1
|
Gao L, Peng L, Tang H, Wang C, Wang Q, Luo Y, Chen W, Xia Y. Screening and identification of differential-expressed RNAs in thrombin-induced in vitro model of intracerebral hemorrhage. Mol Cell Biochem 2024; 479:2755-2767. [PMID: 37943469 DOI: 10.1007/s11010-023-04879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023]
Abstract
Survival of olfactory mucosal mesenchymal stem cells (OM-MSCs) remains the low level in the cerebral microenvironment during intracerebral hemorrhage (ICH). This article aims to reveal the differential expression profile of ICH-stimulated OM-MSCs based on whole transcriptome sequence analysis. OM-MSCs were isolated from 6-week C57BL/6 mice. Morphology and surface markers of OM-MSCs were investigated by light microscope and flow cytometry, respectively. OM-MSCs were incubated with 20 U/mL thrombin for 24 h to mimic ICH-induced injury in vitro. Total RNA was extracted for whole transcriptome sequencing and qPCR. OM-MSCs were characterized by negative for CD45 and CD34, and positive for CD44, CD90 and CD29. Thrombin led to decrease in cell viability and increase in senescence and apoptosis in OM-MSCs. In total, 736 lncRNAs (upregulated: 393; downregulated: 343), 21 miRNAs (upregulated: 7; downregulated: 14) and 807 mRNAs (upregulated: 422; downregulated: 385) were identified. GO and KEGG pathways were enriched in protein heterodimerization activity, trans-synaptic signaling, membrane pathway, alcohol metabolic process, organic hydroxy compound biosynthesis process, secondary alcohol metabolic process, alcoholism, neutrophil extracellular trap formation, systemic lupus erythematosus, metabolic process, steroid biosynthesis and drug metabolism-cytochrome P450. 200 lncRNA-miRNA-mRNA were predicted in thrombin-induced OM-MSCs. Based on qPCR, we validated COMMD1B, MOAP1, lncRNA CAPN15, lncRNA ALDH1L2, miR-3473b and miR-1964-3p were upregulated in thrombin-stimulated OM-MSCs, and GM20431, lncRNA GAPDH and miR-122b-3p were downregulated. Our findings provide novel understanding for thrombin-induced injury in OM-MSCs. Differently-expressed RNAs can be the targets of improving therapeutic application of OM-MSCs.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, 43 Renmin Avenue, Haikou, 570208, Hainan, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Li Peng
- Department of Ophthalmology, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, 43 Renmin Avenue, Haikou, 570208, Hainan, China
| | - Hong Tang
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, 43 Renmin Avenue, Haikou, 570208, Hainan, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Chuang Wang
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, 43 Renmin Avenue, Haikou, 570208, Hainan, China
| | - Qingsong Wang
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, 43 Renmin Avenue, Haikou, 570208, Hainan, China
| | - Yujie Luo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Weiming Chen
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, 43 Renmin Avenue, Haikou, 570208, Hainan, China.
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, 43 Renmin Avenue, Haikou, 570208, Hainan, China.
| |
Collapse
|
2
|
Hamidi SH, Etebar N, Rahimzadegan M, Zali A, Roodsari SR, Niknazar S. Mesenchymal stem cells and their derived exosomes in multiple sclerosis disease: from paper to practice. Mol Cell Biochem 2024; 479:1643-1671. [PMID: 38977625 DOI: 10.1007/s11010-024-05051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative, inflammatory, and demyelinating disease of the central nervous system (CNS). Current medicines are not sufficient to control the inflammation and progressive damage to the CNS that is known in MS. These drawbacks highlight the need for novel treatment options. Cell therapy can now be used to treat complex diseases when conventional therapies are ineffective. Mesenchymal stem cells (MSCs) are a diverse group of multipotential non-hematopoietic stromal cells which have immunomodulatory, neurogenesis, and remyelinating capacity. Their advantageous effects mainly rely on paracrine, cell-cell communication and differentiation properties which introduced them as excellent candidates for MS therapy. Exosomes, as one of the MSCs secretomes, have unique properties that make them highly promising candidates for innovative approach in regenerative medicine. This review discusses the therapeutic potential of MSCs and their derived exosomes as a novel treatment for MS, highlighting the differences between these two approaches.
Collapse
Affiliation(s)
- Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences Bachelor of Pharmacy, Bangalore, India
| | - Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Rahmati Roodsari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kelly CJ, Lindsay SL, Smith RS, Keh S, Cunningham KT, Thümmler K, Maizels RM, Campbell JDM, Barnett SC. Development of Good Manufacturing Practice-Compatible Isolation and Culture Methods for Human Olfactory Mucosa-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:743. [PMID: 38255817 PMCID: PMC10815924 DOI: 10.3390/ijms25020743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.
Collapse
Affiliation(s)
- Christopher J. Kelly
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Susan L. Lindsay
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rebecca Sherrard Smith
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Siew Keh
- New Victoria Hospital, 55 Grange Road, Glasgow G42 9LF, UK
| | - Kyle T. Cunningham
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Katja Thümmler
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rick M. Maizels
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - John D. M. Campbell
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
- Tissues Cells and Advanced Therapeutics, SNBTS, Jack Copland Centre, Edinburgh EH14 4BE, UK
| | - Susan C. Barnett
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| |
Collapse
|
4
|
Lindsay SL, McCanney GA, Zhan J, Scheld M, Smith RS, Goodyear CS, Yates EA, Kipp M, Turnbull JE, Barnett SC. Low sulfated heparan sulfate mimetic differentially affects repair in immune-mediated and toxin-induced experimental models of demyelination. Glia 2023; 71:1683-1698. [PMID: 36945189 PMCID: PMC10952530 DOI: 10.1002/glia.24363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.
Collapse
Affiliation(s)
- Susan L. Lindsay
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - George A. McCanney
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Jiangshan Zhan
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Miriam Scheld
- Institute of Neuroanatomy, Faculty of MedicineRWTH Aachen University52074AachenGermany
| | - Rebecca Sherrard Smith
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Carl S. Goodyear
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Edwin A. Yates
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | - Markus Kipp
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Jeremy E. Turnbull
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
- Centre for GlycosciencesKeele UniversityKeeleST5 5BGUK
| | - Susan C. Barnett
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| |
Collapse
|
5
|
Jaloux C, Bonnet M, Vogtensperger M, Witters M, Veran J, Giraudo L, Sabatier F, Michel J, Legré R, Guiraudie-Capraz G, Féron F. Human nasal olfactory stem cells, purified as advanced therapy medicinal products, improve neuronal differentiation. Front Neurosci 2022; 16:1042276. [PMID: 36466172 PMCID: PMC9713000 DOI: 10.3389/fnins.2022.1042276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/04/2022] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Olfactory ecto-mesenchymal stem cells (OE-MSC) are mesenchymal stem cells derived from the lamina propria of the nasal mucosa. They display neurogenic and immunomodulatory properties and were shown to induce recovery in animal models of spinal cord trauma, hearing loss, Parkinsons's disease, amnesia, and peripheral nerve injury. As a step toward clinical practice, we sought to (i) devise a culture protocol that meets the requirements set by human health agencies and (ii) assess the efficacy of stem cells on neuron differentiation. METHODS Nasal olfactory mucosa biopsies from three donors were used to design and validate the good manufacturing process for purifying stem cells. All processes and procedures were performed by expert staff from the cell therapy laboratory of the public hospital of Marseille (AP-HM), according to aseptic handling manipulations. Premises, materials and air were kept clean at all times to avoid cross-contamination, accidents, or even fatalities. Purified stem cells were cultivated for 24 or 48 h and conditioned media were collected before being added to the culture medium of the neuroblastoma cell line Neuro2a. RESULTS Compared to the explant culture-based protocol, enzymatic digestion provides higher cell numbers more rapidly and is less prone to contamination. The use of platelet lysate in place of fetal calf serum is effective in promoting higher cell proliferation (the percentage of CFU-F progenitors is 15.5%), with the optimal percentage of platelet lysate being 10%. Cultured OE-MSCs do not show chromosomal rearrangement and, as expected, express the usual phenotypic markers of mesenchymal stem cells. When incorporated in standard culture medium, the conditioned medium of purified OE-MSCs promotes cell differentiation of Neuro2a neuroblastoma cells. CONCLUSION We developed a safer and more efficient manufacturing process for clinical grade olfactory stem cells. With this protocol, human OE-MSCs will soon be used in a Phase I clinical based on their autologous transplantation in digital nerves with a neglected injury. However, further studies are required to unveil the underlying mechanisms of action.
Collapse
Affiliation(s)
- Charlotte Jaloux
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Maxime Bonnet
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Faculté des Sciences du Sport de Marseille, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement Etienne-Jules MAREY, Equipe Plasticité des Systèmes Nerveux et Musculaire (PSNM), Parc Scientifique et Technologique de Luminy, Aix Marseille University, Marseille, France
| | - Marie Vogtensperger
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Marie Witters
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Julie Veran
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Laurent Giraudo
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
| | - Florence Sabatier
- Cell Therapy Department, Hôpital de la Conception, AP-HM, INSERM CIC BT 1409, Marseille, France
- Aix-Marseille Université, C2VN, UMR-1263, INSERM, INRA 1260, UFR de Pharmacie, Marseille, France
| | - Justin Michel
- Department of Otorhinolaryngology and Head and Neck Surgery, Assistance Publique des Hôpitaux de Marseille, Institut Universitaire des Systèmes Thermiques Industriels, La Conception University Hospital, Aix Marseille University, Marseille, France
| | - Regis Legré
- Department of Hand Surgery and Reconstructive Surgery of the Limbs, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Gaëlle Guiraudie-Capraz
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
| | - François Féron
- CNRS, INP, UMR 7051, Institut de Neuropathophysiologie, Equipe Nasal Olfactory Stemness and Epigenesis (NOSE), Aix Marseille University, Marseille, France
| |
Collapse
|