1
|
Ayers J, Lopez TP, Steele IT, Oehler A, Roman-Albarran R, Cleveland E, Chong A, Carlson GA, Condello C, Prusiner SB. Severe neurodegeneration in brains of transgenic rats producing human tau prions. Acta Neuropathol 2024; 148:25. [PMID: 39160375 PMCID: PMC11333523 DOI: 10.1007/s00401-024-02771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Both wild-type and mutant tau proteins can misfold into prions and self-propagate in the central nervous system of animals and people. To extend the work of others, we investigated the molecular basis of tau prion-mediated neurodegeneration in transgenic (Tg) rats expressing mutant human tau (P301S); this line of Tg rats is denoted Tg12099. We used the rat Prnp promoter to drive the overexpression of mutant tau (P301S) in the human 0N4R isoform. In Tg12099(+/+) rats homozygous for the transgene, ubiquitous expression of mutant human tau resulted in the progressive accumulation of phosphorylated tau inclusions, including silver-positive tangles in the frontal cortices and limbic system. Signs of central nervous system dysfunction were found in terminal Tg12099(+/+) rats exhibiting severe neurodegeneration and profound atrophy of the amygdala and piriform cortex. The greatest increases in tau prion activity were found in the corticolimbic structures. In contrast to the homozygous Tg12099(+/+) rats, we found lower levels of mutant tau in the hemizygous rats, resulting in few neuropathologic changes up to 2 years of age. Notably, these hemizygous rats could be infected by intracerebral inoculation with recombinant tau fibrils or precipitated tau prions from the brain homogenates of sick, aged homozygous Tg12099(+/+) rats. Our studies argue that the regional propagation of tau prions and neurodegeneration in the Tg12099 rats resembles that found in human primary tauopathies. These findings seem likely to advance our understanding of human tauopathies and may lead to effective therapeutics for Alzheimer's disease and other tau prion disorders.
Collapse
Affiliation(s)
- Jacob Ayers
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - T Peter Lopez
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Ian T Steele
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Rigo Roman-Albarran
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Elisa Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Alex Chong
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
2
|
Minami Y, Yoshikawa T, Nagano M, Koinuma S, Morimoto T, Fujioka A, Furukawa K, Ikegami K, Tatemizo A, Egawa K, Tamaru T, Taniguchi T, Shigeyoshi Y. Transgenic rats expressing dominant negative BMAL1 showed circadian clock amplitude reduction and rapid recovery from jet lag. Eur J Neurosci 2020; 53:1783-1793. [PMID: 33351992 DOI: 10.1111/ejn.15085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/19/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
The circadian rhythms are endogenous rhythms of about 24 h, and are driven by the circadian clock. The clock centre locates in the suprachiasmatic nucleus. Light signals from the retina shift the circadian rhythm in the suprachiasmatic nucleus, but there is a robust part of the suprachiasmatic nucleus that causes jet lag after an abrupt shift of the environmental lighting condition. To examine the effect of attenuated circadian rhythm on the duration of jet lag, we established a transgenic rat expressing BMAL1 dominant negative form under control by mouse Prnp-based transcriptional regulation cassette [BMAL1 DN (+)]. The transgenic rats became active earlier than controls, just after light offset. Compared to control rats, BMAL1 DN (+) rats showed smaller circadian rhythm amplitudes in both behavioural and Per2 promoter driven luciferase activity rhythms. A light pulse during the night resulted in a larger phase shift of behavioural rhythm. Furthermore, at an abrupt shift of the light-dark cycle, BMAL1 DN (+) rat showed faster entrainment to the new light-dark cycle compared to controls. The circadian rhythm has been regarded as a limit cycle phenomenon, and our results support the hypothesis that modification of the amplitude of the circadian limit cycle leads to alteration in the length of the phase shift.
Collapse
Affiliation(s)
- Yoichi Minami
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Tomoko Yoshikawa
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Tadamitsu Morimoto
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Atsuko Fujioka
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Keiichi Furukawa
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Keisuke Ikegami
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Atsuhiro Tatemizo
- Central Research Facilities, Faculty of Medicine Center for Animal Experiment, Kindai University Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Kentaro Egawa
- Central Research Facilities, Faculty of Medicine Center for Animal Experiment, Kindai University Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| | - Teruya Tamaru
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, Ota-ku, Tokyo, Japan
| | - Taizo Taniguchi
- Research Institute for Human Health Science, Konan University, Kobe, Hyogo, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama, Osaka, Japan
| |
Collapse
|