1
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
2
|
Nakayama Y, Chambers JK, Takaichi Y, Uchida K. Cytoplasmic aggregation of TDP43 and topographic correlation with tau and α-synuclein accumulation in the rTg4510 mouse model of tauopathy. J Neuropathol Exp Neurol 2024; 83:833-842. [PMID: 38879441 DOI: 10.1093/jnen/nlae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
In patients with TDP43 proteinopathy, phosphorylated TDP43 (p-TDP43) accumulates in the cytoplasm of neurons. The accumulation of p-TDP43 has also been reported in patients with tauopathy and α-synucleinopathy. We investigated spatiotemporal changes in p-TDP43 accumulation in the brains of rTg4510 mice that overexpressed human mutant tau (P301L) and exhibited hyperphosphorylated tau (hp-tau) and phosphorylated αSyn (p-αSyn) accumulation. Immunohistochemically, p-TDP43 aggregates were observed in the cytoplasm of neurons, which increased with age. A significant positive correlation was observed between the number of cells with p-TDP43 aggregates and hp-tau and p-αSyn aggregates. Suppression of the human mutant tau (P301L) expression by doxycycline treatment reduces the accumulation of p-TDP43, hp-tau, and p-αSyn. Proteinase K-resistant p-TDP43 aggregates were found in regions with high hp-tau, and p-αSyn accumulation. Western blotting of the sarkosyl-insoluble fraction revealed bands of monomeric TDP43 and p-TDP43. These results indicate that the accumulation of mouse p-TDP43 is associated with the accumulation of human mutant tau (P301L) in rTg4510 mouse brains. The accumulation of hp-tau and p-αSyn may promote sarkosyl-insoluble p-TDP43 aggregates that are resistant to proteinase K. The synergistic effects of tau, TDP43, and αSyn may be involved in the pathology of proteinopathies, leading to the accumulation of multiple abnormal proteins.
Collapse
Affiliation(s)
- Yutaro Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
4
|
Riku Y, Yoshida M, Iwasaki Y, Sobue G, Katsuno M, Ishigaki S. TDP-43 Proteinopathy and Tauopathy: Do They Have Pathomechanistic Links? Int J Mol Sci 2022; 23:ijms232415755. [PMID: 36555399 PMCID: PMC9779029 DOI: 10.3390/ijms232415755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Transactivation response DNA binding protein 43 kDa (TDP-43) and tau are major pathological proteins of neurodegenerative disorders, of which neuronal and glial aggregates are pathological hallmarks. Interestingly, accumulating evidence from neuropathological studies has shown that comorbid TDP-43 pathology is observed in a subset of patients with tauopathies, and vice versa. The concomitant pathology often spreads in a disease-specific manner and has morphological characteristics in each primary disorder. The findings from translational studies have suggested that comorbid TDP-43 or tau pathology has clinical impacts and that the comorbid pathology is not a bystander, but a part of the disease process. Shared genetic risk factors or molecular abnormalities between TDP-43 proteinopathies and tauopathies, and direct interactions between TDP-43 and tau aggregates, have been reported. Further investigations to clarify the pathogenetic factors that are shared by a broad spectrum of neurodegenerative disorders will establish key therapeutic targets.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
- Correspondence: or
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Gen Sobue
- Graduate School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
| | - Shinsuke Ishigaki
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
5
|
Strong MJ, Swash M. Finding Common Ground on the Site of Onset of Amyotrophic Lateral Sclerosis. Neurology 2022; 99:1042-1048. [PMID: 36261296 PMCID: PMC9754652 DOI: 10.1212/wnl.0000000000201387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The fundamental origin of amyotrophic lateral sclerosis (ALS) has remained an enigma since its earliest description as a relentlessly progressive degeneration with prominent neuromuscular manifestations that are associated with upper and lower motor neuron dysfunction. Although this remains the hallmark of ALS, a significant proportion of patients will also demonstrate one or more features of frontotemporal dysfunction, including a frontotemporal dementia (FTD). Understanding whether these 2 seemingly disparate syndromes are simply reflective of the co-occurrence of 2 distinct pathologic processes or the clinical manifestations of a common pathophysiologic derangement involving the brain more widely has gripped contemporary ALS researchers. Supporting a commonality of causation, both ALS and FTD show an alteration in the metabolism of TAR DNA-binding protein 43, marked by a shift in nucleocytoplasmic localization alongside a broad range of neuronal cytoplasmic inclusions consisting of pathologic aggregates of RNA-binding proteins. Similarly, several disease-associated or disease-modifying genetic variants that are shared between the 2 disorders suggest shared underlying mechanisms. In both, a prominent glial response has been postulated to contribute to non-cell-autonomous spread. A more contemporary hypothesis, however, suggests that syndromes of cortical and subcortical dysfunction are driven by impairments in discrete neural networks. This postulates that such networks, including networks subserving motor or cognitive function, possess unique and selective vulnerabilities to either single molecular toxicities or combinations thereof. The co-occurrence of one or more network dysfunctions in ALS and FTD is thus a reflection not of unique neuroanatomic correlates but rather of shared molecular vulnerabilities. The basis of such shared vulnerabilities becomes the fulcrum around which the next advances in our understanding of ALS and its possible therapy will develop.
Collapse
Affiliation(s)
- Michael J Strong
- From the Department of Clinical Neurological Sciences (M.J.S.), Western University, London, Canada; Department of Neurology (M.S.), Barts and the London School of Medicine QMUL, United Kingdom; and Institute of Neuroscience (M.S.), University of Lisbon, Portugal.
| | - Michael Swash
- From the Department of Clinical Neurological Sciences (M.J.S.), Western University, London, Canada; Department of Neurology (M.S.), Barts and the London School of Medicine QMUL, United Kingdom; and Institute of Neuroscience (M.S.), University of Lisbon, Portugal
| |
Collapse
|
6
|
Murakami A, Koga S, Sekiya H, Oskarsson B, Boylan K, Petrucelli L, Josephs KA, Dickson DW. Old age amyotrophic lateral sclerosis and limbic TDP-43 pathology. Brain Pathol 2022; 32:e13100. [PMID: 35715944 PMCID: PMC9616086 DOI: 10.1111/bpa.13100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023] Open
Abstract
This study aimed to assess and compare the burden of transactive response DNA-binding protein of 43 kDa (TDP-43) pathology and clinical features of amyotrophic lateral sclerosis (ALS) in three age groups. All cases were from the Mayo Clinic brain bank for neurodegenerative disorders and most were followed longitudinally in the ALS Clinic. Cases with moderate-to-severe Alzheimer's disease neuropathological change were excluded. The 55 cases included in the study were divided into three groups by age at death: 75 years or older (old-ALS, n = 8), 64-74 years (middle-ALS, n = 23), and 63 years or younger (young-ALS, n = 24). Clinical features, including disease duration, initial symptoms, and ALS Cognitive Behavior Score (ALS-CBS), were summarized. Sections of paraffin-embedded tissue from the motor cortex, basal forebrain, medial temporal lobe, and middle frontal gyrus were processed for phospho-TDP-43 immunohistochemistry. The burden of TDP-43 pathology was analyzed using digital image analysis. The TDP-43 burden in the limbic system (i.e., amygdala, dentate gyrus and CA1 sector of the hippocampus, subiculum, and entorhinal cortex) was greater in old-ALS than in young-ALS and middle-ALS. TDP-43 burden in the middle frontal gyrus was sparse and did not differ between the three groups. The average of ALS-CBS was not different between the three groups. The present study shows that the amygdala and hippocampus are vulnerable to TDP-43 pathology in older patients with ALS. We discuss the evidence for and against this pathology being related to concurrent limbic-predominant, age-related TDP-43 encephalopathy neuropathologic change.
Collapse
Affiliation(s)
- Aya Murakami
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Hiroaki Sekiya
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Kevin Boylan
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| | | | | | | |
Collapse
|
7
|
Prater KE, Latimer CS, Jayadev S. Glial TDP-43 and TDP-43 induced glial pathology, focus on neurodegenerative proteinopathy syndromes. Glia 2022; 70:239-255. [PMID: 34558120 PMCID: PMC8722378 DOI: 10.1002/glia.24096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Since its discovery in 2006, TAR DNA binding protein 43 (TDP-43) has driven rapidly evolving research in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic predominant age-related TDP-43 encephalopathy (LATE). TDP-43 mislocalization or aggregation is the hallmark of TDP-43 proteinopathy and is associated with cognitive impairment that can be mapped to its regional deposition. Studies in human tissue and model systems demonstrate that TDP-43 may potentiate other proteinopathies such as the amyloid or tau pathology seen in Alzheimer's Disease (AD) in the combination of AD+LATE. Despite this growing body of literature, there remain gaps in our understanding of whether there is heterogeneity in TDP-43 driven mechanisms across cell types. The growing observations of correlation between TDP-43 proteinopathy and glial pathology suggest a relationship between the two, including pathogenic glial cell-autonomous dysfunction and dysregulated glial immune responses to neuronal TDP-43. In this review, we discuss the available data on TDP-43 in glia within the context of the neurodegenerative diseases ALS and FTLD and highlight the current lack of information about glial TDP-43 interaction in AD+LATE. TDP-43 has proven to be a significant modulator of cognitive and neuropathological outcomes. A deeper understanding of its role in diverse cell types may provide relevant insights into neurodegenerative syndromes.
Collapse
Affiliation(s)
| | - Caitlin S. Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195,Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA 98195
| |
Collapse
|
8
|
McCunn P, Xu X, Moszczynski A, Li A, Brown A, Bartha R. Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury. J Neuroimaging 2021; 31:879-892. [PMID: 34473386 DOI: 10.1111/jon.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Identification of changesin brain microstructure following mild traumatic brain injury (mTBI) could be instrumental in understanding the underlying pathophysiology. The purpose of this study was to apply neurite orientation dispersion and density imaging (NODDI) to a rodent model of mTBI to determine whether microstructural changes could be detected immediately following injury. METHODS Fifteen adult male Wistar rats were scanned on a Bruker 9.4 Tesla small animal MRI using a multi-shell acquisition (30 b = 1000 s/mm2 and 60 b = 2000 s/mm2 ). Nine animals experienced a single closed head controlled cortical impact followed by NODDI from 1 to 4 h post injury. Region of interest analysis focused on the corpus callosum and hippocampus. A mixed analysis of variance (ANOVA) was used to determine statistically significant interactions in neurite density index (NDI), orientation dispersion index (ODI), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity. Follow up repeated-measures ANOVAs were used to determine individual changes over time. RESULTS NDI showed a significant increase in the hippocampus and corpus callosum following injury, while ODI showed increases in the corpus callosum. No significant changes were observed in the sham control animals. No changes were found in FA, MD, AD, or RD. Histological analysis revealed increased glial fibrillary acidic protein staining relative to controls in both the hippocampus and corpus callosum, with evidence of activated astrocytes in these regions. CONCLUSIONS Changes in NODDI metrics were detected as early as 1 h following mTBI. No changes were detected with conventional diffusion tensor imaging (DTI) metrics, suggesting that NODDI provides greater sensitivity to microstructural changes than conventional DTI.
Collapse
Affiliation(s)
- Patrick McCunn
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Xiaoyun Xu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | - Alex Li
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Departments of Psychiatry and Medical Imaging, University of Western Ontario, London, Ontario, Canada
| | - Arthur Brown
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Robert Bartha
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Tau and TDP-43 synergy: a novel therapeutic target for sporadic late-onset Alzheimer's disease. GeroScience 2021; 43:1627-1634. [PMID: 34185246 PMCID: PMC8492812 DOI: 10.1007/s11357-021-00407-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is traditionally defined by the presence of two types of protein aggregates in the brain: amyloid plaques comprised of the protein amyloid-β (Aβ) and neurofibrillary tangles containing the protein tau. However, a large proportion (up to 57%) of AD patients also have TDP-43 aggregates present as an additional comorbid pathology. The presence of TDP-43 aggregates in AD correlates with hippocampal sclerosis, worse brain atrophy, more severe cognitive impairment, and more rapid cognitive decline. In patients with mixed Aβ, tau, and TDP-43 pathology, TDP-43 may interact with neurodegenerative processes in AD, worsening outcomes. While considerable progress has been made to characterize TDP-43 pathology in AD and late-onset dementia, there remains a critical need for mechanistic studies to understand underlying disease biology and develop therapeutic interventions. This perspectives article reviews the current understanding of these processes from autopsy cohort studies and model organism-based research, and proposes targeting neurotoxic synergies between tau and TDP-43 as a new therapeutic strategy for AD with comorbid TDP-43 pathology.
Collapse
|
10
|
Strong MJ, Donison NS, Volkening K. Alterations in Tau Metabolism in ALS and ALS-FTSD. Front Neurol 2020; 11:598907. [PMID: 33329356 PMCID: PMC7719764 DOI: 10.3389/fneur.2020.598907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
There is increasing acceptance that amyotrophic lateral sclerosis (ALS), classically considered a neurodegenerative disease affecting almost exclusively motor neurons, is syndromic with both clinical and biological heterogeneity. This is most evident in its association with a broad range of neuropsychological, behavioral, speech and language deficits [collectively termed ALS frontotemporal spectrum disorder (ALS-FTSD)]. Although the most consistent pathology of ALS and ALS-FTSD is a disturbance in TAR DNA binding protein 43 kDa (TDP-43) metabolism, alterations in microtubule-associated tau protein (tau) metabolism can also be observed in ALS-FTSD, most prominently as pathological phosphorylation at Thr175 (pThr175tau). pThr175 has been shown to promote exposure of the phosphatase activating domain (PAD) in the tau N-terminus with the consequent activation of GSK3β mediated phosphorylation at Thr231 (pThr231tau) leading to pathological oligomer formation. This pathological cascade of tau phosphorylation has been observed in chronic traumatic encephalopathy with ALS (CTE-ALS) and in both in vivo and in vitro experimental paradigms, suggesting that it is of critical relevance to the pathobiology of ALS-FTSD. It is also evident that the co-existence of alterations in the metabolism of TDP-43 and tau acts synergistically in a rodent model to exacerbate the pathology of either.
Collapse
Affiliation(s)
- Michael J Strong
- Molecular Medicine, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Neil S Donison
- Molecular Medicine, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,Neuroscience Graduate Program, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
11
|
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods 2020; 346:108908. [PMID: 32814118 DOI: 10.1016/j.jneumeth.2020.108908] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Diffusion MRI (dMRI) has proven to be a useful imaging approach for both clinical diagnosis and research investigating the microstructures of nervous tissues, and it has helped us to better understand the neurophysiological mechanisms of many diseases. Though diffusion tensor imaging (DTI) has long been the default tool to analyze dMRI data in clinical research, acquisition with stronger diffusion weightings beyond the DTI regimen is now possible with modern clinical scanners, potentially enabling even more detailed characterization of tissue microstructures. To take advantage of such data, neurite orientation dispersion and density imaging (NODDI) has been proposed as a way to relate the dMRI signal to tissue features via biophysically inspired modeling. The number of reports demonstrating the potential clinical utility of NODDI is rapidly increasing. At the same time, the pitfalls and limitations of NODDI, and general challenges in microstructure modeling, are becoming increasingly recognized by clinicians. dMRI microstructure modeling is a rapidly evolving field with great promise, where people from different scientific backgrounds, such as physics, medicine, biology, neuroscience, and statistics, are collaborating to build novel tools that contribute to improving human healthcare. Here, we review the applications of NODDI in clinical research and discuss future perspectives for investigations toward the implementation of dMRI microstructure imaging in clinical practice.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan; Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|