1
|
Chen X, Liu S, Shen M, Shi J, Wu C, Song Z, Zhao Y. Dielectrophoretic characterization and selection of non-spherical flagellate algae in parallel channels with right-angle bipolar electrodes. LAB ON A CHIP 2024; 24:2506-2517. [PMID: 38619815 DOI: 10.1039/d4lc00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Non-spherical flagellate algae play an increasingly significant role in handling problematic issues as versatile biological micro/nanorobots and resources of valuable bioproducts. However, the commensalism of flagellate algae with distinct structures and constituents causes considerable difficulties in their further biological utilization. Therefore, it is imperative to develop a novel method to realize high-efficiency selection of non-spherical flagellate algae in a non-invasive manner. Enthused by these, we proposed a novel method to accomplish the selection of flagellate algae based on the numerical and experimental investigation of dielectrophoretic characterizations of flagellate algae. Firstly, an arbitrary Lagrangian-Eulerian method was utilized to study the electro-orientation and dielectrophoretic assembly process of spindle-shaped and ellipsoid-shaped cells in a uniform electric field. Secondly, we studied the equilibrium state of spherical, ellipsoid-shaped, and spindle-shaped cells under positive DEP forces actuated by right-angle bipolar electrodes. Thirdly, we investigated the dielectrophoretic assembly and escape processes of the non-spherical flagellate algae in continuous flow to explore their influences on the selection. Fourthly, freshwater flagellate algae (Euglena, H. pluvialis, and C. reinhardtii) and marine ones (Euglena, Dunaliella salina, and Platymonas) were separated to validate the feasibility and adaptability of this method. Finally, this approach was engineered in the selection of Euglena cells with high viability and motility. This method presents immense prospects in the selection of pure non-spherical flagellate algae with high motility for chronic wound healing, bio-micromotor construction, and decontamination with advantages of no sheath, strong reliability, and shape-insensitivity.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Jishun Shi
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Chungang Wu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Zhipeng Song
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| |
Collapse
|
2
|
Chen X, Liu S, Shen M, Gao Z, Hu S, Zhao Y. Dielectrophoretic assembly and separation of particles and cells in continuous flow. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4485-4493. [PMID: 37610139 DOI: 10.1039/d3ay00666b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Dielectrophoretic (DEP) separation has been recognized as a practical tool in the separation of cells and particles for clinical diagnosis, the pharmaceutical industry and environmental monitoring. Assembly of particles and cells under DEP force is a common phenomenon and has an influence on their separation but has not been understood fully. Encouraged by these aspects, we developed a microfluidic device with a bipolar electrode array to investigate the assembly and separation of particles and cells at a large scale. First, we studied the assembly and evolution mechanisms of particles of one type under an AC electric field. Then, we investigated the interaction and assembly of multiple particles with dissimilar properties under DEP force. Depending on the development of microfluidic devices, we visualize the assembly process of yeast cells at the electrode rims and of polystyrene particles at the channel centers, and explore the influence of pearl chain formation on their separation. With increasing flow velocity from 288 to 720 μL h-1, the purity of 5 μm polystyrene particles surpasses 94.9%. Furthermore, we studied the DEP response of Scenedesmus sp. and C. vulgaris, and explored the influence of cell chains on the isolation of C. vulgaris. The purity of Scenedesmus sp. and C. vulgaris witnessed a decrease from 95.7% to 90.8% when the flow rate increased from 288 to 864 μL h-1. Finally, we investigated the extension of the electric field under chains of Oocystis sp. at the electrode rims by studying chain formation and capture of C. vulgaris, and studied its effect on cell chain length, recovered cell purity and cell concentration. When chains of Oocystis sp. were formed, the purity of C. vulgaris kept unchanged and the concentration decreased from 2793 cells per μL to 2039 cells per μL. This work demonstrates continuous DEP-based assembly and separation of particles and cells, which facilitates high-efficiency isolation of targeted cells.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Ziwei Gao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Sheng Hu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| |
Collapse
|
3
|
Yedire SG, Hosseini II, Shieh H, Khorrami Jahromi A, AbdelFatah T, Jalali M, Mahshid S. Additive manufacturing leveraged microfluidic setup for sample to answer colorimetric detection of pathogens. LAB ON A CHIP 2023; 23:4134-4145. [PMID: 37656450 DOI: 10.1039/d3lc00429e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Colorimetric readout for the detection of infectious diseases is gaining traction at the point of care/need owing to its ease of analysis and interpretation, and integration potential with highly specific loop-mediated amplification (LAMP) assays. However, coupling colorimetric readout with LAMP is rife with challenges including, rapidity, inter-user variability, colorimetric signal quantification, and user involvement in sequential steps of the LAMP assay, hindering its application. To address these challenges, for the first time, we propose a remotely smartphone-operated automated setup consisting of (i) an additively manufactured microfluidic cartridge, (ii) a portable reflected-light imaging setup with controlled epi-illumination (PRICE) module, and (iii) a control and data analysis module. The microfluidic cartridge facilitates sample collection, lysis, mixing of amplification reagents stored on-chip, and subsequent isothermal heating for initiation of amplification in a novel way by employing tunable elastomeric chambers and auxiliary components (heaters and linear actuators). PRICE offers a new imaging setup that captures the colorimetric change of the amplification media over a plasmonic nanostructured substrate in a controlled and noise-free environment for rapid minute-scale nucleic acid detection. The control and data analysis module employs microprocessors to automate cartridge operation in tandem with the imaging module. The different device components were characterized individually and finally, as a proof of concept, SARS-CoV-2 wild-type RNA was detected with a turnaround time of 13 minutes, showing the device's clinical feasibility. The suggested automated device can be adopted in future iterations for other detection and molecular assays that require sequential fluid handling steps.
Collapse
Affiliation(s)
| | | | - Hamed Shieh
- Department of Bioengineering, McGill University, Montréal, QC, H3A 0C3, Canada.
| | | | - Tamer AbdelFatah
- Department of Bioengineering, McGill University, Montréal, QC, H3A 0C3, Canada.
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montréal, QC, H3A 0C3, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montréal, QC, H3A 0C3, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 0C3, Canada
| |
Collapse
|
4
|
Rodríguez CF, Andrade-Pérez V, Vargas MC, Mantilla-Orozco A, Osma JF, Reyes LH, Cruz JC. Breaking the clean room barrier: exploring low-cost alternatives for microfluidic devices. Front Bioeng Biotechnol 2023; 11:1176557. [PMID: 37180035 PMCID: PMC10172592 DOI: 10.3389/fbioe.2023.1176557] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Microfluidics is an interdisciplinary field that encompasses both science and engineering, which aims to design and fabricate devices capable of manipulating extremely low volumes of fluids on a microscale level. The central objective of microfluidics is to provide high precision and accuracy while using minimal reagents and equipment. The benefits of this approach include greater control over experimental conditions, faster analysis, and improved experimental reproducibility. Microfluidic devices, also known as labs-on-a-chip (LOCs), have emerged as potential instruments for optimizing operations and decreasing costs in various of industries, including pharmaceutical, medical, food, and cosmetics. However, the high price of conventional prototypes for LOCs devices, generated in clean room facilities, has increased the demand for inexpensive alternatives. Polymers, paper, and hydrogels are some of the materials that can be utilized to create the inexpensive microfluidic devices covered in this article. In addition, we highlighted different manufacturing techniques, such as soft lithography, laser plotting, and 3D printing, that are suitable for creating LOCs. The selection of materials and fabrication techniques will depend on the specific requirements and applications of each individual LOC. This article aims to provide a comprehensive overview of the numerous alternatives for the development of low-cost LOCs to service industries such as pharmaceuticals, chemicals, food, and biomedicine.
Collapse
Affiliation(s)
| | | | - María Camila Vargas
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
5
|
Ahmad NN, Ghazali NNN, Abdul Rani AT, Othman MH, Kee CC, Jiwanti PK, Rodríguez-Gómez A, Wong YH. Finger-Actuated Micropump of Constant Flow Rate without Backflow. MICROMACHINES 2023; 14:881. [PMID: 37421113 DOI: 10.3390/mi14040881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 07/09/2023]
Abstract
This paper presents a finger-actuated micropump with a consistent flow rate and no backflow. The fluid dynamics in interstitial fluid (ISF) extraction microfluidics are studied through analytical, simulation, and experimental methods. Head losses, pressure drop, diodocity, hydrogel swelling, criteria for hydrogel absorption, and consistency flow rate are examined in order to access microfluidic performance. In terms of consistency, the experimental result revealed that after 20 s of duty cycles with full deformation on the flexible diaphragm, the output pressure became uniform and the flow rate remained at nearly constant levels of 2.2 μL/min. The flow rate discrepancy between the experimental and predicted flow rates is around 22%. In terms of diodicity, when the serpentine microchannel and hydrogel-assisted reservoir are added to the microfluidic system integration, the diodicity increases by 2% (Di = 1.48) and 34% (Di = 1.96), respectively, compared to when the Tesla integration (Di = 1.45) is used alone. A visual and experimentally weighted analysis finds no signs of backflow. These significant flow characteristics demonstrate their potential usage in many low-cost and portable microfluidic applications.
Collapse
Affiliation(s)
- NurFarrahain Nadia Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
| | - Ahmad Taufiq Abdul Rani
- Industrial and Mechanical Design, Faculty of Engineering, German-Malaysian Institute, Jalan Ilmiah, Taman Universiti, Kajang 43000, Selangor, Malaysia
| | - Mohammad Hafiz Othman
- Department of Process & Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chia Ching Kee
- Centre for Advance Materials and Intelligent Manufacturing, Faculty of Engineering, Built Environment & Information Technology, SEGi University, Petaling Jaya 47810, Selangor, Malaysia
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Arturo Rodríguez-Gómez
- Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, A.P. 20-364, Coyoacán, Ciudad de México 04510, Mexico
| | - Yew Hoong Wong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
| |
Collapse
|
6
|
Dhall A, Tan JY, Oh MJ, Islam S, Kim J, Kim A, Hwang G. A dental implant-on-a-chip for 3D modeling of host-material-pathogen interactions and therapeutic testing platforms. LAB ON A CHIP 2022; 22:4905-4916. [PMID: 36382363 PMCID: PMC9732915 DOI: 10.1039/d2lc00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The precise spatiotemporal control and manipulation of fluid dynamics on a small scale granted by lab-on-a-chip devices provide a new biomedical research realm as a substitute for in vivo studies of host-pathogen interactions. While there has been a rise in the use of various medical devices/implants for human use, the applicability of microfluidic models that integrate such functional biomaterials is currently limited. Here, we introduced a novel dental implant-on-a-chip model to better understand host-material-pathogen interactions in the context of peri-implant diseases. The implant-on-a-chip integrates gingival cells with relevant biomaterials - keratinocytes with dental resin and fibroblasts with titanium while maintaining a spatially separated co-culture. To enable this co-culture, the implant-on-a-chip's core structure necessitates closely spaced, tall microtrenches. Thus, an SU-8 master mold with a high aspect-ratio pillar array was created by employing a unique backside UV exposure with a selective optical filter. With this model, we successfully replicated the morphology of keratinocytes and fibroblasts in the vicinity of dental implant biomaterials. Furthermore, we demonstrated how photobiomodulation therapy might be used to protect the epithelial layer from recurrent bacterial challenges (∼3.5-fold reduction in cellular damage vs. control). Overall, our dental implant-on-a-chip approach proposes a new microfluidic model for multiplexed host-material-pathogen investigations and the evaluation of novel treatment strategies for infectious diseases.
Collapse
Affiliation(s)
- Atul Dhall
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jun Ying Tan
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Min Jun Oh
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sayemul Islam
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Jungkwun Kim
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA.
| | - Albert Kim
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Liu X, Liu J, Zhao X, Zhang D, Wang Q. Ag NPs/PMMA nanocomposite as an efficient platform for fluorescence regulation of riboflavin. OPTICS EXPRESS 2022; 30:34918-34931. [PMID: 36242494 DOI: 10.1364/oe.470454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The fluorescence detection platform has broad application in many fields. In this paper, we report a simple and efficient fluorescence detection platform based on the synergistic effects of Ag nanoparticles (Ag NPs) and polymethylmethacrylate (PMMA). Ag NPs were introduced to realize the plasmon enhancement fluorescence and a thin PMMA layer was used to adjust the distance between Ag NPs and riboflavin. The thin PMMA layer not only enhances the fluorescence by enhancing adhesion of substrate, but also optimizes the plasmon enhancement fluorescence effect by serving as the spacer. The fluorescence enhancement factor based on this platform shows a trend of increasing with the decrease of the concentration of riboflavin, and the detection of riboflavin is realized based on this feature, the lowest detectable concentration is as low as 0.27 µM. In addition to the detection based on plasmon enhancement fluorescence, the detection of riboflavin at low concentrations can also be realized by the shift and broadening of the fluorescence peak due to the Ag NPs. The combination of the two ways of plasmon enhancement fluorescence and shift of the fluorescence spectra is used for the detection of riboflavin. These results show that the platform has great potential applications in the field of detection and sensing.
Collapse
|
8
|
Gerlt MS, Ruppen P, Leuthner M, Panke S, Dual J. Acoustofluidic medium exchange for preparation of electrocompetent bacteria using channel wall trapping. LAB ON A CHIP 2021; 21:4487-4497. [PMID: 34668506 PMCID: PMC8577197 DOI: 10.1039/d1lc00406a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/13/2021] [Indexed: 06/02/2023]
Abstract
Comprehensive integration of process steps into a miniaturised version of synthetic biology workflows remains a crucial task in automating the design of biosystems. However, each of these process steps has specific demands with respect to the environmental conditions, including in particular the composition of the surrounding fluid, which makes integration cumbersome. As a case in point, transformation, i.e. reprogramming of bacteria by delivering exogenous genetic material (such as DNA) into the cytoplasm, is a key process in molecular engineering and modern biotechnology in general. Transformation is often performed by electroporation, i.e. creating pores in the membrane using electric shocks in a low conductivity environment. However, cell preparation for electroporation can be cumbersome as it requires the exchange of growth medium (high-conductivity) for low-conductivity medium, typically performed via multiple time-intensive centrifugation steps. To simplify and miniaturise this step, we developed an acoustofluidic device capable of trapping the bacterium Escherichia coli non-invasively for subsequent exchange of medium, which is challenging in acoustofluidic devices due to detrimental acoustic streaming effects. With an improved etching process, we were able to produce a thin wall between two microfluidic channels, which, upon excitation, can generate streaming fields that complement the acoustic radiation force and therefore can be utilised for trapping of bacteria. Our novel design robustly traps Escherichia coli at a flow rate of 10 μL min-1 and has a cell recovery performance of 47 ± 3% after washing the trapped cells. To verify that the performance of the medium exchange device is sufficient, we tested the electrocompetence of the recovered cells in a standard transformation procedure and found a transformation efficiency of 8 × 105 CFU per μg of plasmid DNA. Our device is a low-volume alternative to centrifugation-based methods and opens the door for miniaturisation of a plethora of microbiological and molecular engineering protocols.
Collapse
Affiliation(s)
- M S Gerlt
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - P Ruppen
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, CH-4058 Basel, Switzerland.
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - M Leuthner
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - S Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, CH-4058 Basel, Switzerland.
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - J Dual
- Mechanics and Experimental Dynamics, Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH Zurich), Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
9
|
Park J, Lee KG, Han DH, Lee JS, Lee SJ, Park JK. Pushbutton-activated microfluidic dropenser for droplet digital PCR. Biosens Bioelectron 2021; 181:113159. [PMID: 33773218 DOI: 10.1016/j.bios.2021.113159] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022]
Abstract
Here, we report a portable microfluidic device to generate and dispense droplets simply operated by pushbutton for droplet digital polymerase chain reaction (ddPCR), which is named pushbutton-activated microfluidic dropenser (droplet dispenser) (PAMD). After loading the PCR mixtures and the droplet generation oil to PAMD, digitized PCR mixtures are prepared in PCR tubes after the actuation of a pushbutton. Multiple droplet generation units are simultaneously operated by a single pushbutton, and the size of droplets is controllable by adjusting the geometry of the droplet generation channel. To examine the performance of PAMD, digitized PCR mixtures containing genomic DNA of Escherichia coli (E. coli) O157:H7 prepared by PAMD were assessed by a fluorescence signal analyzer after PCR with a thermal cycler. As a result, PAMD can produce analytical droplets for ddPCR as much as a conventional droplet generator even though any external equipment is not required.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Nanobio Application Team, National Nanofab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong Hyun Han
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Soo Lee
- TNS Co., Ltd., Daehak-ro 76 Beonan-gil, Yuseong-gu, Daejeon, 34183, Republic of Korea
| | - Seok Jae Lee
- Nanobio Application Team, National Nanofab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Park J, Han DH, Hwang SH, Park JK. Reciprocating flow-assisted nucleic acid purification using a finger-actuated microfluidic device. LAB ON A CHIP 2020; 20:3346-3353. [PMID: 32626862 DOI: 10.1039/d0lc00432d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Molecular diagnostics can provide a powerful diagnostic tool since it can detect pathogens with high sensitivity, but complicated sample preparation procedures limit its widespread use as an on-site detection tool that relies on the skilled person and external equipment. To resolve these limitations, we report a solid-phase nucleic acid purification using a finger-actuated microfluidic device, which can control a set amount of flow regardless of differences in end-users. To increase the recovery rate, a finger-actuated reciprocator was newly developed and integrated into the microfluidic device that can efficiently react with silica microbeads and reagents. After verifying the finger-actuated microfluidic reciprocator, the effect of the reciprocating flow on the recovery rate was assessed to purify the standard DNA of the hepatitis B virus (HBV). The recovery rate was increased up to ∼50% and 955 to 955 000 IU mL-1 of HBV standard DNA was successfully purified and detected by a real-time polymerase chain reaction. Furthermore, the proposed microfluidic device was exploited to purify the HBV DNA from the patient's blood plasma samples.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | |
Collapse
|
11
|
Liedert C, Rannaste L, Kokkonen A, Huttunen OH, Liedert R, Hiltunen J, Hakalahti L. Roll-to-Roll Manufacturing of Integrated Immunodetection Sensors. ACS Sens 2020; 5:2010-2017. [PMID: 32469200 DOI: 10.1021/acssensors.0c00404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lack of functional integration and high manufacturing costs have been identified as major challenges in commercialization of point-of-care devices. In this study, roll-to-roll (R2R) fabrication process was developed for large-scale manufacturing of disposable microfluidic devices. The integrated, user-friendly device included a plasma separation membrane for simple blood filtration, immobilized antibodies for specific immunodetection, microfluidics for plasma transport and reagent mixing, and a blister for actuation and waste storage. These functionalities were designed to be compatible with R2R processing, which was demonstrated using pilot-scale printing lines producing 60 devices in an hour. The produced sensors enabled rapid (10 min) and sensitive (2 μg/mL) fluorescence-based immunodetection of C-reactive protein from 20 μL of whole blood.
Collapse
Affiliation(s)
- Christina Liedert
- VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, 90570 Oulu, Finland
| | - Lauri Rannaste
- VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, 90570 Oulu, Finland
| | - Annukka Kokkonen
- VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, 90570 Oulu, Finland
| | - Olli-Heikki Huttunen
- VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, 90570 Oulu, Finland
| | - Ralph Liedert
- VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, 90570 Oulu, Finland
| | - Jussi Hiltunen
- VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, 90570 Oulu, Finland
| | - Leena Hakalahti
- VTT Technical Research Centre of Finland Ltd., Kaitoväylä 1, 90570 Oulu, Finland
| |
Collapse
|
12
|
Park J, Han DH, Park JK. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. LAB ON A CHIP 2020; 20:1191-1203. [PMID: 32119024 DOI: 10.1039/d0lc00047g] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microfluidic technologies offer a number of advantages for sample preparation in point-of-care testing (POCT), but the requirement for complicated external pumping systems limits their wide use. To facilitate sample preparation in POCT, various methods have been developed to operate microfluidic devices without complicated external pumping systems. In this review, we introduce an overview of user-friendly microfluidic devices for practical sample preparation in POCT, including self- and hand-operated microfluidic devices. Self-operated microfluidic devices exploit capillary force, vacuum-driven pressure, or gas-generating chemical reactions to apply pressure into microchannels, and hand-operated microfluidic devices utilize human power sources using simple equipment, including a syringe, pipette, or simply by using finger actuation. Furthermore, this review provides future perspectives to realize user-friendly integrated microfluidic circuits for wider applications with the integration of simple microfluidic valves.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | |
Collapse
|
13
|
Narayanamurthy V, Jeroish ZE, Bhuvaneshwari KS, Bayat P, Premkumar R, Samsuri F, Yusoff MM. Advances in passively driven microfluidics and lab-on-chip devices: a comprehensive literature review and patent analysis. RSC Adv 2020; 10:11652-11680. [PMID: 35496619 PMCID: PMC9050787 DOI: 10.1039/d0ra00263a] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
The development of passively driven microfluidic labs on chips has been increasing over the years. In the passive approach, the microfluids are usually driven and operated without any external actuators, fields, or power sources. Passive microfluidic techniques adopt osmosis, capillary action, surface tension, pressure, gravity-driven flow, hydrostatic flow, and vacuums to achieve fluid flow. There is a great need to explore labs on chips that are rapid, compact, portable, and easy to use. The evolution of these techniques is essential to meet current needs. Researchers have highlighted the vast potential in the field that needs to be explored to develop rapid passive labs on chips to suit market/researcher demands. A comprehensive review, along with patent analysis, is presented here, listing the latest advances in passive microfluidic techniques, along with the related mechanisms and applications.
Collapse
Affiliation(s)
- Vigneswaran Narayanamurthy
- Department of Electronics and Computer Engineering Technology, Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia
- InnoFuTech No: 42/12, 7th Street, Vallalar Nagar Chennai Tamil Nadu 600072 India
- Centre of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang Kuantan 26300 Malaysia
| | - Z E Jeroish
- Department of Biomedical Engineering, Rajalakshmi Engineering College Chennai 602105 India
- Faculty of Electrical and Electronics Engineering, University Malaysia Pahang Pekan 26600 Malaysia
| | - K S Bhuvaneshwari
- Department of Biomedical Engineering, Rajalakshmi Engineering College Chennai 602105 India
- Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia
| | - Pouriya Bayat
- Department of Bioengineering, McGill University Montreal QC Canada H3A 0E9
| | - R Premkumar
- Department of Biomedical Engineering, Rajalakshmi Engineering College Chennai 602105 India
| | - Fahmi Samsuri
- Faculty of Electrical and Electronics Engineering, University Malaysia Pahang Pekan 26600 Malaysia
| | - Mashitah M Yusoff
- Faculty of Industrial Sciences and Technology, University Malaysia Pahang Kuantan 26300 Malaysia
| |
Collapse
|
14
|
Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal Chem 2020; 92:150-168. [PMID: 31721565 PMCID: PMC7034066 DOI: 10.1021/acs.analchem.9b04986] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jacob B. Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Robert L. Hanson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Chao Pang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Taylor R. Fish
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| |
Collapse
|
15
|
Iwasaki H, Lefevre F, Damian D, Iwase E, Miyashita S. Autonomous and Reversible Adhesion using Elastomeric Suction Cups for In-vivo Medical Treatments. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2970633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Park J, Roh H, Park JK. Finger-Actuated Microfluidic Concentration Gradient Generator Compatible with a Microplate. MICROMACHINES 2019; 10:mi10030174. [PMID: 30832320 PMCID: PMC6471275 DOI: 10.3390/mi10030174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
The generation of concentration gradients is an essential part of a wide range of laboratory settings. However, the task usually requires tedious and repetitive steps and it is difficult to generate concentration gradients at once. Here, we present a microfluidic device that easily generates a concentration gradient by means of push-button actuated pumping units. The device is designed to generate six concentrations with a linear gradient between two different sample solutions. The microfluidic concentration gradient generator we report here does not require external pumps because changes in the pressure of the fluidic channel induced by finger actuation generate a constant volume of fluid, and the design of the generator is compatible with the commonly used 96-well microplate. Generation of a concentration gradient by the finger-actuated microfluidic device was consistent with that of the manual pipetting method. In addition, the amount of fluid dispensed from each outlet was constant when the button was pressed, and the volume of fluid increased linearly with respect to the number of pushing times. Coefficient of variation (CV) was between 0.796% and 13.539%, and the error was between 0.111% and 19.147%. The design of the microfluidic network, as well as the amount of fluid dispensed from each outlet at a single finger actuation, can be adjusted to the user’s demand. To prove the applicability of the concentration gradient generator, an enzyme assay was performed using alkaline phosphatase (ALP) and para-nitrophenyl phosphate (pNPP). We generated a linear concentration gradient of the pNPP substrate, and the enzyme kinetics of ALP was studied by examining the initial reaction rate between ALP and pNPP. Then, a Hanes–Woolf plot of the various concentration of ALP was drawn and the Vmax and Km value were calculated.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Hyewon Roh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
17
|
Lim C, Lee Y, Kulinsky L. Fabrication of a Malaria-Ab ELISA Bioassay Platform with Utilization of Syringe-Based and 3D Printed Assay Automation. MICROMACHINES 2018; 9:E502. [PMID: 30424435 PMCID: PMC6215250 DOI: 10.3390/mi9100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/15/2022]
Abstract
We report on the fabrication of a syringe-based platform for automation of a colorimetric malaria-Ab assay. We assembled this platform from inexpensive disposable plastic syringes, plastic tubing, easily-obtainable servomotors, and an Arduino microcontroller chip, which allowed for system automation. The automated system can also be fabricated using stereolithography (SLA) to print elastomeric reservoirs (used instead of syringes), while platform framework, including rack and gears, can be printed with fused deposition modeling (FDM). We report on the optimization of FDM and SLA print parameters, as well as post-production processes. A malaria-Ab colorimetric test was successfully run on the automated platform, with most of the assay reagents dispensed from syringes. Wash solution was dispensed from an SLA-printed elastomeric reservoir to demonstrate the feasibility of both syringe and elastomeric reservoir-based approaches. We tested the platform using a commercially available malaria-Ab colorimetric assay originally designed for spectroscopic plate readers. Unaided visual inspection of the assay solution color change was sufficient for qualitative detection of positive and negative samples. A smart phone application can also be used for quantitative measurement of the assay color change.
Collapse
Affiliation(s)
- Christopher Lim
- Department of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, CA 92627-2575, USA; (C.L.); (Y.L.)
| | - Yangchung Lee
- Department of Chemical Engineering and Materials Science, University of California, Irvine, 916 Engineering Tower, Irvine, CA 92627-2575, USA; (C.L.); (Y.L.)
| | - Lawrence Kulinsky
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, 5200 Engineering Hall, Irvine, CA 92627-2700, USA
| |
Collapse
|