1
|
Lam TD, Tóth I, Hermenean A, Wilhelm I, Kieda C, Krizbai I, Farkas AE. Senolysis potentiates endothelial progenitor cell adhesion to and integration into the brain vasculature. Stem Cell Res Ther 2024; 15:413. [PMID: 39529098 PMCID: PMC11556082 DOI: 10.1186/s13287-024-04042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND One of the most severe consequences of ageing is cognitive decline, which is associated with dysfunction of the brain microvasculature. Thus, repairing the brain vasculature could result in healthier brain function. METHODS To better understand the potential beneficial effect of endothelial progenitor cells (EPCs) in vascular repair, we studied the adhesion and integration of EPCs using the early embryonic mouse aorta-gonad-mesonephros - MAgEC 10.5 endothelial cell line. The EPC interaction with brain microvasculature was monitored ex vivo and in vivo using epifluorescence, laser confocal and two-photon microscopy in healthy young and old animals. The effects of senolysis, EPC activation and ischaemia (two-vessel occlusion model) were analysed in BALB/c and FVB/Ant: TgCAG-yfp_sb #27 mice. RESULTS MAgEC 10.5 cells rapidly adhered to brain microvasculature and some differentiated into mature endothelial cells (ECs). MAgEC 10.5-derived endothelial cells integrated into microvessels, established tight junctions and co-formed vessel lumens with pre-existing ECs within five days. Adhesion and integration were much weaker in aged mice, but were increased by depleting senescent cells using abt-263 or dasatinib plus quercetin. Furthermore, MAgEC 10.5 cell adhesion to and integration into brain vessels were increased by ischaemia and by pre-activating EPCs with TNFα. CONCLUSIONS Combining progenitor cell therapy with senolytic therapy and the prior activation of EPCs are promising for improving EPC adhesion to and integration into the cerebral vasculature and could help rejuvenate the ageing brain.
Collapse
Affiliation(s)
- Tri Duc Lam
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, 6726, Hungary
| | - István Tóth
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, Szeged, 6720, Hungary
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, Warsaw, 04-141, Poland
- Centre for Molecular Biophysics, UPR 4301 CNRS, Orleans, 45071, France
| | - István Krizbai
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary.
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6726, Hungary.
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, 310414, Romania.
| | - Attila E Farkas
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, 6726, Hungary.
| |
Collapse
|
2
|
Dupas A, Goetz JG, Osmani N. Extravasation of immune and tumor cells from an endothelial perspective. J Cell Sci 2024; 137:jcs262066. [PMID: 39530179 DOI: 10.1242/jcs.262066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Crossing the vascular endothelium is a necessary stage for circulating cells aiming to reach distant organs. Leukocyte passage through the endothelium, known as transmigration, is a multistep process during which immune cells adhere to the vascular wall, migrate and crawl along the endothelium until they reach their exit site. Similarly, circulating tumor cells (CTCs), which originate from the primary tumor or reseed from early metastatic sites, disseminate using the blood circulation and also must cross the endothelial barrier to set new colonies in distant organs. CTCs are thought to mimic arrest and extravasation utilized by leukocytes; however, their extravasation also requires processes that, from an endothelial perspective, are specific to cancer cells. Although leukocyte extravasation relies on maintaining endothelial impermeability, it appears that cancer cells can indoctrinate endothelial cells into promoting their extravasation independently of their normal functions. In this Review, we summarize the common and divergent mechanisms of endothelial responses during extravasation of leukocytes (in inflammation) and CTCs (in metastasis), and highlight how these might be leveraged in the development of anti-metastatic treatments.
Collapse
Affiliation(s)
- Amandine Dupas
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Jacky G Goetz
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| | - Naël Osmani
- Tumor Biomechanics lab, INSERM UMR_S 1109, CRBS, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F-67000, France
- Equipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
3
|
Ishibashi K, Hirata E. Multifaceted interactions between cancer cells and glial cells in brain metastasis. Cancer Sci 2024; 115:2871-2878. [PMID: 38992968 PMCID: PMC11462981 DOI: 10.1111/cas.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer brain metastasis has a poor prognosis, is commonly observed in clinical practice, and the number of cases is increasing as overall cancer survival improves. However, experiments in mouse models have shown that brain metastasis itself is an inefficient process. One reason for this inefficiency is the brain microenvironment, which differs significantly from that of other organs, making it difficult for cancer cells to adapt. The brain microenvironment consists of unique resident cell types such as neurons, oligodendrocytes, astrocytes, and microglia. Accumulating evidence over the past decades suggests that the interactions between cancer cells and glial cells can positively or negatively influence the development of brain metastasis. Nevertheless, elucidating the complex interactions between cancer cells and glial cells remains challenging, in part due to the limitations of existing experimental models for glial cell culture. In this review, we first provide an overview of glial cell culture methods and then examine recent discoveries regarding the interactions between brain metastatic cancer cells and the surrounding glial cells, with a special focus on astrocytes and microglia. Finally, we discuss future perspectives for understanding the multifaceted interactions between cancer cells and glial cells for the treatment of metastatic brain tumors.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
| | - Eishu Hirata
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute, Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
4
|
Galloni C, Egnuni T, Zahed Mohajerani S, Ye J, Mittnacht S, Speirs V, Lorger M, Mavria G. Brain endothelial cells promote breast cancer cell extravasation to the brain via EGFR-DOCK4-RAC1 signalling. Commun Biol 2024; 7:602. [PMID: 38762624 PMCID: PMC11102446 DOI: 10.1038/s42003-024-06200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 05/20/2024] Open
Abstract
The role of endothelial cells in promoting cancer cell extravasation to the brain during the interaction of cancer cells with the vasculature is not well characterised. We show that brain endothelial cells activate EGFR signalling in triple-negative breast cancer cells with propensity to metastasise to the brain. This activation is dependent on soluble factors secreted by brain endothelial cells, and occurs via the RAC1 GEF DOCK4, which is required for breast cancer cell extravasation to the brain in vivo. Knockdown of DOCK4 inhibits breast cancer cell entrance to the brain without affecting cancer cell survival or growth. Defective extravasation is associated with loss of elongated morphology preceding intercalation into brain endothelium. We also show that brain endothelial cells promote paracrine stimulation of mesenchymal-like morphology of breast cancer cells via DOCK4, DOCK9, RAC1 and CDC42. This stimulation is accompanied by EGFR activation necessary for brain metastatic breast cancer cell elongation which can be reversed by the EGFR inhibitor Afatinib. Our findings suggest that brain endothelial cells promote metastasis through activation of cell signalling that renders breast cancer cells competent for extravasation. This represents a paradigm of brain endothelial cells influencing the signalling and metastatic competency of breast cancer cells.
Collapse
Affiliation(s)
- Chiara Galloni
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, University of Sheffield, Sheffield, UK
| | - Teklu Egnuni
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Safoura Zahed Mohajerani
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Leeds Centre for Disease Models, University of Leeds, Leeds, UK
| | - Jiaqi Ye
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mihaela Lorger
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Georgia Mavria
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
5
|
Mittelbronn M. Neurooncology: 2024 update. FREE NEUROPATHOLOGY 2024; 4:21. [PMID: 39385753 PMCID: PMC11462617 DOI: 10.17879/freeneuropathology-2023-5809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024]
Abstract
As in previous years, including 2023, a major focus in the neurooncological area of neuropathology was put on more precise and constantly faster diagnostic procedures, even reaching the level of ultra-fast intraoperative diagnostics based on methylation profiling. Neuropathological diagnostic precision and clinical follow-up treatment has been further increased by combining DNA methylation profiling with targeted panel sequencing. A few new, molecularly defined tumor subtypes have been proposed, among others, a glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (in its abbreviated form named GTAKA) and the de novo replication repair deficient glioblastoma, IDH-wildtype both having either distinct prognostic or therapeutic implications. Regarding the understanding of brain tumor development and progression, several novel mechanisms have been presented which might also be considered as treatment targets in the future, such as a) autonomous rhythmical Ca2+ oscillations in interconnected glioma cell networks driving tumor growth; b) transfer of mitochondria from normal astrocytes to glioma cells enhancing proliferation and self-renewal; c) brain endothelial cell remodeling upon matrix-metalloprotease 9 secretion by tumor cells metastasizing into the CNS and d) anti-tumor activity of microglia in CNS metastasis of breast cancer. Finally, in contrast to previous years, several very promising neurooncological treatment studies have been conducted, focusing on specific targets such as H3K27M or IDH1/2 mutations for which a proper neuropathological assessment is key. The continuous translation of potential new treatment targets using faster and precise diagnostic procedures will further pave the way for better individualized clinical care of neurooncological patients.
Collapse
Affiliation(s)
- Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Luxembourg
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch sur Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
6
|
Mittelbronn M. Neurooncology: 2024 update. FREE NEUROPATHOLOGY 2024; 5:21. [PMID: 39385753 PMCID: PMC11462617 DOI: 10.17879/freeneuropathology-2024-5809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/08/2024] [Indexed: 10/16/2024]
Abstract
As in previous years, including 2023, a major focus in the neurooncological area of neuropathology was put on more precise and constantly faster diagnostic procedures, even reaching the level of ultra-fast intraoperative diagnostics based on methylation profiling. Neuropathological diagnostic precision and clinical follow-up treatment has been further increased by combining DNA methylation profiling with targeted panel sequencing. A few new, molecularly defined tumor subtypes have been proposed, among others, a glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (in its abbreviated form named GTAKA) and the de novo replication repair deficient glioblastoma, IDH-wildtype both having either distinct prognostic or therapeutic implications. Regarding the understanding of brain tumor development and progression, several novel mechanisms have been presented which might also be considered as treatment targets in the future, such as a) autonomous rhythmical Ca2+ oscillations in interconnected glioma cell networks driving tumor growth; b) transfer of mitochondria from normal astrocytes to glioma cells enhancing proliferation and self-renewal; c) brain endothelial cell remodeling upon matrix-metalloprotease 9 secretion by tumor cells metastasizing into the CNS and d) anti-tumor activity of microglia in CNS metastasis of breast cancer. Finally, in contrast to previous years, several very promising neurooncological treatment studies have been conducted, focusing on specific targets such as H3K27M or IDH1/2 mutations for which a proper neuropathological assessment is key. The continuous translation of potential new treatment targets using faster and precise diagnostic procedures will further pave the way for better individualized clinical care of neurooncological patients.
Collapse
Affiliation(s)
- Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Luxembourg
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch sur Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Mészáros Á, Molnár K, Fazakas C, Nógrádi B, Lüvi A, Dudás T, Tiszlavicz L, Farkas AE, Krizbai IA, Wilhelm I. Inflammasome activation in peritumoral astrocytes is a key player in breast cancer brain metastasis development. Acta Neuropathol Commun 2023; 11:155. [PMID: 37749707 PMCID: PMC10521486 DOI: 10.1186/s40478-023-01646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/27/2023] [Indexed: 09/27/2023] Open
Abstract
Inflammasomes, primarily responsible for the activation of IL-1β, have emerged as critical regulators of the tumor microenvironment. By using in vivo and in vitro brain metastasis models, as well as human samples to study the role of the NLRP3 inflammasome in triple-negative breast cancer (TNBC) brain metastases, we found NLRP3 inflammasome components and IL-1β to be highly and specifically expressed in peritumoral astrocytes. Soluble factors from TNBC cells induced upregulation and activation of NLRP3 and IL-1β in astrocytes, while astrocyte-derived mediators augmented the proliferation of metastatic cells. In addition, inhibition of NLRP3 inflammasome activity using MCC950 or dampening the downstream effect of IL-1β prevented the proliferation increase in cancer cells. In vivo, MCC950 reduced IL-1β expression in peritumoral astrocytes, as well as the levels of inflammasome components and active IL-1β. Most importantly, significantly retarded growth of brain metastatic tumors was observed in mice treated with MCC950. Overall, astrocytes contribute to TNBC progression in the brain through activation of the NLRP3 inflammasome and consequent IL-1β release. We conclude that pharmacological targeting of inflammasomes may become a novel strategy in controlling brain metastatic diseases.
Collapse
Affiliation(s)
- Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Adél Lüvi
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Tamás Dudás
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | | | - Attila Elek Farkas
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - István Adorján Krizbai
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary.
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, ELKH (Eötvös Loránd Research Network), Temesvári Krt. 62, 6726, Szeged, Hungary.
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| |
Collapse
|
8
|
Karreman MA, Bauer AT, Solecki G, Berghoff AS, Mayer CD, Frey K, Hebach N, Feinauer MJ, Schieber NL, Tehranian C, Mercier L, Singhal M, Venkataramani V, Schubert MC, Hinze D, Hölzel M, Helfrich I, Schadendorf D, Schneider SW, Westphal D, Augustin HG, Goetz JG, Schwab Y, Wick W, Winkler F. Active Remodeling of Capillary Endothelium via Cancer Cell-Derived MMP9 Promotes Metastatic Brain Colonization. Cancer Res 2023; 83:1299-1314. [PMID: 36652557 PMCID: PMC7614438 DOI: 10.1158/0008-5472.can-22-3964] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Crossing the blood-brain barrier is a crucial, rate-limiting step of brain metastasis. Understanding of the mechanisms of cancer cell extravasation from brain microcapillaries is limited as the underlying cellular and molecular processes cannot be adequately investigated using in vitro models and endpoint in vivo experiments. Using ultrastructural and functional imaging, we demonstrate that dynamic changes of activated brain microcapillaries promote the mandatory first steps of brain colonization. Successful extravasation of arrested cancer cells occurred when adjacent capillary endothelial cells (EC) entered into a distinct remodeling process. After extravasation, capillary loops were formed, which was characteristic of aggressive metastatic growth. Upon cancer cell arrest in brain microcapillaries, matrix-metalloprotease 9 (MMP9) was expressed. Inhibition of MMP2/9 and genetic perturbation of MMP9 in cancer cells, but not the host, reduced EC projections, extravasation, and brain metastasis outgrowth. These findings establish an active role of ECs in the process of cancer cell extravasation, facilitated by cross-talk between the two cell types. This extends our understanding of how host cells can contribute to brain metastasis formation and how to prevent it. SIGNIFICANCE Tracking single extravasating cancer cells using multimodal correlative microscopy uncovers a brain seeding mechanism involving endothelial remodeling driven by cancer cell-derived MMP9, which might enable the development of approaches to prevent brain metastasis. See related commentary by McCarty, p. 1167.
Collapse
Affiliation(s)
- Matthia A. Karreman
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology
Laboratory, Heidelberg, Germany
| | - Alexander T. Bauer
- Department of Dermatology and Venereology, University Medical Center
Hamburg-Eppendorf, Hamburg, Germany
| | - Gergely Solecki
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Business Unit Service and Customer Care, Carl Zeiss Microscopy GmbH,
Jena, Germany
| | - Anna S. Berghoff
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine I, Division of Oncology, Medical University
of Vienna, Comprehensive Cancer Center Vienna, Vienna, Austria
| | - Chanté D. Mayer
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Frey
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils Hebach
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel J. Feinauer
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole L. Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology
Laboratory, Heidelberg, Germany
- Centre for Microscopy and Microanalyses, The University of
Queensland, Brisbane, Australia
| | - Cedric Tehranian
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luc Mercier
- National Institute of Health and Medical Research (INSERM)
UMR_S1109, Tumor Biomechanics, Université de Strasbourg,
Fédération de Médecine Translationnelle de Strasbourg (FMTS),
Strasbourg, France
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim,
Heidelberg University, Germany
- Division of Vascular Oncology and Metastasis, German Cancer
Research Center Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and
Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Marc C. Schubert
- Department of Functional Neuroanatomy, Institute for Anatomy and
Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Daniel Hinze
- LAMPseq Diagnostics GmbH, Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn,
University of Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn,
University of Bonn, Bonn, Germany
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty,
West German Cancer Center, University Duisburg-Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Dermatology and Allergology, Medical Faculty of the
Ludwig Maximilian University of Munich, Munich, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty,
West German Cancer Center, University Duisburg-Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan W. Schneider
- Department of Dermatology and Venereology, University Medical Center
Hamburg-Eppendorf, Hamburg, Germany
| | - Dana Westphal
- Department of Dermatology, Medical Faculty and University Hospital
Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim,
Heidelberg University, Germany
- Division of Vascular Oncology and Metastasis, German Cancer
Research Center Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Jacky G. Goetz
- National Institute of Health and Medical Research (INSERM)
UMR_S1109, Tumor Biomechanics, Université de Strasbourg,
Fédération de Médecine Translationnelle de Strasbourg (FMTS),
Strasbourg, France
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology
Laboratory, Heidelberg, Germany
- Electron Microscopy Core Facility, European Molecular Biology
Laboratory, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University
Hospital Heidelberg, INF 400, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium
(DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Ahmed A, Hamam O, Niri SG, Oeltzchner G, Garg T, Elmandouh O, Intrapiromkul J, Yedavalli V. Computed tomography perfusion stroke mimics on RAPID commercial software: A case-based review. Brain Circ 2023; 9:68-76. [PMID: 37576575 PMCID: PMC10419735 DOI: 10.4103/bc.bc_100_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 08/15/2023] Open
Abstract
Acute ischemic stroke (AIS) is a leading cause of morbidity worldwide and can present with nonspecific symptoms, making diagnosis difficult. Many neurologic diseases present similarly to stroke; stroke mimics account for up to half of all hospital admissions for stroke. Stroke therapies carry risk, so accurate diagnosis of AIS is crucial for prompt treatment and prevention of adverse outcomes for patients with stroke mimics. Computed tomography (CT) perfusion techniques have been used to distinguish between nonviable tissue and penumbra. RAPID is an operator-independent, automated CT perfusion imaging software that can aid clinicians in diagnosing strokes quickly and accurately. In this case-based review, we demonstrate the applications of RAPID in differentiating between strokes and stroke mimics.
Collapse
Affiliation(s)
- Amara Ahmed
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Omar Hamam
- Division of Neuroradiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Tushar Garg
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Omar Elmandouh
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Neuroradiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Spurling D, Anchan A, Hucklesby J, Finlay G, Angel CE, Graham ES. Melanoma Cells Produce Large Vesicular-Bodies That Cause Rapid Disruption of Brain Endothelial Barrier-Integrity and Disassembly of Junctional Proteins. Int J Mol Sci 2023; 24:ijms24076082. [PMID: 37047054 PMCID: PMC10093843 DOI: 10.3390/ijms24076082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
It is known that many cells produce extracellular vesicles, and this includes a range of different cancer cell types. Here we demonstrate the profound effects of large vesicular-like bodies produced by melanoma cells on the barrier integrity of human brain endothelial cells. These vesicular-bodies have not been fully characterised but range in size from ~500 nm to >10 µm, are surrounded by membrane and are enzymatically active based on cell-tracker incorporation. Their size is consistent with previously reported large oncosomes and apoptotic bodies. We demonstrate that these melanoma-derived vesicular-bodies rapidly affect brain endothelial barrier integrity, measured using ECIS biosensor technology, where the disruption is evident within ~60 min. This disruption involves acquisition of the vesicles through transcellular uptake into the endothelial cells. We also observed extensive actin-rearrangement, actin removal from the paracellular boundary of the endothelial cells and envelopment of the vesicular-bodies by actin. This was concordant with widespread changes in CD144 localisation, which was consistent with the loss of junctional strength. High-resolution confocal imaging revealed proximity of the melanoma vesicular-bodies juxtaposed to the endothelial nucleus, often containing fragmented DNA themselves, raising speculation over this association and potential delivery of nuclear material into the brain endothelial cells. The disruption of the endothelial cells occurs in a manner that is faster and completely distinct to that of invasion by intact melanoma cells. Given the clinical observation of large vesicles in the circulation of melanoma patients by others, we hypothesize their involvement in weakening or priming the brain vasculature for melanoma invasion.
Collapse
Affiliation(s)
- Dayna Spurling
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - Akshata Anchan
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
| | - James Hucklesby
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
11
|
Chan AP, Choi Y, Rangan A, Zhang G, Podder A, Berens M, Sharma S, Pirrotte P, Byron S, Duggan D, Schork NJ. Interrogating the Human Diplome: Computational Methods, Emerging Applications, and Challenges. Methods Mol Biol 2023; 2590:1-30. [PMID: 36335489 DOI: 10.1007/978-1-0716-2819-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human DNA sequencing protocols have revolutionized human biology, biomedical science, and clinical practice, but still have very important limitations. One limitation is that most protocols do not separate or assemble (i.e., "phase") the nucleotide content of each of the maternally and paternally derived chromosomal homologs making up the 22 autosomal pairs and the chromosomal pair making up the pseudo-autosomal region of the sex chromosomes. This has led to a dearth of studies and a consequent underappreciation of many phenomena of fundamental importance to basic and clinical genomic science. We discuss a few protocols for obtaining phase information as well as their limitations, including those that could be used in tumor phasing settings. We then describe a number of biological and clinical phenomena that require phase information. These include phenomena that require precise knowledge of the nucleotide sequence in a chromosomal segment from germline or somatic cells, such as DNA binding events, and insight into unique cis vs. trans-acting functionally impactful variant combinations-for example, variants implicated in a phenotype governed by compound heterozygosity. In addition, we also comment on the need for reliable and consensus-based diploid-context computational workflows for variant identification as well as the need for laboratory-based functional verification strategies for validating cis vs. trans effects of variant combinations. We also briefly describe available resources, example studies, as well as areas of further research, and ultimately argue that the science behind the study of human diploidy, referred to as "diplomics," which will be enabled by nucleotide-level resolution of phased genomes, is a logical next step in the analysis of human genome biology.
Collapse
Affiliation(s)
- Agnes P Chan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Aditya Rangan
- Courant Institute of Mathematical Sciences at New York University, New York, NY, USA
| | - Guangfa Zhang
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Avijit Podder
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Michael Berens
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sunil Sharma
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Patrick Pirrotte
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sara Byron
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Dave Duggan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA.
- The City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
12
|
Xuan Z, Ma T, Qin Y, Guo Y. Role of Ultrasound Imaging in the Prediction of TRIM67 in Brain Metastases From Breast Cancer. Front Neurol 2022; 13:889106. [PMID: 35795796 PMCID: PMC9251422 DOI: 10.3389/fneur.2022.889106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives Ultrasound (US) imaging is a relatively novel strategy to monitor the activity of the blood–brain barrier, which can facilitate the diagnosis and treatment of neurovascular-related metastatic tumors. The purpose of this study was to investigate the clinical significance of applying a combination of US imaging outcomes and the associated genes. This was performed to construct line drawings to facilitate the prediction of brain metastases arising from breast cancer. Methods The RNA transcript data from The Cancer Genome Atlas (TCGA) database was obtained for breast cancer, and the differentially expressed genes (DEGs) associated with tumor and brain tumor metastases were identified. Subsequently, key genes associated with survival prognosis were subsequently identified from the DEGs. Results Tripartite motif-containing protein 67 (TRIM67) was identified and the differential; in addition, the survival analyses of the TCGA database revealed that it was associated with brain tumor metastases and overall survival prognosis. Applying independent clinical cohort data, US-related features (microcalcification and lymph node metastasis) were associated with breast cancer tumor metastasis. Furthermore, ultrasonographic findings of microcalcifications showed correlations with TRIM67 expression. The study results revealed that six variables [stage, TRIM67, tumor size, regional lymph node staging (N), age, and HER2 status] were suitable predictors of tumor metastasis by applying support vector machine–recursive feature elimination. Among these, US-predicted tumor size correlated with tumor size classification, whereas US-predicted lymph node metastasis correlated with tumor N classification. The TRIM67 upregulation was accompanied by upregulation of the integrated breast cancer pathway; however, it leads to the downregulation of the miRNA targets in ECM and membrane receptors and the miRNAs involved in DNA damage response pathways. Conclusions The TRIM67 is a risk factor associated with brain metastases from breast cancer and it is considered a prognostic survival factor. The nomogram constructed from six variables—stage, TRIM67, tumor size, N, age, HER2 status—is an appropriate predictor to estimate the occurrence of breast cancer metastasis.
Collapse
|
13
|
Motallebnejad P, Rajesh VV, Azarin SM. Evaluating the Role of IL-1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium. Cell Mol Bioeng 2022; 15:99-114. [PMID: 35096187 PMCID: PMC8761198 DOI: 10.1007/s12195-021-00710-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION In vivo, breast cancer cells spend on average 3-7 days adhered to the endothelial cells inside the vascular lumen before entering the brain. IL-1β is one of the highly upregulated molecules in brain-seeking triple negative breast cancer (TNBC) cells. In this study, the effect of IL-1β on the blood-brain barrier (BBB) and astrocytes and its role in transmigration of TNBC cells were evaluated. METHODS The effect of IL-1β on transendothelial electrical resistance, gene and protein expression of human induced pluripotent stem cell-derived brain-specific microvascular endothelial-like cells (iBMECs) was studied. Transport of IL-1β across the iBMEC layer was investigated and the effect of IL-1β treatment of astrocytes on their cytokine and chemokine secretome was evaluated with a cytokine membrane array. Using BBB-on-a-chip devices, transmigration of MDA-MB-231 cells and their brain-seeking variant (231BR) across the iBMECs was studied, and the effect of an IL-1β neutralizing antibody on TNBC cell transmigration was investigated. RESULTS We showed that IL-1β reduces BBB integrity and induces endothelial-to-mesenchymal transition in iBMECs. IL-1β crosses the iBMEC layer and induces secretion of multiple chemokines by astrocytes, which can enhance TNBC cell transmigration across the BBB. Transmigration assays in a BBB-on-a-chip device showed that 231BR cells have a higher rate of transmigration across the iBMECs compared to MDA-MB-231 cells, and IL-1β pretreatment of BBB-on-a-chip devices increases the number of transmigrated MDA-MB-231 cells. Finally, we demonstrated that neutralizing IL-1β reduces the rate of 231BR cell transmigration. CONCLUSION IL-1β plays a significant role in transmigration of brain-seeking TNBC cells across the BBB. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00710-y.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Vinayak V. Rajesh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
14
|
Differential Effects of Normoxic versus Hypoxic Derived Breast Cancer Paracrine Factors on Brain Endothelial Cells. BIOLOGY 2021; 10:biology10121238. [PMID: 34943153 PMCID: PMC8698446 DOI: 10.3390/biology10121238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary The potential of breast cancer to spread to the brain increases the clinical complications of the disease; breast cancer is considered to have the second-highest capacity to spread to the brain after lung cancer. The brain is protected by highly specialized endothelial cells, forming a barrier against the entry of circulating molecules and cells. The ability of breast cancer cells to penetrate the protective endothelial barrier is still not completely understood. Here, we aimed to investigate the effect of breast cancer cells on the brain’s endothelial cells. We showed that breast cancer cells induce changes in endothelial cells by releasing factors that target the mitochondria, affecting the endothelial cells and their attachment to each other and, therefore, their function as a protective barrier of the brain. Understanding the mechanism that breast cancer cells utilize to affect endothelial cells under normoxic and hypoxic conditions contributes to the development of treatments to prevent the metastasis of cancer cells to the brain. Abstract Background: The blood-brain barrier (BBB) is a central nervous system protective barrier formed primarily of endothelial cells that regulate the entry of substances and cells from entering the brain. However, the BBB integrity is disrupted in disease, including cancer, allowing toxic substances, molecules, and circulating cells to enter the brain. This study aimed to determine the mitochondrial changes in brain endothelial cells co-cultured with cancer cells. Method: Brain endothelial cells (bEnd.3) were co-cultivated with various concentrations of breast cancer (MCF7) conditioned media (CM) generated under normoxic (21% O2) and hypoxic conditions (5% O2). The mitochondrial activities (including; dehydrogenases activity, mitochondrial membrane potential (ΔΨm), and ATP generation) were measured using Polarstar Omega B.M.G-Plate reader. Trans-endothelial electrical resistance (TEER) was evaluated using the EVOM system, followed by quantifying gene expression of the endothelial tight junction (ETJs) using qPCR. Results: bEnd.3 cells had reduced cell viability after 72 h and 96 h exposure to MCF7CM under hypoxic and normoxic conditions. The ΔΨm in bEnd.3 cells were hyperpolarized after exposure to the hypoxic MCF7CM (p < 0.0001). However, the normoxic MCF7CM did not significantly affect the state of ΔΨm in bEnd.3 cells. ATP levels in bEnd.3 co-cultured with hypoxic and normoxic MCF7CM was significantly reduced (p < 0.05). The changes in brain endothelial mitochondrial activity were associated with a decrease in TEER of bEnd.3 monolayer co-cultured with MCF7CM under hypoxia (p = 0.001) and normoxia (p < 0.05). The bEnd.3 cells exposed to MCF7CM significantly increased the gene expression level of ETJs (p < 0.05). Conclusions: MCF7CM modulate mitochondrial activity in brain endothelial cells, affecting the brain endothelial barrier function.
Collapse
|
15
|
Rodenburg WS, van Buul JD. Rho GTPase signalling networks in cancer cell transendothelial migration. VASCULAR BIOLOGY 2021; 3:R77-R95. [PMID: 34738075 PMCID: PMC8558887 DOI: 10.1530/vb-21-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
Rho GTPases are small signalling G-proteins that are central regulators of cytoskeleton dynamics, and thereby regulate many cellular processes, including the shape, adhesion and migration of cells. As such, Rho GTPases are also essential for the invasive behaviour of cancer cells, and thus involved in several steps of the metastatic cascade, including the extravasation of cancer cells. Extravasation, the process by which cancer cells leave the circulation by transmigrating through the endothelium that lines capillary walls, is an essential step for metastasis towards distant organs. During extravasation, Rho GTPase signalling networks not only regulate the transmigration of cancer cells but also regulate the interactions between cancer and endothelial cells and are involved in the disruption of the endothelial barrier function, ultimately allowing cancer cells to extravasate into the underlying tissue and potentially form metastases. Thus, targeting Rho GTPase signalling networks in cancer may be an effective approach to inhibit extravasation and metastasis. In this review, the complex process of cancer cell extravasation will be discussed in detail. Additionally, the roles and regulation of Rho GTPase signalling networks during cancer cell extravasation will be discussed, both from a cancer cell and endothelial cell point of view.
Collapse
Affiliation(s)
- Wessel S Rodenburg
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.,Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences at University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
16
|
A ligand-insensitive UNC5B splicing isoform regulates angiogenesis by promoting apoptosis. Nat Commun 2021; 12:4872. [PMID: 34381052 PMCID: PMC8358048 DOI: 10.1038/s41467-021-24998-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B’s necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis. UNC5B is a Netrin-1 receptor expressed in endothelial cells that in the absence of ligand induces apoptosis. Here the authors identify an UNC5B splicing isoform that is insensitive to the pro-survival ligand Netrin-1 and is required for apoptosis-dependent blood vessel development.
Collapse
|
17
|
Godinho-Pereira J, Garcia AR, Figueira I, Malhó R, Brito MA. Behind Brain Metastases Formation: Cellular and Molecular Alterations and Blood-Brain Barrier Disruption. Int J Mol Sci 2021; 22:7057. [PMID: 34209088 PMCID: PMC8268492 DOI: 10.3390/ijms22137057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) brain metastases is a life-threatening condition to which accounts the poor understanding of BC cells' (BCCs) extravasation into the brain, precluding the development of preventive strategies. Thus, we aimed to unravel the players involved in the interaction between BCCs and blood-brain barrier (BBB) endothelial cells underlying BBB alterations and the transendothelial migration of malignant cells. We used brain microvascular endothelial cells (BMECs) as a BBB in vitro model, under conditions mimicking shear stress to improve in vivo-like BBB features. Mixed cultures were performed by the addition of fluorescently labelled BCCs to distinguish individual cell populations. BCC-BMEC interaction compromised BBB integrity, as revealed by junctional proteins (β-catenin and zonula occludens-1) disruption and caveolae (caveolin-1) increase, reflecting paracellular and transcellular hyperpermeability, respectively. Both BMECs and BCCs presented alterations in the expression pattern of connexin 43, suggesting the involvement of the gap junction protein. Myosin light chain kinase and phosphorylated myosin light chain were upregulated, revealing the involvement of the endothelial cytoskeleton in the extravasation process. β4-Integrin and focal adhesion kinase were colocalised in malignant cells, reflecting molecular interaction. Moreover, BCCs exhibited invadopodia, attesting migratory properties. Collectively, hub players involved in BC brain metastases formation were unveiled, disclosing possible therapeutic targets for metastases prevention.
Collapse
Affiliation(s)
- Joana Godinho-Pereira
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Inês Figueira
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande 016, 1749-016 Lisbon, Portugal;
| | - Maria Alexandra Brito
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
18
|
Follain G, Osmani N, Gensbittel V, Asokan N, Larnicol A, Mercier L, Garcia-Leon MJ, Busnelli I, Pichot A, Paul N, Carapito R, Bahram S, Lefebvre O, Goetz JG. Impairing flow-mediated endothelial remodeling reduces extravasation of tumor cells. Sci Rep 2021; 11:13144. [PMID: 34162963 PMCID: PMC8222393 DOI: 10.1038/s41598-021-92515-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor progression and metastatic dissemination are driven by cell-intrinsic and biomechanical cues that favor the growth of life-threatening secondary tumors. We recently identified pro-metastatic vascular regions with blood flow profiles that are permissive for the arrest of circulating tumor cells. We have further established that such flow profiles also control endothelial remodeling, which favors extravasation of arrested CTCs. Yet, how shear forces control endothelial remodeling is unknown. In the present work, we aimed at dissecting the cellular and molecular mechanisms driving blood flow-dependent endothelial remodeling. Transcriptomic analysis of endothelial cells revealed that blood flow enhanced VEGFR signaling, among others. Using a combination of in vitro microfluidics and intravital imaging in zebrafish embryos, we now demonstrate that the early flow-driven endothelial response can be prevented upon specific inhibition of VEGFR tyrosine kinase and subsequent signaling. Inhibitory targeting of VEGFRs reduced endothelial remodeling and subsequent metastatic extravasation. These results confirm the importance of VEGFR-dependent endothelial remodeling as a driving force of CTC extravasation and metastatic dissemination. Furthermore, the present work suggests that therapies targeting endothelial remodeling might be a relevant clinical strategy in order to impede metastatic progression.
Collapse
Affiliation(s)
- Gautier Follain
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Turku Bioscience Center,, University of Turku, Åbo Akademi University, 20520, Turku, Finland
| | - Naël Osmani
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Nandini Asokan
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Annabel Larnicol
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Luc Mercier
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- UMR 5297, Interdisciplinary Institute for Neurosciences, CNRS Université de Bordeaux, 33076, Bordeaux, France
| | - Maria Jesus Garcia-Leon
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Ignacio Busnelli
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Angelique Pichot
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Nicodème Paul
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Raphaël Carapito
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Seiamak Bahram
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
19
|
Figueira I, Godinho-Pereira J, Galego S, Maia J, Haskó J, Molnár K, Malhó R, Costa-Silva B, Wilhelm I, Krizbai IA, Brito MA. MicroRNAs and Extracellular Vesicles as Distinctive Biomarkers of Precocious and Advanced Stages of Breast Cancer Brain Metastases Development. Int J Mol Sci 2021; 22:5214. [PMID: 34069135 PMCID: PMC8155987 DOI: 10.3390/ijms22105214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/28/2022] Open
Abstract
Triple negative breast cancer presents higher mortality and poorer survival rates than other breast cancer (BC) types, due to the proneness to brain metastases formation, which are usually diagnosed at advanced stages. Therefore, the discovery of BC brain metastases (BCBM) biomarkers appears pivotal for a timely intervention. With this work, we aimed to disclose microRNAs (miRNAs) and extracellular vesicles (EVs) in the circulation as biomarkers of BCBM formation. Using a BCBM animal model, we analyzed EVs in plasma by nanoparticle tracking analysis and ascertained their blood-brain barrier (BBB) origin by flow cytometry. We further evaluated circulating miRNAs by RT-qPCR and their brain expression by in situ hybridization. In parallel, a cellular model of BCBM formation, combining triple negative BC cells and BBB endothelial cells, was used to differentiate the origin of biomarkers. Established metastases were associated with an increased content of circulating EVs, particularly of BBB origin. Interestingly, deregulated miRNAs in the circulation were observed prior to BCBM detection, and their brain origin was suggested by matching alterations in brain parenchyma. In vitro studies indicated that miR-194-5p and miR-205-5p are expressed and released by BC cells, endothelial cells and during their interaction. These results highlight miRNAs and EVs as biomarkers of BCBM in early and advanced stages, respectively.
Collapse
Affiliation(s)
- Inês Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (I.F.); (J.G.-P.); (S.G.)
- Farm-ID—Associação da Faculdade de Farmácia para a Investigação e Desenvolvimento, 1649-003 Lisbon, Portugal
| | - Joana Godinho-Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (I.F.); (J.G.-P.); (S.G.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Sofia Galego
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (I.F.); (J.G.-P.); (S.G.)
| | - Joana Maia
- Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.M.); (B.C.-S.)
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, 4099-002 Porto, Portugal
| | - János Haskó
- Biological Research Centre, Eötvös Loránd Research Network (ELKH), Institute of Biophysics, 6726 Szeged, Hungary; (J.H.); (K.M.); (I.W.); (I.A.K.)
| | - Kinga Molnár
- Biological Research Centre, Eötvös Loránd Research Network (ELKH), Institute of Biophysics, 6726 Szeged, Hungary; (J.H.); (K.M.); (I.W.); (I.A.K.)
| | - Rui Malhó
- BioISI, BioSystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno Costa-Silva
- Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal; (J.M.); (B.C.-S.)
| | - Imola Wilhelm
- Biological Research Centre, Eötvös Loránd Research Network (ELKH), Institute of Biophysics, 6726 Szeged, Hungary; (J.H.); (K.M.); (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - István A. Krizbai
- Biological Research Centre, Eötvös Loránd Research Network (ELKH), Institute of Biophysics, 6726 Szeged, Hungary; (J.H.); (K.M.); (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (I.F.); (J.G.-P.); (S.G.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
20
|
Omidi Y, Kianinejad N, Kwon Y, Omidian H. Drug delivery and targeting to brain tumors: considerations for crossing the blood-brain barrier. Expert Rev Clin Pharmacol 2021; 14:357-381. [PMID: 33554678 DOI: 10.1080/17512433.2021.1887729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The blood-brain barrier (BBB) selectively impedes the transportation of drug molecules into the brain, which makes the drug delivery and targeting of brain tumors very challenging.Areas covered: Having surveyed the recent literature, comprehensive insights are given into the impacts of the BBB on the advanced drug delivery and targeting modalities for brain tumors.Expert opinion: Brain capillary endothelial cells form the BBB in association with astrocytes, pericytes, neurons, and extracellular matrix. Coop of these forms the complex setting of neurovascular unite. The BBB maintains the brain homeostasis by restrictive controlling of the blood circulating nutrients/substances trafficking. Despite substantial progress on therapy of brain tumors, there is no impeccable strategy to safely deliver chemotherapeutics into the brain. Various strategies have been applied to deliver chemotherapeutics into the brain (e.g. BBB opening, direct delivery by infusion, injection, microdialysis, and implants, and smart nanosystems), which hold different pros and cons. Of note, smart nanoscale multifunctional nanomedicines can serve as targeting, imaging, and treatment modality for brain tumors. Given that aggressive brain tumors (e.g. gliomas) are often unresponsive to any treatments, an in-depth understanding of the molecular/cellular complexity of brain tumors might help the development of smart and effective treatment modalities.
Collapse
Affiliation(s)
- Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Nazanin Kianinejad
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Young Kwon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
21
|
Srinivasan ES, Tan AC, Anders CK, Pendergast AM, Sipkins DA, Ashley DM, Fecci PE, Khasraw M. Salting the Soil: Targeting the Microenvironment of Brain Metastases. Mol Cancer Ther 2021; 20:455-466. [PMID: 33402399 PMCID: PMC8041238 DOI: 10.1158/1535-7163.mct-20-0579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Paget's "seed and soil" hypothesis of metastatic spread has acted as a foundation of the field for over a century, with continued evolution as mechanisms of the process have been elucidated. The central nervous system (CNS) presents a unique soil through this lens, relatively isolated from peripheral circulation and immune surveillance with distinct cellular and structural composition. Research in primary and metastatic brain tumors has demonstrated that this tumor microenvironment (TME) plays an essential role in the growth of CNS tumors. In each case, the cancerous cells develop complex and bidirectional relationships that reorganize the local TME and reprogram the CNS cells, including endothelial cells, pericytes, astrocytes, microglia, infiltrating monocytes, and lymphocytes. These interactions create a structurally and immunologically permissive TME with malignant processes promoting positive feedback loops and systemic consequences. Strategies to interrupt interactions with the native CNS components, on "salting the soil," to create an inhospitable environment are promising in the preclinical setting. This review aims to examine the general and specific pathways thus far investigated in brain metastases and related work in glioma to identify targetable mechanisms that may have general application across the spectrum of intracranial tumors.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Carey K Anders
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | | | - Dorothy A Sipkins
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - David M Ashley
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Peter E Fecci
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Mustafa Khasraw
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina.
| |
Collapse
|
22
|
Picturing Breast Cancer Brain Metastasis Development to Unravel Molecular Players and Cellular Crosstalk. Cancers (Basel) 2021; 13:cancers13040910. [PMID: 33671551 PMCID: PMC7926545 DOI: 10.3390/cancers13040910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is a devastating disorder affecting millions of women worldwide. With improved therapeutics for the primary tumor, the appearance of metastasis has been increasing. Breast cancer frequently metastasizes to the brain, constituting a major hurdle without cure and with a poor survival. It is imperative to better understand the mechanisms involved in malignant cell transposition of the brain microvasculature and parenchymal colonization by deciphering the alterations occurring in the tumor and microvascular cells, as well as the occurrence of intercellular communication during the process. We aimed to profile the process of the formation of breast cancer brain metastasis and the timeline of events governing it. We used a specific mouse model of the disease to perform extensive microscopic analyses. We identified phenotypic changes and the activation of relevant molecular players in tumorigenesis, together with vascular alterations, and the occurrence of crosstalk. Our findings unravel putative therapeutic targets to tackle breast cancer brain metastasis. Abstract With breast cancer (BC) therapy improvements, the appearance of brain metastases has been increasing, representing a life-threatening condition. Brain metastasis formation involves BC cell (BCC) extravasation across the blood–brain barrier (BBB) and brain colonization by unclear mechanisms. We aimed to disclose the actors involved in BC brain metastasis formation, focusing on BCCs’ phenotype, growth factor expression, and signaling pathway activation, correlating with BBB alterations and intercellular communication. Hippocampi of female mice inoculated with 4T1 BCCs were examined over time by hematoxylin-eosin, immunohistochemistry and immunofluorescence. Well-established metastases were observed at seven days, increasing thereafter. BCCs entering brain parenchyma presented mesenchymal, migratory, and proliferative features; however, with time, they increasingly expressed epithelial markers, reflecting a mesenchymal–epithelial transition. BCCs also expressed platelet-derived growth factor-B, β4 integrin, and focal adhesion kinase, suggesting autocrine and/or paracrine regulation with adhesion signaling activation, while balance between Rac1 and RhoA was associated with the motility status. Intercellular communication via gap junctions was clear among BCCs, and between BCCs and endothelial cells. Thrombin accumulation, junctional protein impairment, and vesicular proteins increase reflect BBB alterations related with extravasation. Expression of plasmalemma vesicle-associated protein was increased in BCCs, along with augmented vascularization, whereas pericyte contraction indicated mural cells’ activation. Our results provide further understanding of BC brain metastasis formation, disclosing potential therapeutic targets.
Collapse
|
23
|
Sarmiento Soto M, Larkin JR, Martin C, Khrapitchev AA, Maczka M, Economopoulos V, Scott H, Escartin C, Bonvento G, Serres S, Sibson NR. STAT3-Mediated Astrocyte Reactivity Associated with Brain Metastasis Contributes to Neurovascular Dysfunction. Cancer Res 2020; 80:5642-5655. [PMID: 33106335 DOI: 10.1158/0008-5472.can-20-2251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/14/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
Astrocytes are thought to play a pivotal role in coupling neural activity and cerebral blood flow. However, it has been shown that astrocytes undergo morphologic changes in response to brain metastasis, switching to a reactive phenotype, which has the potential to significantly compromise cerebrovascular function and contribute to the neurological sequelae associated with brain metastasis. Given that STAT3 is a key regulator of astrocyte reactivity, we aimed here to determine the impact of STAT3-mediated astrocyte reactivity on neurovascular function in brain metastasis. Rat models of brain metastasis and ciliary neurotrophic factor were used to induce astrocyte reactivity. Multimodal imaging, electrophysiology, and IHC were performed to determine the relationship between reactive astrocytes and changes in the cerebrovascular response to electrical and physiological stimuli. Subsequently, the STAT3 pathway in astrocytes was inhibited with WP1066 to determine the role of STAT3-mediated astrocyte reactivity, specifically, in brain metastasis. Astrocyte reactivity associated with brain metastases impaired cerebrovascular responses to stimuli at both the cellular and functional level and disrupted astrocyte-endothelial interactions in both animal models and human brain metastasis samples. Inhibition of STAT3-mediated astrocyte reactivity in rats with brain metastases restored cerebrovascular function, as shown by in vivo imaging, and limited cerebrovascular changes associated with tumor growth. Together these findings suggest that inhibiting STAT3-mediated astrocyte reactivity may confer significant improvements in neurological outcome for patients with brain metastases and could potentially be tested in other brain tumors. SIGNIFICANCE: These findings demonstrate that selectively targeting STAT3-mediated astrocyte reactivity ameliorates the cerebrovascular dysfunction associated with brain metastasis, providing a potential therapeutic avenue for improved patient outcome.
Collapse
Affiliation(s)
- Manuel Sarmiento Soto
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Department of Biochemistry and Molecular Biology, University of Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | - James R Larkin
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Chris Martin
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Alexandre A Khrapitchev
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Melissa Maczka
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Vasiliki Economopoulos
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Helen Scott
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Carole Escartin
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Sébastien Serres
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom.
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nicola R Sibson
- Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, United Kingdom.
| |
Collapse
|
24
|
Molnár K, Mészáros Á, Fazakas C, Kozma M, Győri F, Reisz Z, Tiszlavicz L, Farkas AE, Nyúl-Tóth Á, Haskó J, Krizbai IA, Wilhelm I. Pericyte-secreted IGF2 promotes breast cancer brain metastasis formation. Mol Oncol 2020; 14:2040-2057. [PMID: 32534480 PMCID: PMC7463359 DOI: 10.1002/1878-0261.12752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are life-threatening complications of triple-negative breast cancer, melanoma, and a few other tumor types. Poor outcome of cerebral secondary tumors largely depends on the microenvironment formed by cells of the neurovascular unit, among which pericytes are the least characterized. By using in vivo and in vitro techniques and human samples, here we show that pericytes play crucial role in the development of metastatic brain tumors by directly influencing key steps of the development of the disease. Brain pericytes had a prompt chemoattractant effect on breast cancer cells and established direct contacts with them. By secreting high amounts of extracellular matrix proteins, pericytes enhanced adhesion of both melanoma and triple-negative cancer cells, which might be particularly important in the exclusive perivascular growth of these tumor cells. In addition, pericytes secreted insulin-like growth factor 2 (IGF2), which had a very significant pro-proliferative effect on mammary carcinoma, but not on melanoma cells. By inhibiting IGF2 signaling using silencing or picropodophyllin (PPP), we could block the proliferation-increasing effect of pericytes on breast cancer cells. Administration of PPP (a blood-brain barrier-permeable substance) significantly decreased the size of brain tumors in mice inoculated with triple-negative breast cancer cells. Taken together, our results indicate that brain pericytes have significant pro-metastatic features, especially in breast cancer. Our study underlines the importance of targeting pericytes and the IGF axis as potential strategies in brain metastatic diseases.
Collapse
Affiliation(s)
- Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Mihály Kozma
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Fanni Győri
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zita Reisz
- Department of Pathology, University of Szeged, Szeged, Hungary
| | | | - Attila E Farkas
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Ádám Nyúl-Tóth
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging/Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|
25
|
Sereno M, Haskó J, Molnár K, Medina SJ, Reisz Z, Malhó R, Videira M, Tiszlavicz L, Booth SA, Wilhelm I, Krizbai IA, Brito MA. Downregulation of circulating miR 802-5p and miR 194-5p and upregulation of brain MEF2C along breast cancer brain metastasization. Mol Oncol 2020; 14:520-538. [PMID: 31930767 PMCID: PMC7053247 DOI: 10.1002/1878-0261.12632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer brain metastases (BCBMs) have been underinvestigated despite their high incidence and poor outcome. MicroRNAs (miRNAs), and particularly circulating miRNAs, regulate multiple cellular functions, and their deregulation has been reported in different types of cancer and metastasis. However, their signature in plasma along brain metastasis development and their relevant targets remain undetermined. Here, we used a mouse model of BCBM and next‐generation sequencing (NGS) to establish the alterations in circulating miRNAs during brain metastasis formation and development. We further performed bioinformatics analysis to identify their targets with relevance in the metastatic process. We additionally analyzed human resected brain metastasis samples of breast cancer patients for target expression validation. Breast cancer cells were injected in the carotid artery of mice to preferentially induce metastasis in the brain, and samples were collected at different timepoints (5 h, 3, 7, and 10 days) to follow metastasis development in the brain and in peripheral organs. Metastases were detected from 7 days onwards, mainly in the brain. NGS revealed a deregulation of circulating miRNA profile during BCBM progression, rising from 18% at 3 days to 30% at 10 days following malignant cells’ injection. Work was focused on those altered prior to metastasis detection, among which were miR‐802‐5p and miR‐194‐5p, whose downregulation was validated by qPCR. Using targetscan and diana tools, the transcription factor myocyte enhancer factor 2C (MEF2C) was identified as a target for both miRNAs, and its expression was increasingly observed in malignant cells along brain metastasis development. Its upregulation was also observed in peritumoral astrocytes pointing to a role of MEF2C in the crosstalk between tumor cells and astrocytes. MEF2C expression was also observed in human BCBM, validating the observation in mouse. Collectively, downregulation of circulating miR‐802‐5p and miR‐194‐5p appears as a precocious event in BCBM and MEF2C emerges as a new player in brain metastasis development.
Collapse
Affiliation(s)
- Marta Sereno
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Sarah J Medina
- Prion Diseases Section, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Zita Reisz
- Department of Pathology, University of Szeged, Hungary
| | - Rui Malhó
- Faculdade de Ciências, BioISI, Instituto de Biossistemas e Ciências Integrativas, Universidade de Lisboa, Portugal
| | - Mafalda Videira
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal.,Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Portugal
| | | | - Stephanie A Booth
- Prion Diseases Section, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Romania
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Romania
| | - Maria Alexandra Brito
- Faculdade de Farmácia, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculdade de Farmmácia, Universidade de Lisboa, Portugal
| |
Collapse
|