly developed sporadic hemangioblastoma in an elderly patient: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 7:CASE23757. [PMID: 38588593 PMCID: PMC11007268 DOI: 10.3171/case23757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND von Hippel-Lindau disease-associated hemangioblastomas (HBs) account for 20%-30% of all HB cases, with the appearance of new lesions often observed in the natural course of the disease. By comparison, the development of new lesions is rare in patients with sporadic HB. OBSERVATIONS A 65-year-old man underwent clipping for an unruptured aneurysm of the anterior communicating artery. Fourteen years later, follow-up magnetic resonance imaging (MRI) revealed a strongly enhanced mass in the right cerebellar hemisphere, diagnosed as a sporadic HB. A retrospective review of MRI studies obtained over the follow-up period revealed the gradual development of peritumoral edema and vascularization before mass formation. LESSONS Newly appearing high-intensity T2 lesions in the cerebellum may represent a preliminary stage of tumorigenesis. Careful monitoring of these patients would be indicated, which could provide options for early treatment to improve patient outcomes.
Collapse
|
5
|
Wang AS, Murnin JC, Wiginton Iv J, Tchalukov K, Stout CE, Duong J, Sweiss R. Pre-operative Embolization of a Cerebellar Hemangioblastoma Using Polyvinyl Alcohol (PVA) and Target Tetra 360 Detachable Coil. Cureus 2024; 16:e56891. [PMID: 38659508 PMCID: PMC11042672 DOI: 10.7759/cureus.56891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
Due to its hypervascularity, hemangioblastoma, a rare primary central nervous system intracranial tumor, has been treated with pre-operative embolization prior to surgical resection. Here, we describe a case treated as such. A 37-year-old male presented with worsening chronic headache and right ear tinnitus was found to have a hypervascular, heterogeneous right cerebellar lesion suspicious for arteriovenous malformation or hemangioblastoma. He underwent polyvinyl alcohol (PVA) and Target Tetra 360 (Fremont, CA: Stryker Neurovascular) detachable coil embolization followed by complete tumor resection. Pathology was consistent with hemangioblastoma. He presented with complete resolution of his symptoms immediately post-operatively and at a two-week follow-up. Our case highlighted the importance of pre-operative embolization to help achieve complete tumor resection which is considered curative in the treatment of hypervascular hemangioblastoma. The Target Tetra 360 detachable coil embolization is another material that can be considered.
Collapse
Affiliation(s)
- Alice S Wang
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - John C Murnin
- Medicine, Burrell College of Osteopathic Medicine, Las Cruces, USA
| | - James Wiginton Iv
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Konstantin Tchalukov
- Radiology, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Charles E Stout
- Neurointerventional Radiology, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Jason Duong
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
- Neurosurgery, Arrowhead Regional Medical Center, Colton, USA
| | - Raed Sweiss
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| |
Collapse
|
6
|
Lee Y, Cheng SM, Hwang DY, Chiu YL, Chou YH. Polycythemia Secondary to Renal Hemangioblastoma: A Case Report and Literature Review. Int J Surg Pathol 2024; 32:140-144. [PMID: 37150964 DOI: 10.1177/10668969231171133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Secondary polycythemia is a paraneoplastic syndrome observed in tumors with excessive erythropoietin (EPO) production. Renal cell carcinoma (RCC) and cerebellar hemangioblastoma are the 2 most well-known tumors to induce secondary polycythemia. Hemangioblastomas occurring in the kidney are rare. In this work we present a case of renal hemangioblastoma that caused erythrocytosis in a 19-year-old man. We demonstrated intratumoural EPO production by immunohistochemistry, and conducted whole-exome sequencing to evaluate possible genetic alterations that reported to induce tumor-related polycythemia. In spite of an indolent clinical behavior, renal hemangioblastoma is difficult to differentiate from RCC not only clinically, but also histopathologically. Given that RCC is the most well-known renal tumor to induce erythrocytosis, the uncommon manifestation of polycythemia in renal hemangioblastoma, as shown in our case, can cause further diagnostic challenges. Renal hemangioblastoma should be listed in the differential diagnoses of renal tumors presenting with erythrocytosis, apart from the most common RCC.
Collapse
Affiliation(s)
- Yueh Lee
- Department of Anatomy and Pathology, Taipei City Hospital Heping Branch, Taipei, Taiwan
| | - Siao-Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yen-Ling Chiu
- Graduate Institute of Medicine, Yuan-Ze University, Taoyuan, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yueh-Hung Chou
- Department of Anatomical Pathology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| |
Collapse
|
7
|
Chinchilla-Tábora LM, Ortiz Rodríguez-Parets J, Otero-Rodríguez Á, Ruiz Martín L, Paniagua Escudero JC, Navarro Martín LM, Cigarral García B, Nieto Palacios A, González Morais I, Sayagués JM, Ludeña de la Cruz MD. Cerebellar Hemangioblastoma with Leptomeningeal Spread and a Fatal Outcome: A Rare Case Report with MDM2 and EGFR Alterations. Int Med Case Rep J 2023; 16:709-714. [PMID: 37941973 PMCID: PMC10629408 DOI: 10.2147/imcrj.s428201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
Hemangioblastoma (HB) is a Central Nervous System (CNS) tumor with a generally favorable behavior and prognosis, classified as WHO grade 1. Sporadic HB is not related to any inherited disease, and it usually appears in a single location. Sporadic or VHL-related HBs show variable patterns of growth velocity. Cases of growing HB can cause mild symptoms such as headache, but some cases develop serious complications such as accumulation of cerebrospinal fluid in the brain with secondary neurological damage sometimes being irreversible when early treatment is not started. Our case showed some clinical characteristics more frequently observed in VHL-related HB rather than sporadic HB, and the presence of alterations in MDM2 and EGFR that could be related to the oncogenesis of these tumors. Even when the treatment of choice for HB is surgery, the presence of these genetic alterations could open a new window for research aimed at assessing the possibility of new therapies with TKIs-EGFR and anti-MDM2 inhibitors in those HB cases with multifocal recurrences or cases with an adverse clinical behavior.
Collapse
Affiliation(s)
- Luis Miguel Chinchilla-Tábora
- Department of Pathology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Javier Ortiz Rodríguez-Parets
- Department of Pathology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Álvaro Otero-Rodríguez
- Department of Neurosurgery, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Laura Ruiz Martín
- Department of Neurosurgery, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Juan Carlos Paniagua Escudero
- Department of Radiology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Luis Miguel Navarro Martín
- Department of Clinical Oncology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Belén Cigarral García
- Department of Clinical Oncology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Adelaida Nieto Palacios
- Department of Radiation Oncology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Idalia González Morais
- Department of Pathology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - José María Sayagués
- Department of Pathology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - María Dolores Ludeña de la Cruz
- Department of Pathology, University Hospital of Salamanca and Institute for Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Taher MM, Bantan NA, Alwalily MH, Saeed M, Taher NM, Bouzidi M, Jastania RA, Balkhoyour KB. Supratentorial Sporadic Hemangioblastoma: A Case Report With Mutation Profiling Using Next-Generation DNA Sequencing. Cureus 2023; 15:e39818. [PMID: 37273678 PMCID: PMC10233511 DOI: 10.7759/cureus.39818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/06/2023] Open
Abstract
The present study aimed to determine genomic changes in sporadic intracranial hemangioblastoma (HBL), and the mutation patterns were analyzed using next-generation DNA sequencing (NGS). In this NGS analysis of the HBL tumor, 67 variants of 41 genes were identified. Of these, 64 were single-nucleotide variants (SNVs), two were exonic insertions and deletions (INDEL), and one was an intronic INDEL. In total, 15 were missense exonic variants, including an insertion variant in the NRAS gene, c.1_2insA, and a deletion variant, c.745delT, in the HNF1A gene, both of these mutations produced a termination codon. Other exonic missense variants found in the tumor were CTNNB1, FGFR3, KDR, SMO, HRAS, RAI1, and a TP53 variant (c.430C>G). Moreover, the results of the present study revealed a novel variant, c.430C>G, in TP53 and two missense variants of SND1 (c.1810G>C and c.1814G>C), which were also novel. ALK (rs760315884) and FGFR2 (rs1042522) missense variants were reported previously. Notably, a total of 10 previously reported single-nucleotide polymorphisms (SNPs) were found in this tumor in genes including MLH1 (rs769364808), FGFR3 (rs769364808), two variants (rs1873778 and rs2228230) in PDGFRA, KIT (rs55986963), APC (rs41115), and RET (rs1800861). The results of this study revealed a synonymous mutation (SNP) in c.1104 G>T; p. (Ser368Ser) in the MLH1 gene. In this amino acid (AA) codon, two other variants are also known to cause missense substitutions, c.1103C>G; p. (Ser368Trp); COSM6986674) and c.1103C>T; p.(Ser368Leu; COSM3915870), were found in hematopoietic and urinary tract tissue, respectively. However, three SNPs found in genes such as ALK, KDR, and ABL1 in the HBL tumor in this study were not reported in UCSC, COSMIC, and ClinVar databases. Additionally, 19 intronic variants were identified in this tumor. One intronic SNV was present in each of the following genes: EGFR, ERBB4, KDR, SMO, CDKN2B, PTEN, PTPN11, RB1, AKT1, and ERBB2. In PIK3CA and FBXL18 genes, two intronic variants were present, and in the SND1 gene, three intronic variants were detected in the HBL tumor presented in this study. Notably, only one of these was reported in the catalog of somatic mutations in cancer. Only one 3'-untranslated region (UTR) insertion variant in the NRAS gene (c.*2010T>AT) was detected in the tumor of the present study, and this was a splice site acceptor. A TP53 intronic mutation (c.782+1G>T) was the only pathogenic splice_donor_variant found in this HBL tumor. The frequency of variants and Phred scores were markedly high, and the p-values were significant for all of the aforementioned mutations. In summary, a total of 15 missense, 10 synonymous, and 19 intronic variants were identified in the HBL tumor. Results of the present study detected one novel insertion in NRAS and one novel deletion in HNF1A genes, a novel missense variant in the TP53 gene, and two novel missense variants of SND1. Hotspot mutations in other cancer driver genes, such as PTEN, ATM, SMAD4, SMARCB1, STK11, NPM1, CDKN2A, and EGFR, which are frequently affected in gliomas, were not found in the tumor of the present study. Future studies should aim to validate oncogenic mutations that may act as novel targets for the treatment of these tumors.
Collapse
Affiliation(s)
- Mohiuddin M Taher
- Science and Technology Unit, Deanship of Scientific Research, Umm Al-Qura University, Makkah, SAU
- Department of Medical Genetics, Umm Al-Qura University College of Medicine, Makkah, SAU
| | - Najwa A Bantan
- Department of Radiology, Al-Noor Specialty Hospital, Makkah, SAU
| | | | - Muhammad Saeed
- Department of Radiology, Al-Noor Specialty Hospital, Makkah, SAU
| | - Nuha M Taher
- Department of Medical Genetics, Umm Al-Qura University College of Medicine, Makkah, SAU
| | - Meriem Bouzidi
- Department of Laboratory Medicine, Division of Histopathology, Al-Noor Specialty Hospital, Makkah, SAU
| | - Raid A Jastania
- Department of Pathology, Umm Al-Qura University College of Medicine, Makkah, SAU
| | | |
Collapse
|
9
|
Chen Y, Chen J, Jiang Y, Lin X. Clinicopathological analysis of extraneural sporadic haemangioblastoma occurring in the tongue. BMJ Case Rep 2023; 16:16/5/e255581. [PMID: 37258051 DOI: 10.1136/bcr-2023-255581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Haemangioblastoma is a morphologically distinctive tumour with uncertain histogenesis, typically occurring in the cerebellum, brain stem or spinal cord and less commonly in extraneural locations. Here, we present a case of haemangioblastoma occurring in the tongue, which is the first reported case in terms of the pathogenic site. The tumour was morphologically indistinguishable from central nervous system haemangioblastoma, that is, neoplastic stromal cells with cytoplasmic vacuolisation and abundant small vessels. Immunohistochemical studies revealed that the tumour cells were positive for S100, NSE, CD56, Syn, EMA, vimentin and α-inhibin, while negative for CK, SMA, factor Ⅷ, D2-40 and GFAP. Immunostainings for CD34 and CD31 outlined the rich and delicate vascular channels. Ki-67 expression was presented in approximately 3% of tumour cells. Primary haemangioblastoma has not been previously described at this site, and this case emphasises the need to consider haemangioblastoma in the differential diagnoses of neoplasms occurring in the tongue.
Collapse
Affiliation(s)
- Yacun Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Jie Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Orthopedics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Jiang
- Department of Pathology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
10
|
Iliopoulos O. Diseases of Hereditary Renal Cell Cancers. Urol Clin North Am 2023; 50:205-215. [PMID: 36948667 DOI: 10.1016/j.ucl.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Germline mutations in tumor suppressor genes and oncogenes lead to hereditary renal cell carcinoma (HRCC) diseases, characterized by a high risk of RCC and extrarenal manifestations. Patients of young age, those with a family history of RCC, and/or those with a personal and family history of HRCC-related extrarenal manifestations should be referred for germline testing. Identification of a germline mutation will allow for testing of family members at risk, as well as personalized surveillance programs to detect the early onset of HRCC-related lesions. The latter allows for more targeted and therefore more effective therapy and better preservation of renal parenchyma.
Collapse
Affiliation(s)
- Othon Iliopoulos
- VHL Comprehensive Clinical Care Center and Hemangioblastoma Center; Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital; Center for Cancer Research, Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Noureldine MHA, Shimony N, Jallo GI. Benign Spinal Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:583-606. [PMID: 37452955 DOI: 10.1007/978-3-031-23705-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Benign spinal intradural tumors are relatively rare and include intramedullary tumors with a favorable histology such as low-grade astrocytomas and ependymomas, as well as intradural extramedullary tumors such as meningiomas and schwannomas. The effect on the neural tissue is usually a combination of mass effect and neuronal involvement in cases of infiltrative tumors. The new understanding of molecular profiling of different tumors allowed us to better define central nervous system tumors and tailor treatment accordingly. The mainstay of management of many intradural spinal tumors is maximal safe surgical resection. This goal is more achievable with intradural extramedullary tumors; yet, with a meticulous surgical approach, many of the intramedullary tumors are amenable for safe gross-total or near-total resection. The nature of these tumors is benign; hence, a different way to measure outcome success is pursued and usually depends on functional rather than oncological or survival outcomes.
Collapse
Affiliation(s)
- Mohammad Hassan A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Institute for Brain Protection Sciences, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
| | - Nir Shimony
- Institute of Neuroscience, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, Danville, PA, USA
- Institute for Brain Protections Sciences, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
- Department of Surgery, St Jude Children's Research Hospital, Memphis, USA
| | - George I Jallo
- Institute for Brain Protections Sciences, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA.
| |
Collapse
|
12
|
Vetrano IG, Gioppo A, Faragò G, Pinzi V, Pollo B, Broggi M, Schiariti M, Ferroli P, Acerbi F. Hemangioblastomas and Other Vascular Origating Tumors of Brain or Spinal Cord. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:377-403. [PMID: 37452946 DOI: 10.1007/978-3-031-23705-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hemangioblastomas (HBs) are highly vascularized, slow-growing, rare benign tumors (WHO grade I). They account for about 2% of intracranial neoplasms; however, they are the most common primary cerebellar tumors in adults. Another frequent seat is the spinal cord (2-10% of primary spinal cord tumors). HBs are constituted by stromal and capillary vascular cells; macroscopically, HBs appear as nodular tumors, with or without cystic components. Although most of the HBs are sporadic (57-75%), they represent a particular component of von Hippel-Lindau disease (VHL), an autosomal dominant syndrome with high penetrance, due to a germline pathogenic mutation in the VHL gene, which is a tumor suppressor with chromosomal location on the short arm of chromosome three. VHL disease determines a variety of malignant and benign tumors, most frequently HBs, renal cell carcinomas, pheochromocytomas/paragangliomas, pancreatic neuroendocrine tumors, and endolymphatic sac tumors. Up to 20% of cases are due to de novo pathogenic variants without a family history. Many epidemiologic details of these tumors, especially the sporadic forms, are not well known. The median age of patients with sporadic HBS is about 40 years. More than two-third of VHL patients develop one or more central nervous system HBs during their lifetime; in case of VHL, patients at first diagnosis are usually younger than the patients with sporadic tumors. The most common presenting signs and symptoms are related to increased intracranial pressure, cerebellar signs, or spinal cord alterations in case of spinal involvement. Magnetic resonance imaging is the gold standard for the diagnosis, assessment, and follow-up of HBs, both sporadic and syndrome-related; angiography is rarely performed because the diagnosis is easily obtained with magnetic resonance. However, the diagnosis of an asymptomatic lesion does not automatically result in therapeutic actions, as the risks of treatment and the onset of possible neurological deficit need to be balanced, considering that HBs may remain asymptomatic and have a static or slow-growing behavior. In such cases, regular follow-up can represent a valid therapeutic option until the patients remain asymptomatic. There are no actual pharmacological therapies that are demonstrated to be effective for HBs. Surgery represents the primary therapeutic approach for these tumors. Observation or radiotherapy also plays a role in the long-term management of patients harboring HBs, especially in VHL; in few selected cases, endovascular treatment has been suggested before surgical removal. This chapter presents a systematic overview of epidemiology, clinical appearance, histopathological and neuroradiological characteristics of central nervous system HBs. Moreover, the genetic and molecular biology of sporadic and VHL HBS deserves special attention. Furthermore, we will describe all the available therapeutic options, along with the follow-up management. Finally, we will briefly report other vascular originating tumors as hemangioendotheliomas, hemangiomas, or angiosarcomas.
Collapse
Affiliation(s)
- Ignazio G Vetrano
- Neurovascular Surgery Unit, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Gioppo
- Interventional Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Faragò
- Interventional Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Pinzi
- Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Morgan Broggi
- Neurovascular Surgery Unit, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Schiariti
- Neurovascular Surgery Unit, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Neurovascular Surgery Unit, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Neurovascular Surgery Unit and Experimental Microsurgical Laboratory, Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via G. Celoria 11, 20133, Milan, Italy.
| |
Collapse
|
13
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Hovis GEA, Brown NJ, Ton E, Shahrestani S, Reveche H, Maddipatla V, Gendreau J, Golshani K. Bibliometric Analysis of the 100 Most Influential Hemangioblastoma Research Articles Illustrates Progress in Clinical Management and Room for Growth in Targeted Therapies. World Neurosurg 2022; 166:1-14. [PMID: 35779759 DOI: 10.1016/j.wneu.2022.06.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This bibliometric analysis aims to identify the most impactful articles on hemangioblastoma (HB) and evaluate the trajectory of academic literature in the field. METHODS The authors performed a title search using the Web of Science database, with ("hemangioblastoma" OR "haemangioblastoma") as a search query. The top 100 cited articles from the years 1900-2020 were sorted by the descending order of the total citation count. The following variables were assessed for each article: title, first author name and institution, publication year, country of origin, citation count, citations per year, and journal impact factor. RESULTS The query yielded 1918 articles related to the topic of HB that were published between the years 1900 and 2020 in 42 unique journals. The most prolific decade of publication was the 2000s (35%), followed by the 1990s (33%) and the 1980s (11%). The average citation count was 88.3 (range, 47-426), and the mean number of citations per year was 3.74 (range, 0.660-17.8). CONCLUSIONS This is the first bibliometric analysis to evaluate the most influential HB publications. Though a majority of HBs are sporadic, these results suggest a research focus on von Hippel-Lindau-associated tumors. Despite established evidence for the potential to control HB growth with vascular endothelial growth factor inhibition, there are no known clinical trials underway for this investigation. There is a need for consistent treatment guidelines for asymptomatic HBs, as resection can prevent the development of neurological deficits. An improved understanding of the etiology of these neoplasms could promote the development of novel diagnostic and treatment methods.
Collapse
Affiliation(s)
- Gabrielle E A Hovis
- Department of Neurological Surgery, University of California, Orange, California, USA
| | - Nolan J Brown
- Department of Neurological Surgery, University of California, Orange, California, USA.
| | - Emily Ton
- Department of Neurological Surgery, University of California, San Diego, California, USA
| | - Shane Shahrestani
- Department of Neurological Surgery, University of California, Orange, California, USA
| | - Hope Reveche
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vishnu Maddipatla
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julian Gendreau
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kiarash Golshani
- Department of Neurological Surgery, University of California, Orange, California, USA
| |
Collapse
|
15
|
Abstract
Germline loss-of-function mutations of the VHL tumor suppressor gene cause von Hippel–Lindau disease, which is associated with an increased risk of hemangioblastomas, clear cell renal cell carcinomas (ccRCCs), and paragangliomas. This Review describes mechanisms involving the VHL gene product in oxygen sensing, protein degradation, and tumor development and current therapeutic strategies targeting these mechanisms. The VHL gene product is the substrate recognition subunit of a ubiquitin ligase that targets the α subunit of the heterodimeric hypoxia-inducible factor (HIF) transcription factor for proteasomal degradation when oxygen is present. This oxygen dependence stems from the requirement that HIFα be prolyl-hydroxylated on one (or both) of two conserved prolyl residues by members of the EglN (also called PHD) prolyl hydroxylase family. Deregulation of HIF, and particularly HIF2, drives the growth of VHL-defective ccRCCs. Drugs that inhibit the HIF-responsive gene product VEGF are now mainstays of ccRCC treatment. An allosteric HIF2 inhibitor was recently approved for the treatment of ccRCCs arising in the setting of VHL disease and has advanced to phase III testing for sporadic ccRCCs based on promising phase I/II data. Orally available EglN inhibitors are being tested for the treatment of anemia and ischemia. Five of these agents have been approved for the treatment of anemia in the setting of chronic kidney disease in various countries around the world.
Collapse
|
16
|
Park SH, Won JK, Kim CH, Phi JH, Kim SK, Choi SH, Chung CK. Pathological Classification of the Intramedullary Spinal Cord Tumors According to 2021 World Health Organization Classification of Central Nervous System Tumors, a Single-Institute Experience. Neurospine 2022; 19:780-791. [PMID: 36203303 PMCID: PMC9537827 DOI: 10.14245/ns.2244196.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
According to the new 2021 World Health Organization (WHO) classification of tumors of the central nervous system (CNS) the classification of the primary intramedullary spinal cord tumors (IM-SCT) follows that of CNS tumors. However, since the genetics and methylation profile of ependymal tumors depend on the location of the tumor, the 'spinal (SP)' should be added for the ependymoma (EPN) and subependymoma (SubEPN). For an evidence-based review, the authors reviewed SCTs in the archives of the Seoul National University Hospital over the past decade. The frequent pathologies of primary IM-SCT were SP-EPN (45.1%), hemangioblastoma (20.0%), astrocytic tumors (17.4%, including pilocytic astrocytoma [4.6%] and diffuse midline glioma, H3 K27-altered [4.0%]), myxopapillary EPN (11.0%), and SP-subEPN (3.0%) in decreasing order. IDH-mutant astrocytomas, oligodendrogliomas, glioneuronal tumors, embryonal tumors, and germ cell tumors can occur but are extremely rare in the spinal cord. Genetic studies should support for the primary IM-SCT classification. In the 2021 WHO classifications, extramedullary SCT did not change significantly but contained several new genetically defined types of mesenchymal tumors. This article focused on primary IM-SCT for tumor frequency, age, sex difference, pathological features, and genetic abnormalities, based on a single-institute experience.
Collapse
Affiliation(s)
- Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea,Institute of Neuroscience, Seoul National University College of Medicine Neuroradiology, Seoul, Korea,Corresponding Author Sung-Hye Park Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hong Choi
- Department of Neuroradiology, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Kee Chung
- Institute of Neuroscience, Seoul National University College of Medicine Neuroradiology, Seoul, Korea
| |
Collapse
|
17
|
Schwartz A, Manning DK, Koeller DR, Chittenden A, Isidro RA, Hayes CP, Abraamyan F, Manam MD, Dwan M, Barletta JA, Sholl LM, Yurgelun MB, Rana HQ, Garber JE, Ghazani AA. An integrated somatic and germline approach to aid interpretation of germline variants of uncertain significance in cancer susceptibility genes. Front Oncol 2022; 12:942741. [PMID: 36091175 PMCID: PMC9453486 DOI: 10.3389/fonc.2022.942741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic profiles of tumors are often unique and represent characteristic mutational signatures defined by DNA damage or DNA repair response processes. The tumor-derived somatic information has been widely used in therapeutic applications, but it is grossly underutilized in the assessment of germline genetic variants. Here, we present a comprehensive approach for evaluating the pathogenicity of germline variants in cancer using an integrated interpretation of somatic and germline genomic data. We have previously demonstrated the utility of this integrated approach in the reassessment of pathogenic germline variants in selected cancer patients with unexpected or non-syndromic phenotypes. The application of this approach is presented in the assessment of rare variants of uncertain significance (VUS) in Lynch-related colon cancer, hereditary paraganglioma-pheochromocytoma syndrome, and Li-Fraumeni syndrome. Using this integrated method, germline VUS in PMS2, MSH6, SDHC, SHDA, and TP53 were assessed in 16 cancer patients after genetic evaluation. Comprehensive clinical criteria, somatic signature profiles, and tumor immunohistochemistry were used to re-classify VUS by upgrading or downgrading the variants to likely or unlikely actionable categories, respectively. Going forward, collation of such germline variants and creation of cross-institutional knowledgebase datasets that include integrated somatic and germline data will be crucial for the assessment of these variants in a larger cancer cohort.
Collapse
Affiliation(s)
- Alison Schwartz
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Danielle K. Manning
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Diane R. Koeller
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Anu Chittenden
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Raymond A. Isidro
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Connor P. Hayes
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Feruza Abraamyan
- Harvard Medical School, Boston, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Monica Devi Manam
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Meaghan Dwan
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Justine A. Barletta
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Matthew B. Yurgelun
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Huma Q. Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Judy E. Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Arezou A. Ghazani
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Arezou A. Ghazani,
| |
Collapse
|
18
|
Koeller DR, Manning DK, Schwartz A, Chittenden A, Hayes CP, Abraamyan F, Rana HQ, Lindeman NI, Garber JE, Ghazani AA. An optimized protocol for evaluating pathogenicity of VHL germline variants in patients suspected with von Hippel-Lindau syndrome: Using somatic genome to inform the role of germline variants. MethodsX 2022; 9:101761. [PMID: 35774415 PMCID: PMC9237939 DOI: 10.1016/j.mex.2022.101761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
The interpretation of hereditary genetic sequencing variants is often limited due to the absence of functional data and other key evidence to assess the role of variants in disease. Cancer genetics is unique, as two sets of genomic information are often available from a cancer patient: somatic and germline. Despite the progress made in the integrated analysis of somatic and germline findings, the assessment of pathogenicity of germline variants in high penetrance genes remains grossly underutilized. Indeed, standard ACMG/AMP guidelines for interpreting germline sequence variants do not address the evidence derived from tumor data in cancer. Previously, we have demonstrated the utility of somatic tumor data as supporting evidence to elucidate the role of germline variants in patients suspected with VHL syndrome and other cancers. We have leveraged the key elements of cancer genetics in these cases: genes with expected high disease penetrance and those with a known biallelic mechanism of tumorigenicity. Here we provide our optimized protocol for evaluating the pathogenicity of germline VHL variants using informative somatic profiling data. This protocol provides details of case selection, assessment of personal and family evidence, somatic tumor profiles, and loss of heterozygosity (LOH) as supporting evidence for the re-evaluation of germline variants.
Collapse
Affiliation(s)
- Diane R Koeller
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Danielle K Manning
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alison Schwartz
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Anu Chittenden
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Connor P Hayes
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Feruza Abraamyan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Huma Q Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Arezou A Ghazani
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Bhalla AD, Landers SM, Singh AK, Landry JP, Yeagley MG, Myerson GSB, Delgado-Baez CB, Dunnand S, Nguyen T, Ma X, Bolshakov S, Menegaz BA, Lamhamedi-Cherradi SE, Mao X, Song X, Lazar AJ, McCutcheon IE, Slopis JM, Ludwig JA, Lev DC, Rai K, Torres KE. Experimental models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor. J Transl Med 2022; 102:658-666. [PMID: 35228656 PMCID: PMC11959861 DOI: 10.1038/s41374-022-00734-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) and malignant peripheral nerve sheath tumor (MPNST) are aggressive soft tissue sarcomas that do not respond well to current treatment modalities. The limited availability of UPS and MPNST cell lines makes it challenging to identify potential therapeutic targets in a laboratory setting. Understanding the urgent need for improved treatments for these tumors and the limited cellular models available, we generated additional cell lines to study these rare cancers. Patient-derived tumors were used to establish 4 new UPS models, including one radiation-associated UPS-UPS271.1, UPS511, UPS0103, and RIS620, one unclassified spindle cell sarcoma-USC060.1, and 3 new models of MPNST-MPNST007, MPNST3813E, and MPNST4970. This study examined the utility of the new cell lines as sarcoma models by assessing their tumorigenic potential and mutation status for known sarcoma-related genes. All the cell lines formed colonies and migrated in vitro. The in vivo tumorigenic potential of the cell lines and corresponding xenografts was determined by subcutaneous injection or xenograft re-passaging into immunocompromised mice. USC060.1 and UPS511 cells formed tumors in mice upon subcutaneous injection. UPS0103 and RIS620 tumor implants formed tumors in vivo, as did MPNST007 and MPNST3813E tumor implants. Targeted sequencing analysis of a panel of genes frequently mutated in sarcomas identified TP53, RB1, and ATRX mutations in a subset of the cell lines. These new cellular models provide the scientific community with powerful tools for detailed studies of tumorigenesis and for investigating novel therapies for UPS and MPNST.
Collapse
Affiliation(s)
- Angela D Bhalla
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon M Landers
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jace P Landry
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle G Yeagley
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabryella S B Myerson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian B Delgado-Baez
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Puerto Rico-Medical Science Campus, San Juan, PR, USA
- Partnership for Diversity, Sponsored by Women and Minority Faculty Inclusion, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Dunnand
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Partnership for Diversity, Sponsored by Women and Minority Faculty Inclusion, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theresa Nguyen
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyan Ma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Svetlana Bolshakov
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian A Menegaz
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Slopis
- Departments of Pediatrics and Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dina C Lev
- Department of Surgery, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keila E Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Woltering N, Albers A, Müther M, Stummer W, Paulus W, Hasselblatt M, Holling M, Thomas C. DNA
methylation profiling of central nervous system hemangioblastomas identifies two distinct subgroups. Brain Pathol 2022; 32:e13083. [PMID: 35637626 PMCID: PMC9616087 DOI: 10.1111/bpa.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
Hemangioblastomas (HBs) of the central nervous system are highly vascular neoplasms that occur sporadically or as a manifestation of von Hippel–Lindau (VHL) disease. Despite their benign nature, HBs are clinically heterogeneous and can be associated with significant morbidity due to mass effects of peritumoral cysts or tumor progression. Underlying molecular factors involved in HB tumor biology remain elusive. We investigated genome‐wide DNA methylation profiles and clinical and histopathological features in a series of 47 HBs from 42 patients, including 28 individuals with VHL disease. Thirty tumors occurred in the cerebellum, 8 in the brainstem and 8 HBs were of spinal location, while 1 HB was located in the cerebrum. Histologically, 12 HBs (26%) belonged to the cellular subtype and exclusively occurred in the cerebellum, whereas 35 HBs were reticular (74%). Unsupervised clustering and dimensionality reduction of DNA methylation profiles revealed two distinct subgroups. Methylation cluster 1 comprised 30 HBs of mainly cerebellar location (29/30, 97%), whereas methylation cluster 2 contained 17 HBs predominantly located in non‐cerebellar compartments (16/17, 94%). The sum of chromosomal regions being affected by copy‐number alterations was significantly higher in methylation cluster 1 compared to cluster 2 (mean 262 vs. 109 Mb, p = 0.001). Of note, loss of chromosome 6 occurred in 9/30 tumors (30%) of methylation cluster 1 and was not observed in cluster 2 tumors (p = 0.01). No relevant methylation differences between sporadic and VHL‐related HBs or cystic and non‐cystic HBs could be detected. Deconvolution of the bulk DNA methylation profiles revealed four methylation components that were associated with the two methylation clusters suggesting cluster‐specific cell‐type compositions. In conclusion, methylation profiling of HBs reveals 2 distinct subgroups that mainly associate with anatomical location, cytogenetic profiles and differences in cell type composition, potentially reflecting different cells of origin.
Collapse
Affiliation(s)
- Niklas Woltering
- Institute of Neuropathology University Hospital Münster Münster Germany
| | - Anne Albers
- Institute of Neuropathology University Hospital Münster Münster Germany
| | - Michael Müther
- Department of Neurosurgery University Hospital Münster Münster Germany
| | - Walter Stummer
- Department of Neurosurgery University Hospital Münster Münster Germany
| | - Werner Paulus
- Institute of Neuropathology University Hospital Münster Münster Germany
| | | | - Markus Holling
- Department of Neurosurgery University Hospital Münster Münster Germany
| | - Christian Thomas
- Institute of Neuropathology University Hospital Münster Münster Germany
| |
Collapse
|
21
|
Yoda RA, Cimino PJ. Neuropathologic features of central nervous system hemangioblastoma. J Pathol Transl Med 2022; 56:115-125. [PMID: 35501672 PMCID: PMC9119802 DOI: 10.4132/jptm.2022.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Hemangioblastoma is a benign, highly vascularized neoplasm of the central nervous system (CNS). This tumor is associated with loss of function of the VHL gene and demonstrates frequent occurrence in von Hippel-Lindau (VHL) disease. While this entity is designated CNS World Health Organization grade 1, due to its predilection for the cerebellum, brainstem, and spinal cord, it is still an important cause of morbidity and mortality in affected patients. Recognition and accurate diagnosis of hemangioblastoma is essential for the practice of surgical neuropathology. Other CNS neoplasms, including several tumors associated with VHL disease, may present as histologic mimics, making diagnosis challenging. We outline key clinical and radiologic features, pathophysiology, treatment modalities, and prognostic information for hemangioblastoma, and provide a thorough review of the gross, microscopic, immunophenotypic, and molecular features used to guide diagnosis.
Collapse
Affiliation(s)
- Rebecca A. Yoda
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, Division of Cytopathology, University of Washington, Seattle, WA, USA
- Corresponding Author: Rebecca A. Yoda, MD, Department of Laboratory Medicine and Pathology, University of Washington, 325 9th Avenue, Box 359791, Seattle, WA 98104-2499, USA Tel: +1-206-744-3145, Fax: +1-206-744-8240, E-mail:
| | - Patrick J. Cimino
- Department of Laboratory Medicine and Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Kaelin WG. THE JEREMIAH METZGER LECTURE:VON HIPPEL-LINDAU DISEASE: INSIGHTS INTO OXYGEN SENSING, CANCER AND DRUGGING THE UNDRUGGABLE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2022; 132:170-181. [PMID: 36196173 PMCID: PMC9480541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Germline VHL mutations predispose to hemangioblastomas of the retina, cerebellum, and spinal cord; clear cell renal cell carcinomas (ccRCCs); and paragangliomas. Consistent with the Knudson two-hit model, somatic biallelic VHL mutations are common in sporadic ccRCCs. The VHL gene product nucleates an ubiquitin ligase that targets the alpha subunits of the heterodimeric transcription factor HIF (hypoxia-inducible factor) for proteasomal degradation when oxygen is plentiful. The recognition of HIF↑ by pVHL requires that HIF↑ be hydroxylated on one (or both) of two conserved prolyl residues by the oxygen-dependent EglN (also called PHD) prolyl hydroxylases. HIF↑, bound to HIF↓ (also called ARNT), transcriptionally activates genes that promote adaptation to hypoxia such as VEGF and EPO. Deregulation of HIF, and particularly HIF2, drives pVHL-defective tumorigenesis. EglN inhibitors are being developed for the treatment of anemia and ischemic diseases, whereas HIF2 inhibitors are being developed for the treatment of pVHL-defective tumors. The thalidomide-like drugs ("IMiDs") bind to cereblon, which is the substrate recognition subunit of another ubiquitin ligase that loosely resembles the pVHL ubiquitin ligase. The IMiDs kill multiple myeloma cells by reprogramming the cereblon ligase to earmark the transcription factors IKZF1 and IKZF3 for destruction. This discovery has galvanized interest in developing drugs that degrade otherwise undruggable proteins.
Collapse
|
23
|
Rana HQ, Koeller DR, Schwartz A, Manning DK, Schneider KA, Krajewski KM, Choueiri TK, Lindeman NI, Garber JE, Ghazani AA. Pathogenicity of VHL variants in families with non-syndromic von Hippel-Lindau phenotypes: An integrated evaluation of germline and somatic genomic results. Eur J Med Genet 2021; 64:104359. [PMID: 34628056 DOI: 10.1016/j.ejmg.2021.104359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Von Hippel-Lindau (VHL) syndrome is a hereditary tumor syndrome associated with germline loss-of-function pathogenic variants (PVs) in the VHL gene. VHL is classically associated with a high penetrance for many different tumor types. The same tumors may be sporadic in the setting of somatic VHL PVs. With more large-scale genome sequencing, variants with low penetrance or variable expressivity are identified. This has introduced challenges in patient management and the clinical interpretation of germline VHL variants identified in non-classic families. Herein, we report individuals from 3 non-classic families with VHL variants who presented with unexpected or non-syndromic phenotypes, but often with a VHL component tumor. In family 1, two siblings, age 61, with pathogenic VHL p.Leu188Val presented with clear cell renal cell carcinoma and lobular breast cancer. In family 2, the proband, age 82, was found to have pathogenic germline VHL p.Tyr98His on testing for metastatic bladder cancer. In family 3, four members carried germline VHL p.Pro81Ser (variant of uncertain significance), after the proband, age 40, presented with cerebellar hemangioblastoma. None of the individuals in the above three families met clinical criteria of classic VHL, suggesting germline VHL p.Leu188Val, p.Y98H, and p.Tyr98His may be low penetrant variants. Large studies are needed to evaluate penetrance and possible effect of genetic and non-genetic modifiers. Somatic sequencing performed on their respective tumors could help discern the etiology of the component tumors, highlighting the role of somatic evaluation in these cases. Paired examination of somatic and germline findings provided a more complete landscape of genome alterations in cancer development.
Collapse
Affiliation(s)
- Huma Q Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Diane R Koeller
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison Schwartz
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Katherine A Schneider
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Katherine M Krajewski
- Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Neal I Lindeman
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Arezou A Ghazani
- Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Kuhlman JJ, Frier QJ, Sumarriva D, Oberley M, Bolton D, Deveras RA. Germline VHL Mutation Discovered in Association with EGFR-Positive Lung Cancer and Metachronous Hepatocellular Carcinoma: A Case Report. Case Rep Oncol 2021; 14:1392-1398. [PMID: 34720947 PMCID: PMC8525297 DOI: 10.1159/000518318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
VHL is a tumor suppressor gene located on chromosome 3 that is classically associated with tumors of the eye and CNS, renal cell carcinoma, and pheochromocytoma. We describe what appears to be the first report of an association between a germline VHL mutation and non-small cell lung cancer and metachronous hepatocellular carcinoma (HCC). Our case involves a 63-year-old nonsmoking male who was initially diagnosed with EGFR mutation-positive metastatic nonsquamous, non-small cell lung adenocarcinoma, who subsequently developed HCC and squamous cell carcinoma of the femur despite first-line treatment with EGFR-blocking osimertinib. Caris molecular profiling unexpectedly identified a shared underlying VHL mutation in all 3 lesions. Genetic mapping through a machine learning-based tool called Genomic Prevalence Score (GPSai™) helped determine that the femur tumor was a metastatic lesion as opposed to a separate primary and that the HCC was a distinct primary malignancy. We not only highlight the association between these tumors and a VHL mutation but also emphasize the value of next-generation sequencing and a molecular disease classifier in a patient with multiple primaries, how it helps guide therapy, and its value in guiding future studies.
Collapse
Affiliation(s)
- Justin J Kuhlman
- Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Quinn J Frier
- Department of Internal Medicine, Prisma Health, Columbia, South Carolina, USA
| | - Daniel Sumarriva
- Department of Molecular Science, Caris Life Sciences, Phoenix, Arizona, USA
| | - Matthew Oberley
- Department of Hematopathology, Caris Life Sciences, Phoenix, Arizona, USA
| | - Danielle Bolton
- Hereditary Risks and Genetics, Center for Oncology, Halifax Health, Daytona Beach, Florida, USA
| | - Ruby A Deveras
- Department of Medical Oncology and Hematology, Halifax Health, Daytona Beach, Florida, USA
| |
Collapse
|
25
|
Schweizer L, Thierfelder F, Thomas C, Soschinski P, Kim HY, Jödicke R, Woltering N, Förster A, Teichmann D, Siewert C, Klein K, Schmid S, Nunninger M, Thomale UW, Onken J, Mühleisen H, Schittenhelm J, Tatagiba M, von Deimling A, Reuss DE, Solomon DA, Heppner FL, Koch A, Hartmann C, Staszewski O, Capper D. Molecular characterisation of sporadic endolymphatic sac tumours and comparison to von Hippel-Lindau disease-related tumours. Neuropathol Appl Neurobiol 2021; 47:756-767. [PMID: 34091929 DOI: 10.1111/nan.12741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
AIMS Although inactivation of the von Hippel-Lindau gene (VHL) on chromosome 3p25 is considered to be the major cause of hereditary endolymphatic sac tumours (ELSTs), the genetic background of sporadic ELST is largely unknown. The aim of this study was to determine the prevalence of VHL mutations in sporadic ELSTs and compare their characteristics to VHL-disease-related tumours. METHODS Genetic and epigenetic alterations were compared between 11 sporadic and 11 VHL-disease-related ELSTs by targeted sequencing and DNA methylation analysis. RESULTS VHL mutations and small deletions detected by targeted deep sequencing were identified in 9/11 sporadic ELSTs (82%). No other cancer-related genetic pathway was altered except for TERT promoter mutations in two sporadic ELST and one VHL-disease-related ELST (15%). Loss of heterozygosity of chromosome 3 was found in 6/10 (60%) VHL-disease-related and 10/11 (91%) sporadic ELSTs resulting in biallelic VHL inactivation in 8/10 (73%) sporadic ELSTs. DNA methylation profiling did not reveal differences between sporadic and VHL-disease-related ELSTs but reliably distinguished ELST from morphological mimics of the cerebellopontine angle. VHL patients were significantly younger at disease onset compared to sporadic ELSTs (29 vs. 52 years, p < 0.0001, Fisher's exact test). VHL-disease status was not associated with an increased risk of recurrence, but the presence of clear cells was found to be associated with shorter progression-free survival (p = 0.0002, log-rank test). CONCLUSION Biallelic inactivation of VHL is the main mechanism underlying ELSTs, but unknown mechanisms beyond VHL may rarely be involved in the pathogenesis of sporadic ELSTs.
Collapse
Affiliation(s)
- Leonille Schweizer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Thierfelder
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Thomas
- Department of Neuropathology, University Hospital Münster, Münster, Germany
| | - Patrick Soschinski
- Department of Neuropathology, University Hospital Münster, Münster, Germany
| | - Hee-Yeong Kim
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruben Jödicke
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niklas Woltering
- Department of Neuropathology, University Hospital Münster, Münster, Germany
| | - Alexandra Förster
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Teichmann
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christin Siewert
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Klein
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Nunninger
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrich-Wilhelm Thomale
- Department of Neurosurgery, Division Pediatric Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David E Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David A Solomon
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, California, USA
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Hannover Medical School, Hannover, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Cabral de Carvalho Corrêa D, Tesser-Gamba F, Dias Oliveira I, Saba da Silva N, Capellano AM, de Seixas Alves MT, Benevides Silva FA, Dastoli PA, Cavalheiro S, Caminada de Toledo SR. Molecular profiling of pediatric and adolescent ependymomas: identification of genetic variants using a next-generation sequencing panel. J Neurooncol 2021; 155:13-23. [PMID: 34570300 DOI: 10.1007/s11060-021-03848-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Ependymoma (EPN) accounts for approximately 10% of all primary central nervous system (CNS) tumors in children and in most cases, chemotherapy is ineffective and treatment remains challenging. We investigated molecular alterations, with a potential prognostic marker and therapeutic target in EPNs of childhood and adolescence, using a next-generation sequencing (NGS) panel specific for pediatric neoplasms. METHODS We selected 61 samples with initial diagnosis of EPN from patients treated at Pediatric Oncology Institute-GRAACC/UNIFESP. All samples were divided according to the anatomical compartment of the CNS - 42 posterior fossa (PF), 14 supratentorial (ST), and five spinal (SP). NGS was performed to identify somatic genetic variants in tumor samples using the Oncomine Childhood Cancer Research Assay® (OCCRA®) panel, from Thermo Fisher Scientific®. RESULTS Genetic variants were identified in 24 of 61 (39.3%) tumors and over 90% of all variants were pathogenic or likely pathogenic. The most commonly variants detected were in CIC, ASXL1, and JAK2 genes and have not been reported in EPN yet. MN1-BEND2 fusion, alteration recently described in a new CNS tumor type, was identified in one ST sample that was reclassified as astroblastoma. Additionally, YAP1-MAMLD1 fusion, a rare event associated with good outcome in ST-EPN, was observed in two patients diagnosed under 2 years old. CONCLUSIONS Molecular profiling by the OCCRA® panel showed novel alterations in pediatric and adolescent EPNs, which highlights the clinical importance in identifying genetic variants for patients' prognosis and therapeutic orientation.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Francine Tesser-Gamba
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nasjla Saba da Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Pathology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Frederico Adolfo Benevides Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Alessandra Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil. .,Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, SP, Brazil. .,Pediatric Oncology Institute-Grupo de Apoio ao Adolescente e à Criança com Câncer/Federal University of Sao Paulo (IOP-GRAACC/UNIFESP), 743 Botucatu Street, 8th Floor - Genetics Laboratory, Vila Clementino, Sao Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
27
|
Investigation and Management of Apparently Sporadic Central Nervous System Haemangioblastoma for Evidence of Von Hippel-Lindau Disease. Genes (Basel) 2021; 12:genes12091414. [PMID: 34573396 PMCID: PMC8472407 DOI: 10.3390/genes12091414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Haemangioblastomas are rare, highly vascularised tumours that typically occur in the cerebellum, brain stem and spinal cord. Up to a third of individuals with a haemangioblastoma will have von Hippel–Lindau (VHL) disease. Individuals with haemangioblastoma and underlying VHL disease present, on average, at a younger age and frequently have a personal or family history of VHL disease-related tumours (e.g., retinal or central nervous system (CNS) haemangioblastomas, renal cell carcinoma, phaeochromocytoma). However, a subset present an apparently sporadic haemangioblastoma without other features of VHL disease. To detect such individuals, it has been recommended that genetic testing and clinical/radiological assessment for VHL disease should be offered to patients with a haemangioblastoma. To assess “real-world” clinical practice, we undertook a national survey of clinical genetics centres. All participating centres responded that they would offer genetic testing and a comprehensive assessment (ophthalmological examination and CNS and abdominal imaging) to a patient presenting with a CNS haemangioblastoma. However, for individuals who tested negative, there was variability in practice with regard to the need for continued follow-up. We then reviewed the results of follow-up surveillance in 91 such individuals seen at four centres. The risk of developing a potential VHL-related tumour (haemangioblastoma or RCC) was estimated at 10.8% at 10 years follow-up. The risks of developing a recurrent haemangioblastoma were higher in those who presented <40 years of age. In the light of these and previous findings, we propose an age-stratified protocol for surveillance of VHL-related tumours in individuals with apparently isolated haemangioblastoma.
Collapse
|
28
|
Adan A, Carine L, Heimann H, Ugarte M. Isolated juxtapapillary retinal capillary haemangioblastoma and exudative maculopathy in an elderly patient without von Hippel-Lindau syndrome: combined proton beam radiotherapy and intravitreal anti-VEGF. BMJ Case Rep 2021; 14:e244077. [PMID: 34400427 PMCID: PMC8370506 DOI: 10.1136/bcr-2021-244077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 11/03/2022] Open
Abstract
A 71-year-old Caucasian man presented with an isolated juxtapapillary retinal capillary haemangioblastoma on the superior and temporal left optic disc with active exudation resulting in macular intraretinal and subretinal fluid, reduced vision, scotoma and distortion with progression over 6 weeks. He did not have von Hippel-Lindau syndrome. After proton beam radiotherapy (PBR), the tumour size remained unchanged, but did not stop the exudation. Three anti-vascular endothelial growth factor (VEGF) (ie, bevacizumab) injections at monthly intervals resulted in reduced macular oedema. Combined therapy with PBR and anti-VEGF injections sustained our patient's vision at 12 months follow-up.
Collapse
Affiliation(s)
- Ahmed Adan
- Medical School, University of Liverpool, Liverpool, UK
| | - Luke Carine
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Heinrich Heimann
- St Paul's Eye Unit at the Royal Liverpool University Hospital, Liverpool, UK
| | - Marta Ugarte
- Manchester University NHS Foundation Trust, Manchester, UK
- School of Medical Sciences, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| |
Collapse
|
29
|
McPherson MT, Holub AS, Husbands AY, Petreaca RC. Mutation Spectra of the MRN (MRE11, RAD50, NBS1/NBN) Break Sensor in Cancer Cells. Cancers (Basel) 2020; 12:cancers12123794. [PMID: 33339169 PMCID: PMC7765586 DOI: 10.3390/cancers12123794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A DNA double strand break cuts a chromosome in two and is one of the most dangerous forms of DNA damage. Improper repair can lead to various chromosomal re-arrangements that have been detected in almost all cancer cells. A complex of three proteins (MRE11, RAD50, NBS1 or NBN) detects chromosome breaks and orchestrates repair processes. Mutations in these “break sensor” genes have been described in a multitude of cancers. Here, we provide a comprehensive analysis of reported mutations from data deposited on the Catalogue of Somatic Mutations in Cancer (COSMIC) archive. We also undertake an evolutionary analysis of these genes with the aim to understand whether these mutations preferentially accumulate in conserved residues. Interestingly, we find that mutations are overrepresented in evolutionarily conserved residues of RAD50 and NBS1/NBN but not MRE11. Abstract The MRN complex (MRE11, RAD50, NBS1/NBN) is a DNA double strand break sensor in eukaryotes. The complex directly participates in, or coordinates, several activities at the break such as DNA resection, activation of the DNA damage checkpoint, chromatin remodeling and recruitment of the repair machinery. Mutations in components of the MRN complex have been described in cancer cells for several decades. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) database, we characterized all the reported MRN mutations. This analysis revealed several hotspot frameshift mutations in all three genes that introduce premature stop codons and truncate large regions of the C-termini. We also found through evolutionary analyses that COSMIC mutations are enriched in conserved residues of NBS1/NBN and RAD50 but not in MRE11. Given that all three genes are important to carcinogenesis, we propose these differential enrichment patterns may reflect a more severe pleiotropic role for MRE11.
Collapse
|
30
|
Healy V, O'Halloran PJ, Husien MB, Bolger C, Farrell M. Intermixed arteriovenous malformation and hemangioblastoma: case report and literature review. CNS Oncol 2020; 9:CNS66. [PMID: 33244995 PMCID: PMC7737198 DOI: 10.2217/cns-2020-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
We report the third presentation of an intermixed arteriovenous malformation and hemangioblastoma. The rare occurrence of the diagnostic histologic features of both a neoplasm and vascular malformation in a single lesion is more common in gliomas, as angioglioma, and is termed an 'intermixed' lesion. We review the literature concerning the developmental biology of each lesion, and potential interplay in the formation of an intermixed vascular neoplasm and vascular malformation. The roles of cellular origin, genetic susceptibility, favourable microenvironment, altered local gene expression and key regulatory pathways are reviewed. Our review supports angiography and genetic profiling in intermixed lesions to inform management strategies. Consideration should be given to multimodality therapeutic interventions as required, including microsurgical resection, stereotactic radiosurgery and further research to exploit emerging molecular targets.
Collapse
Affiliation(s)
- Vincent Healy
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
- Department of Neuroscience, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
- Department of Neuroscience, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Ciaran Bolger
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
- Department of Neuroscience, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michael Farrell
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
31
|
Nelakurti DD, Pappula AL, Rajasekaran S, Miles WO, Petreaca RC. Comprehensive Analysis of MEN1 Mutations and Their Role in Cancer. Cancers (Basel) 2020; 12:cancers12092616. [PMID: 32937789 PMCID: PMC7565326 DOI: 10.3390/cancers12092616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancers are characterized by accumulation of genetic mutations in key cell cycle regulators that alter or disable the function of these genes. Such mutations can be inherited or arise spontaneously during the life of the individual. The MEN1 gene prevents uncontrolled cell division and it is considered a tumor suppressor. Inherited MEN1 mutations are associated with certain parathyroid and pancreatic syndromes while spontaneous mutations have been detected in cancer cells. We investigated whether inherited mutations appear in cancer cells which would suggest that patients with parathyroid and pancreatic syndromes have a predisposition to develop cancer. We find a weak correlation between the spectrum of inherited mutations and those appearing spontaneously. Thus, inherited MEN1 mutations may not be a good predictor of tumorigenesis. Abstract MENIN is a scaffold protein encoded by the MEN1 gene that functions in multiple biological processes, including cell proliferation, migration, gene expression, and DNA damage repair. MEN1 is a tumor suppressor gene, and mutations that disrupts MEN1 function are common to many tumor types. Mutations within MEN1 may also be inherited (germline). Many of these inherited mutations are associated with a number of pathogenic syndromes of the parathyroid and pancreas, and some also predispose patients to hyperplasia. In this study, we cataloged the reported germline mutations from the ClinVar database and compared them with the somatic mutations detected in cancers from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We then used statistical software to determine the probability of mutations being pathogenic or driver. Our data show that many confirmed germline mutations do not appear in tumor samples. Thus, most mutations that disable MEN1 function in tumors are somatic in nature. Furthermore, of the germline mutations that do appear in tumors, only a fraction has the potential to be pathogenic or driver mutations.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Amrit L. Pappula
- Computer Science and Engineering Undergraduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Correspondence:
| |
Collapse
|
32
|
Yang Y, Gao H, Zhen T, Tuo Y, Chen S, Liang J, Han A. Hemangioblastoma: clinicopathologic study of 42 cases with emphasis on TFE3 expression. Am J Transl Res 2020; 12:4498-4510. [PMID: 32913523 PMCID: PMC7476158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Hemangioblastomas (HBs) histologically overlap with TFE3 rearrangement-associated tumors, which present as alveolar architecture and clear or eosinophilic granular cytoplasm. However, whether TFE3 is expressed in HBs remains unexplored. Herein, we analyzed the clinicopathologic features of 42 HBs emphasizing studies of TFE3 expression. Of 42 cases, 38 were sporadic and 4 were regarded as a part of von Hippel-Lindau (VHL) syndrome according to clinical presentation. Nineteen patients were male and 23 were female. Patient age ranged from 17 to 70 years (median 43). Tumor size ranged from 0.4 to 4.8 cm (mean 2.2 cm). Follow-up ranged from 1 to 60 months and 6 patients developed recurrence. Immunohistochemistry staining showed that 36 (86%) of 42 HBs expressed TFE3 in nuclei of tumor cells, of which 21 were evaluated as high TFE3 expression levels. Increased TFE3 expression was significantly associated with older ages (P=0.018) and larger tumor size (P=0.001). Seventeen HBs with high TFE3 expression were negative for rearrangement and amplification of TFE3 by FISH analysis, 3 of which including 2 sporadic and 1 VHL-related HBs demonstrated trisomies or tetrasomies of X-chromosome in 7%~18% of tumor cells. All 3 cases occurred in female, presented with a larger tumor size and displayed a similar morphologic appearance with high cellularity and hyperchromatic nuclei. Our study first reports TFE3 expression and its clinicopathological relevance in HBs. We hypothesize that TFE3 might be involved in the pathogenesis of non-VHL-related HBs. Furthermore, HBs with strong TFE3 expression should be differentiated from brain-metastatic TFE3-rearranged tumors.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Tiantian Zhen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Ying Tuo
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Shaoyu Chen
- Guangzhou LBP Medical Technology Co., Ltd.Guangzhou 510530, P. R. China
| | - Jiangtao Liang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| |
Collapse
|
33
|
Mittempergher L, Piskorz AM, Bosma AJ, Michaut M, Wisman GBA, Kluin RJC, Nieuwland M, Brugman W, van der Ven KJW, Marass F, Morris J, Rosenfeld N, Jimenez-Linan M, de Jong S, van der Zee AGJ, Brenton JD, Bernards R. Kinome capture sequencing of high-grade serous ovarian carcinoma reveals novel mutations in the JAK3 gene. PLoS One 2020; 15:e0235766. [PMID: 32639993 PMCID: PMC7343160 DOI: 10.1371/journal.pone.0235766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) remains the deadliest form of epithelial ovarian cancer and despite major efforts little improvement in overall survival has been achieved. Identification of recurring "driver" genetic lesions has the potential to enable design of novel therapies for cancer. Here, we report on a study to find such new therapeutic targets for HGSOC using exome-capture sequencing approach targeting all kinase genes in 127 patient samples. Consistent with previous reports, the most frequently mutated gene was TP53 (97% mutation frequency) followed by BRCA1 (10% mutation frequency). The average mutation frequency of the kinase genes mutated from our panel was 1.5%. Intriguingly, after BRCA1, JAK3 was the most frequently mutated gene (4% mutation frequency). We tested the transforming properties of JAK3 mutants using the Ba/F3 cell-based in vitro functional assay and identified a novel gain-of-function mutation in the kinase domain of JAK3 (p.T1022I). Importantly, p.T1022I JAK3 mutants displayed higher sensitivity to the JAK3-selective inhibitor Tofacitinib compared to controls. For independent validation, we re-sequenced the entire JAK3 coding sequence using tagged amplicon sequencing (TAm-Seq) in 463 HGSOCs resulting in an overall somatic mutation frequency of 1%. TAm-Seq screening of CDK12 in the same population revealed a 7% mutation frequency. Our data confirms that the frequency of mutations in kinase genes in HGSOC is low and provides accurate estimates for the frequency of JAK3 and CDK12 mutations in a large well characterized cohort. Although p.T1022I JAK3 mutations are rare, our functional validation shows that if detected they should be considered as potentially actionable for therapy. The observation of CDK12 mutations in 7% of HGSOC cases provides a strong rationale for routine somatic testing, although more functional and clinical characterization is required to understand which nonsynonymous mutations alterations are associated with homologous recombination deficiency.
Collapse
Affiliation(s)
- Lorenza Mittempergher
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna M. Piskorz
- Cancer Research UK Cambridge Institute University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Astrid J. Bosma
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Magali Michaut
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - G. Bea A. Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roelof J. C. Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wim Brugman
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Francesco Marass
- Cancer Research UK Cambridge Institute University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
- Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - James Morris
- Cancer Research UK Cambridge Institute University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Mercedes Jimenez-Linan
- Cancer Research UK Major Centre–Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G. J. van der Zee
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, Groningen, The Netherlands
| | - James D. Brenton
- Cancer Research UK Cambridge Institute University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Borowczyk M, Szczepanek-Parulska E, Dębicki S, Budny B, Janicka-Jedyńska M, Gil L, Verburg FA, Filipowicz D, Wrotkowska E, Majchrzycka B, Marszałek A, Ziemnicka K, Ruchała M. High incidence of FLT3 mutations in follicular thyroid cancer: potential therapeutic target in patients with advanced disease stage. Ther Adv Med Oncol 2020; 12:1758835920907534. [PMID: 32180839 PMCID: PMC7057406 DOI: 10.1177/1758835920907534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Conventional treatments for follicular thyroid cancer (FTC) can be ineffective, leading to poor prognosis. The aim of this study was to identify mutations associated with FTC that would serve as novel molecular markers of the disease and its outcome and could potentially identify new therapeutic targets. Methods: FLT3 mutations were first detected in a 29-year-old White female diagnosed with metastasized, treatment-refractory FTC. Analyses of FLT3 mutational status through next-generation sequencing of formalin-fixed, paraffin-embedded FTC specimens were subsequently performed in 35 randomly selected patients diagnosed with FTC. Results: FLT3 mutations were found in 69% of patients. FLT3 mutation-positive patients were significantly older than those that were FLT3 mutation-negative [median age at diagnosis 54 (36–82) versus 45 (27–58) (p = 0.023)]. Patients over 60 years were 23 times more likely to be FLT3 mutation-positive (p = 0.006). However, the number of FLT3 mutations did not correlate with age (r-Pearson: –0.244, p-value: 0.25). A total of 26 mutations were identified in the FLT3 gene with 2–16 FLT3 mutations in each FLT3 mutation-positive patient (mean: 5.6 mutations/patient). Tyrosine kinase domain (TKD) mutations in the FLT3 gene were detected in 58% of FLT3 mutation-positive patients. All FLT3 mutation-positive patients with a disease stage of pT2N1 or worse harbored at least one mutation in the TKD of FLT3. Conclusions: There is a wide spectrum and high frequency of FLT3 mutations in FTC. The precise role of FLT3 mutations in the genesis of FTC, as well as its potential role as a therapeutic target, requires further investigation.
Collapse
Affiliation(s)
- Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Diseases, Poznań University of Medical Sciences, Przybyszewskiego Street, 49, Poznan, 60-355, Poland
| | - Ewelina Szczepanek-Parulska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Szymon Dębicki
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Frederik A Verburg
- Department of Nuclear Medicine, University Hospital Marburg, Marburg, Germany
| | - Dorota Filipowicz
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Blanka Majchrzycka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Marszałek
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
35
|
Georgescu MM, Nanda A, Li Y, Mobley BC, Faust PL, Raisanen JM, Olar A. Mutation Status and Epithelial Differentiation Stratify Recurrence Risk in Chordoid Meningioma-A Multicenter Study with High Prognostic Relevance. Cancers (Basel) 2020; 12:E225. [PMID: 31963394 PMCID: PMC7016786 DOI: 10.3390/cancers12010225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Chordoid meningioma is a rare WHO grade II histologic variant. Its molecular alterations or their impact on patient risk stratification have not been fully explored. We performed a multicenter, clinical, histological, and genomic analysis of chordoid meningiomas from 30 patients (34 tumors), representing the largest integrated study to date. By NHERF1 microlumen immunohistochemical detection, three epithelial differentiation (ED) groups emerged: #1/fibroblastic-like, #2/epithelial-poorly-differentiated and #3/epithelial-well-differentiated. These ED groups correlated with tumor location and genetic profiling, with NF2 and chromatin remodeling gene mutations clustering in ED group #2, and TRAF7 mutations segregating in ED group #3. Mutations in LRP1B were found in the largest number of cases (36%) across ED groups #2 and #3. Pathogenic ATM and VHL germline mutations occurred in ED group #3 patients, conferring an aggressive or benign course, respectively. The recurrence rate significantly correlated with mutations in NF2, as single gene, and with mutations in chromatin remodeling and DNA damage response genes, as groups. The recurrence rate was very high in ED group #2, moderate in ED group #3, and absent in ED group #1. This study proposes guidelines for tumor recurrence risk stratification and practical considerations for patient management.
Collapse
Affiliation(s)
- Maria-Magdalena Georgescu
- Department of Pathology, Louisiana State University, Shreveport, LA 71103, USA;
- Feist-Weiller Cancer Center, Shreveport, LA 71103, USA
- NeuroMarkers Professional Limited Liability Company, Houston, TX 77025, USA
| | - Anil Nanda
- Department of Neurosurgery, Rutgers University, Camden, NJ 08901, USA;
| | - Yan Li
- Department of Pathology, Louisiana State University, Shreveport, LA 71103, USA;
| | - Bret C. Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA;
| | - Jack M. Raisanen
- Department of Pathology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Adriana Olar
- Department of Pathology and Laboratory Medicine and Neurosurgery, Medical University of South Carolina and Hollings Cancer Center, Charleston, SC 29425, USA;
| |
Collapse
|
36
|
Clinically Actionable Insights into Initial and Matched Recurrent Glioblastomas to Inform Novel Treatment Approaches. JOURNAL OF ONCOLOGY 2019; 2019:4878547. [PMID: 32082376 PMCID: PMC7012245 DOI: 10.1155/2019/4878547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common primary adult brain tumour, and despite optimal treatment, the median survival is 12–15 months. Patients with matched recurrent glioblastomas were investigated to try to find actionable mutations. Tumours were profiled using a validated DNA-based gene panel. Copy number variations (CNVs) and single nucleotide variants (SNVs) were examined, and potentially pathogenic variants and clinically actionable mutations were identified. The results revealed that glioblastomas were IDH-wildtype (IDHWT; n = 38) and IDH-mutant (IDHMUT; n = 3). SNVs in TSC2, MSH6, TP53, CREBBP, and IDH1 were variants of unknown significance (VUS) that were predicted to be pathogenic in both subtypes. IDHWT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, WNT, SHH, NOTCH, Rb, and G-protein pathways. Many tumours had BRCA1/2 (18%) variants, including confirmed somatic mutations in haemangioblastoma. IDHWT recurrent tumours had fewer pathways impacted (RTK/Ras/PI(3)K, p53, WNT, and G-protein) and CNV gains (BRCA2, GNAS, and EGFR) and losses (TERT and SMARCA4). IDHMUT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, and WNT pathways. VUS in KLK1 was possibly pathogenic in IDHMUT. Recurrent tumours also had fewer pathways (p53, WNT, and G-protein) impacted by genetic alterations. Public datasets (TCGA and GDC) confirmed the clinical significance of findings in both subtypes. Overall in this cohort, potentially actionable variation was most often identified in EGFR, PTEN, BRCA1/2, and ATM. This study underlines the need for detailed molecular profiling to identify individual GBM patients who may be eligible for novel treatment approaches. This information is also crucial for patient recruitment to clinical trials.
Collapse
|
37
|
Zhang M, Iyer RR, Azad TD, Wang Q, Garzon-Muvdi T, Wang J, Liu A, Burger P, Eberhart C, Rodriguez FJ, Sciubba DM, Wolinsky JP, Gokaslan Z, Groves ML, Jallo GI, Bettegowda C. Genomic Landscape of Intramedullary Spinal Cord Gliomas. Sci Rep 2019; 9:18722. [PMID: 31822682 PMCID: PMC6904446 DOI: 10.1038/s41598-019-54286-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Intramedullary spinal cord tumors (IMSCTs) are rare neoplasms that have limited treatment options and are associated with high rates of morbidity and mortality. To better understand the genetic basis of these tumors we performed whole exome sequencing on 45 tumors and matched germline DNA, including twenty-nine spinal cord ependymomas and sixteen astrocytomas. Though recurrent somatic mutations in IMSCTs were rare, we identified NF2 mutations in 15.7% of tumors (ependymoma, N = 7; astrocytoma, N = 1), RP1 mutations in 5.9% of tumors (ependymoma, N = 3), and ESX1 mutations in 5.9% of tumors (ependymoma, N = 3). We further identified copy number amplifications in CTU1 in 25% of myxopapillary ependymomas. Given the paucity of somatic driver mutations, we further performed whole-genome sequencing of 12 tumors (ependymoma, N = 9; astrocytoma, N = 3). Overall, we observed that IMSCTs with intracranial histologic counterparts (e.g. glioblastoma) did not harbor the canonical mutations associated with their intracranial counterparts. Our findings suggest that the origin of IMSCTs may be distinct from tumors arising within other compartments of the central nervous system and provides the framework to begin more biologically based therapeutic strategies.
Collapse
Affiliation(s)
- Ming Zhang
- Ludwig Center for Cancer Genetics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rajiv R Iyer
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tej D Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Qing Wang
- Ludwig Center for Cancer Genetics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joanna Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ann Liu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Peter Burger
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jean-Paul Wolinsky
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurosurgery, Northwestern University School of Medicine, Chicago, IL, USA
| | - Ziya Gokaslan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Neurosurgery, Brown University School of Medicine, Providence, RI, USA
| | - Mari L Groves
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - George I Jallo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Neurosurgery, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA.
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
38
|
Abstract
Abstract
Purpose of Review
In this review, we discuss the key molecular and clinical developments in VHL disease that have the potential to impact on the natural history of the disease and improve patient outcomes.
Recent Findings
Identifiable mutations in VHL underlie most cases of VHL and define clear genotype-phenotype correlations. Detailed clinical and molecular characterisation has allowed the implementation of lifelong screening programmes that have improved clinical outcomes. Functional characterisation of the VHL protein complex has revealed its role in oxygen sensing and the mechanisms of tumourigenesis that are now being exploited to develop novel therapies for VHL and renal cancer.
Summary
The molecular and cellular landscape of VHL-associated tumours is revealing new opportunities to modify the natural history of the disease and develop therapies. Drugs are now entering clinical trials and combined with improved clinical and molecular diagnosis, and lifelong surveillance programmes, further progress towards reducing the morbidity and mortality associated with VHL disease is anticipated.
Collapse
|
39
|
Butt E, Alyami S, Nageeti T, Saeed M, AlQuthami K, Bouazzaoui A, Athar M, Abduljaleel Z, Al-Allaf F, Taher M. Mutation profiling of anaplastic ependymoma grade III by Ion Proton next generation DNA sequencing. F1000Res 2019; 8:613. [PMID: 32612806 PMCID: PMC7317822 DOI: 10.12688/f1000research.18721.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Ependymomas are glial tumors derived from differentiated ependymal cells. In contrast to other types of brain tumors, histological grading is not a good prognostic marker for these tumors. In order to determine genomic changes in an anaplastic ependymoma, we analyzed its mutation patterns by next generation sequencing (NGS). Methods: Tumor DNA was sequenced using an Ion PI v3 chip on Ion Proton instrument and the data were analyzed by Ion Reporter 5.6. Results: NGS analysis identified 19 variants, of which four were previously reported missense variants; c.395G>A in IDH1, c.1173A>G in PIK3CA, c.1416A>T in KDR and c.215C>G in TP53. The frequencies of the three missense mutations ( PIK3CA c.1173A>G, KDR c.1416A>T, TP53, c.215C>G) were high, suggesting that these are germline variants, whereas the IDH1 variant frequency was low (4.81%). However, based on its FATHMM score of 0.94, only the IDH1 variant is pathogenic; other variants TP53, PIK3CA and KDR had FATHMM scores of 0.22, 0.56 and 0.07, respectively. Eight synonymous mutations were found in FGFR3, PDGFRA, EGFR, RET, HRAS, FLT3, APC and SMAD4 genes. The mutation in FLT3 p.(Val592Val) was the only novel variant found. Additionally, two known intronic variants in KDR were found and intronic variants were also found in ERBB4 and PIK3CA. A known splice site mutation at an acceptor site in FLT3, a 3'-UTR variant in the CSF1R gene and a 5'_UTR variant in the SMARCB1 gene were also identified. The p-values were below 0.00001 for all variants and the average coverage for all variants was around 2000x. Conclusions: In this grade III ependymoma, one novel synonymous mutation and one deleterious missense mutation is reported. Many of the variants reported here have not been detected in ependymal tumors by NGS analysis previously and we therefore report these variants in brain tissue for the first time.
Collapse
Affiliation(s)
- Ejaz Butt
- Histopathology Division, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
- Histopathology Department, Amna Inayat Medical College, Sheikhupura, Punjab, Pakistan
| | - Sabra Alyami
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Tahani Nageeti
- Department of Radiation Oncology, King Abdullah Medical City, Makkah, Makkah, Saudi Arabia
| | - Muhammad Saeed
- Faculty of Medicine, Umm-Al-Qura University and Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Khalid AlQuthami
- Department of Laboratory Medicine and Blood Bank, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Faisal Al-Allaf
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohiuddin Taher
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| |
Collapse
|
40
|
Butt E, Alyami S, Nageeti T, Saeed M, AlQuthami K, Bouazzaoui A, Athar M, Abduljaleel Z, Al-Allaf F, Taher M. Mutation profiling of anaplastic ependymoma grade III by Ion Proton next generation DNA sequencing. F1000Res 2019; 8:613. [PMID: 32612806 PMCID: PMC7317822 DOI: 10.12688/f1000research.18721.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 03/30/2024] Open
Abstract
Background: Ependymomas are glial tumors derived from differentiated ependymal cells. In contrast to other types of brain tumors, histological grading is not a good prognostic marker for these tumors. In order to determine genomic changes in an anaplastic ependymoma, we analyzed its mutation patterns by next generation sequencing (NGS). Methods: Tumor DNA was sequenced using an Ion PI v3 chip on Ion Proton instrument and the data were analyzed by Ion Reporter 5.6. Results: NGS analysis identified 19 variants, of which four were previously reported missense variants; c.395G>A in IDH1, c.1173A>G in PIK3CA, c.1416A>T in KDR and c.215C>G in TP53. The frequencies of the three missense mutations ( PIK3CA c.1173A>G, KDR c.1416A>T, TP53, c.215C>G) were high, suggesting that these are germline variants, whereas the IDH1 variant frequency was low (4.81%). However, based on its FATHMM score of 0.94, only the IDH1 variant is pathogenic; other variants TP53, PIK3CA and KDR had FATHMM scores of 0.22, 0.56 and 0.07, respectively. Eight synonymous mutations were found in FGFR3, PDGFRA, EGFR, RET, HRAS, FLT3, APC and SMAD4 genes. The mutation in FLT3 p.(Val592Val) was the only novel variant found. Additionally, two known intronic variants in KDR were found and intronic variants were also found in ERBB4 and PIK3CA. A known splice site mutation at an acceptor site in FLT3, a 3'-UTR variant in the CSF1R gene and a 5'_UTR variant in the SMARCB1 gene were also identified. The p-values were below 0.00001 for all variants and the average coverage for all variants was around 2000x. Conclusions: In this grade III ependymoma, one novel synonymous mutation and one deleterious missense mutation is reported. Many of the variants reported here have not been detected in ependymal tumors by NGS analysis previously and we therefore report these variants in brain tissue for the first time.
Collapse
Affiliation(s)
- Ejaz Butt
- Histopathology Division, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
- Histopathology Department, Amna Inayat Medical College, Sheikhupura, Punjab, Pakistan
| | - Sabra Alyami
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Tahani Nageeti
- Department of Radiation Oncology, King Abdullah Medical City, Makkah, Makkah, Saudi Arabia
| | - Muhammad Saeed
- Faculty of Medicine, Umm-Al-Qura University and Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Khalid AlQuthami
- Department of Laboratory Medicine and Blood Bank, Al-Noor Specialty Hospital, Makkah, Makkah, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Faisal Al-Allaf
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| | - Mohiuddin Taher
- Department of Medical Genetics and Science and Technology Unit, Umm-Al-Qura University, Makkah, Makkah, Saudi Arabia
| |
Collapse
|
41
|
The loss of succinate dehydrogenase B expression is frequently identified in hemangioblastoma of the central nervous system. Sci Rep 2019; 9:5873. [PMID: 30971719 PMCID: PMC6458311 DOI: 10.1038/s41598-019-42338-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/27/2019] [Indexed: 12/23/2022] Open
Abstract
Succinate dehydrogenase (SDH) is a mitochondrial enzyme that plays an important role in both the Krebs cycle and the electron transport chain. SDH inactivation is associated with tumorigenesis in certain types of tumor. SDH consists of subunits A, B, C and D (SDHA, SDHB, SDHC, and SDHD, respectively). Immunohistochemistry for SDHB is a reliable method for detecting the inactivation of SDH by mutations in SDHA, SDHB, SDHC, SDHD and SDH complex assembly factor 2 (SDHAF2) genes with high sensitivity and specificity. SDHB immunohistochemistry has been used to examine the inactivation of SDH in various types of tumors. However, data on central nervous system (CNS) tumors are very limited. In the present study, we investigated the loss of SDHB immunoexpression in 90 cases of CNS tumors. Among the 90 cases of CNS tumors, only three cases of hemangioblastoma showed loss of SDHB immunoexpression. We further investigated SDHB immunoexpression in 35 cases of hemangioblastoma and found that 28 (80%) showed either negative or weak-diffuse pattern of SDHB immunoexpression, which suggests the inactivation of SDH. Our results suggest that SDH inactivation may represent an alternative pathway in the tumorigenesis of hemangioblastoma.
Collapse
|
42
|
Briggs RG, Jones RG, Conner AK, Allan PG, Homburg HB, Maxwell BD, Fung KM, Sughrue ME. Hemangioblastoma of Cerebral Aqueduct Removed via Sitting, Supracerebellar Intracollicular Approach. World Neurosurg 2019; 127:155-159. [PMID: 30928590 DOI: 10.1016/j.wneu.2019.03.206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tumors protruding into the cerebral aqueduct are rare, and tumors arising from within the cerebral aqueduct are rarer still. CASE DESCRIPTION In this report, we discuss the presentation and clinical outcome of a 65-year-old man who presented to us with symptoms of hydrocephalus. Prior imaging had revealed a small enhancing nodule within the cerebral aqueduct. In the 6 months between initial imaging and our seeing the patient, the tumor demonstrated substantial interval growth, so the patient was offered resection. The tumor was accessed using a sitting, supracerebellar, intracollicular approach, which allowed for gross total resection of the mass without complication. Histopathology later revealed the lesion to be a hemangioblastoma. Two years after surgery, the patient was doing well with no neurologic deficits. CONCLUSIONS We report the first case of an aqueductal hemangioblastoma and describe our use of a sitting, supracerebellar, intracollicular approach to access tumors occupying this cerebrospinal fluid space.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ryan G Jones
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Parker G Allan
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Hannah B Homburg
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - B David Maxwell
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Center for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia.
| |
Collapse
|
43
|
Disseminated central nervous system hemangioblastoma in a patient with no clinical or genetic evidence of von Hippel-Lindau disease-a case report and literature review. Acta Neurochir (Wien) 2019; 161:343-349. [PMID: 30652202 DOI: 10.1007/s00701-019-03800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Hemangioblastomas (HB) are benign tumors of the central nervous system (CNS) that can appear sporadic or as part of von Hippel-Lindau (VHL) disease. It is often curable with surgical resection, but upon relapse, the disease exhibits a treatment-refractory course. CASE REPORT A patient treated for sporadic cerebellar HB relapsed 12 years post-surgery. She developed disseminated disease throughout the CNS, including leptomeningeal manifestations. Repeat surgery and craniospinal radiation therapy were unsuccessful. CONCLUSION This case is in line with previous publications on disseminated non-VHL HB. Available treatment options are inefficient, emphasizing the need for improved understanding of HB biology to identify therapeutic targets.
Collapse
|
44
|
Dow E, Winship IM. Hemangioblastoma in Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome: a phenotypic overlap between VHL and HLRCC Syndromes. Fam Cancer 2019; 18:91-95. [PMID: 29619618 DOI: 10.1007/s10689-018-0081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hemangioblastomas are rare vascularized central nervous system tumors, which can occur sporadically or be associated with von Hippel Lindau Syndrome. The pathogenesis of hemangioblastomas in von Hippel Lindau Syndrome is proposed to involve a pseudohypoxic intracellular state induced by dysregulation of hypoxia inducible factor alpha due to the absence of von Hippel Lindau protein complex mediated destruction. Dysregulation of fumarate hydratase, a tricarboxylic acid cycle enzyme, occurs in Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome due to germline fumarate hydratase gene mutations, and also results in oncogenesis via hypoxia inducible factor alpha dysregulation. We present a case study of hemangioblastoma occurrence in a Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome patient and propose it as possible evidence of a phenotypic overlap between von Hippel Lindau and Hereditary Leiomyomatosis and Renal Cell Cancer Syndromes due to their overlapping role in the biochemical regulation of hypoxia inducible factor alpha.
Collapse
Affiliation(s)
- Eryn Dow
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia.
| | - Ingrid M Winship
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
45
|
Walcott BP, Winkler EA, Rouleau GA, Lawton MT. Molecular, Cellular, and Genetic Determinants of Sporadic Brain Arteriovenous Malformations. Neurosurgery 2018; 63 Suppl 1:37-42. [PMID: 27399362 DOI: 10.1227/neu.0000000000001300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Brian P Walcott
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| | - Ethan A Winkler
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Michael T Lawton
- Department of Neurological Surgery and.,Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, California
| |
Collapse
|
46
|
Takayanagi S, Mukasa A, Tanaka S, Nomura M, Omata M, Yanagisawa S, Yamamoto S, Ichimura K, Nakatomi H, Ueki K, Aburatani H, Saito N. Differences in genetic and epigenetic alterations between von Hippel-Lindau disease-related and sporadic hemangioblastomas of the central nervous system. Neuro Oncol 2018; 19:1228-1236. [PMID: 28379443 DOI: 10.1093/neuonc/nox034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Although inactivation of the von Hippel-Lindau gene (VHL), located on chromosome 3p25, is considered to be a major cause of hemangioblastomas (HBs), the incidence of biallelic inactivation of VHL is reportedly low. The aim of this study was to determine the prevalence of VHL alterations in HBs, as well as to identify additional molecular aberrations. Methods Genetic and epigenetic alterations were comprehensively and comparatively analyzed in 11 VHL-related and 21 sporadic HBs. Results VHL alterations detected by sequencing and multiplex ligation-dependent probe amplification (MLPA) analysis were more frequent in VHL-related HBs than in sporadic HBs (100% vs 62%; P = 0.029). VHL alterations were found only in 4 sporadic HBs by direct sequencing; however, targeted deep sequencing detected 9 additional alterations. Loss of heterozygosity (LOH) on chromosome 3 was found in 64% and 57% of VHL-related and sporadic HBs, respectively, by single nucleotide polymorphism (SNP) array analysis. Among 19 tumors with chromosome 3 LOH, 5 were classified as copy-neutral LOH. VHL promoter hypermethylation was detected only in sporadic HBs (33%), indicating that epigenetic suppression of VHL is a common mechanism in sporadic HBs. The rate of biallelic VHL inactivation among VHL-related and sporadic HBs was 64% and 52%, respectively. LOH on either chromosome 6 or 10 was detected only in sporadic HBs (43%). Conclusion Although biallelic inactivation of VHL is a dominant mechanistic cause of the pathogenesis of HB, other unknown mechanisms may also be involved, and such mechanisms may be different between VHL-related and sporadic HB.
Collapse
Affiliation(s)
| | - Akitake Mukasa
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Masashi Nomura
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Mayu Omata
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | | | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Keisuke Ueki
- Department of Neurosurgery, Dokkyo Medical University, Mibu, Tochigi,Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Muscarella LA, Bisceglia M, Galliani CA, Zidar N, Ben-Dor DJ, Pasquinelli G, la Torre A, Sparaneo A, Fanburg-Smith JC, Lamovec J, Michal M, Bacchi CE. Extraneuraxial hemangioblastoma: A clinicopathologic study of 10 cases with molecular analysis of the VHL gene. Pathol Res Pract 2018; 214:1156-1165. [PMID: 29941223 DOI: 10.1016/j.prp.2018.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
Abstract
Less than 250 extraneuraxial hemangioblastomas occurring in paraneuraxial or peripheral sites have been reported to date, sporadically or in the setting of von Hippel-Lindau disease. Seventeen such cases underwent molecular genetic analysis, using either the patient's peripheral blood in 9 cases or paraffin embedded tumor tissue in the rest. VHL gene mutations were documented in 3/9 cases in which DNA from peripheral blood lymphocytes was used, all with clinically manifest von Hippel-Lindau disease; instead, no VHL gene alterations were found in all of the 8 cases with sporadic extraneuraxial hemangioblastoma in which DNA from tumor tissue was analyzed. Our aim is to investigate the molecular genetic profile of the VHL gene in extraneuraxial hemangioblastoma using paraffin embedded tumor tissues. The clinical features, histopathology, and molecular investigations of 10 extraneuraxial hemangioblastomas (7 females, 3 males; median age: 47 years) are presented herein. The histopathologic diagnosis was supported by immunohistochemistry (10/10) and electron microscopy (4/10). Molecular genetic analysis was conducted (10/10) for VHL gene mutations, LOH, and gene promoter methylation. Two of the present cases were already published with only limited or no molecular investigations. Four tumors of the present series were paraneuraxial, and 6 peripheral (2 involved soft tissues, and 4 the kidney). One tumor was von Hippel-Lindau disease-associated, 1 was classified as "hemangioblastoma-only VHLD", 7 were sporadic, and one was unknown. All were histopathologically analogous to their counterpart located inside the central nervous system. Immunophenotypically, all tumors expressed vimentin, S-100, NSE, and alpha-inhibin (10/10). Ultrastructurally, unbound lipid droplets filled the cytoplasms of the stromal cells. Molecular analysis revealed 3 inactivating mutations (1 germline, two somatic) in the coding sequence of the VHL gene in 2 different extraneuraxial hemangioblastomas, and LOH in 4 (two as a double hit), all non-renal extraneuraxial hemangioblastomas. Methylation analysis failed to disclose promoter methylation in any case. In conclusion, we report eight new cases from the wide category of extraneuraxial hemangioblastomas (4 paraneuraxial, and 4 renal), one of which was von Hippel-Lindau disease-associated and 7 sporadic. VHL gene alterations were found not only in the von Hippel-Lindau disease-associated tumor, but - for the first time - also in 3 sporadic ones, two of which with novel mutations.
Collapse
Affiliation(s)
- Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy.
| | - Michele Bisceglia
- Anatomic Pathology, School of Biomedical Sciences, Etromapmax Pole, Lesina, FG, Italy.
| | - Carlos A Galliani
- Department of Pathology, Children's Minnesota, Minneapolis & St. Paul, MN, USA.
| | - Nina Zidar
- Institute of Pathology, Medical Faculty, University of Ljubliana, Ljubliana, Slovenia.
| | | | - Gianandrea Pasquinelli
- Department of Hemathology, Oncology and Clinical Pathology, "S. Orsola" Polyclinic, University of Bologna, Bologna, Italy.
| | - Annamaria la Torre
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy.
| | - Angelo Sparaneo
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy.
| | - Julie C Fanburg-Smith
- Department of Pathology, Penn State Health/Milton S Hershey Medical Center, Hershey, PA, USA.
| | - Janez Lamovec
- Department of Pathology, Institute of Oncology, Ljubljana, Slovenia.
| | - Michal Michal
- Department of Pathology, Charles University Medical Faculty Hospital, Plzen, Czech Republic.
| | | |
Collapse
|
48
|
Extraneuraxial Hemangioblastoma: Clinicopathologic Features and Review of the Literature. Adv Anat Pathol 2018; 25:197-215. [PMID: 29189208 DOI: 10.1097/pap.0000000000000176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extraneuraxial hemangioblastoma occurs in nervous paraneuraxial structures, somatic tissues, and visceral organs, as part of von Hippel-Lindau disease (VHLD) or in sporadic cases. The VHL gene plausibly plays a key role in the initiation and tumorigenesis of both central nervous system and extraneuraxial hemangioblastoma, therefore, the underlying molecular and genetic mechanisms of the tumor growth are initially reviewed. The clinical criteria for the diagnosis of VHLD are summarized, with emphasis on the distinction of sporadic hemangioblastoma from the form fruste of VHLD (eg, hemangioblastoma-only VHLD). The world literature on the topic of extraneuraxial hemangioblastomas has been comprehensively reviewed with ∼200 cases reported to date: up to 140 paraneuraxial, mostly of proximal spinal nerve roots, and 65 peripheral, 15 of soft tissue, 6 peripheral nerve, 5 bone, and 39 of internal viscera, including 26 renal and 13 nonrenal. A handful of possible yet uncertain cases from older literature are not included in this review. The clinicopathologic features of extraneuraxial hemangioblastoma are selectively presented by anatomic site of origin, and the differential diagnosis is emphasized in these subsets. Reference is made also to 10 of the authors' personal cases of extraneuraxial hemangioblastomas, which include 4 paraneuraxial and 6 peripheral (2 soft tissue hemangioblastoma and 4 renal).
Collapse
|
49
|
Snezhkina AV, Lukyanova EN, Kalinin DV, Pokrovsky AV, Dmitriev AA, Koroban NV, Pudova EA, Fedorova MS, Volchenko NN, Stepanov OA, Zhevelyuk EA, Kharitonov SL, Lipatova AV, Abramov IS, Golovyuk AV, Yegorov YE, Vishnyakova KS, Moskalev AA, Krasnov GS, Melnikova NV, Shcherbo DS, Kiseleva MV, Kaprin AD, Alekseev BY, Zaretsky AR, Kudryavtseva AV. Exome analysis of carotid body tumor. BMC Med Genomics 2018; 11:17. [PMID: 29504908 PMCID: PMC5836820 DOI: 10.1186/s12920-018-0327-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Carotid body tumor (CBT) is a form of head and neck paragangliomas (HNPGLs) arising at the bifurcation of carotid arteries. Paragangliomas are commonly associated with germline and somatic mutations involving at least one of more than thirty causative genes. However, the specific functionality of a number of these genes involved in the formation of paragangliomas has not yet been fully investigated. Methods Exome library preparation was carried out using Nextera® Rapid Capture Exome Kit (Illumina, USA). Sequencing was performed on NextSeq 500 System (Illumina). Results Exome analysis of 52 CBTs revealed potential driver mutations (PDMs) in 21 genes: ARNT, BAP1, BRAF, BRCA1, BRCA2, CDKN2A, CSDE1, FGFR3, IDH1, KIF1B, KMT2D, MEN1, RET, SDHA, SDHB, SDHC, SDHD, SETD2, TP53BP1, TP53BP2, and TP53I13. In many samples, more than one PDM was identified. There are also 41% of samples in which we did not identify any PDM; in these cases, the formation of CBT was probably caused by the cumulative effect of several not highly pathogenic mutations. Estimation of average mutation load demonstrated 6–8 mutations per megabase (Mb). Genes with the highest mutation rate were identified. Conclusions Exome analysis of 52 CBTs for the first time revealed the average mutation load for these tumors and also identified potential driver mutations as well as their frequencies and co-occurrence with the other PDMs. Electronic supplementary material The online version of this article (10.1186/s12920-018-0327-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Elena N Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anatoly V Pokrovsky
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda V Koroban
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda N Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Oleg A Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Ekaterina A Zhevelyuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Khava S Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Shcherbo
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Marina V Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
50
|
De Biasi S, Gibellini L, Feletti A, Pavesi G, Bianchini E, Lo Tartaro D, Pecorini S, De Gaetano A, Pullano R, Boraldi F, Nasi M, Pinti M, Cossarizza A. High speed flow cytometry allows the detection of circulating endothelial cells in hemangioblastoma patients. Methods 2018; 134-135:3-10. [DOI: 10.1016/j.ymeth.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
|