1
|
Pradela-Filho LA, Veloso WB, Arantes IVS, Gongoni JLM, de Farias DM, Araujo DAG, Paixão TRLC. Paper-based analytical devices for point-of-need applications. Mikrochim Acta 2023; 190:179. [PMID: 37041400 PMCID: PMC10089827 DOI: 10.1007/s00604-023-05764-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Paper-based analytical devices (PADs) are powerful platforms for point-of-need testing since they are inexpensive devices fabricated in different shapes and miniaturized sizes, ensuring better portability. Additionally, the readout and detection systems can be accomplished with portable devices, allying with the features of both systems. These devices have been introduced as promising analytical platforms to meet critical demands involving rapid, reliable, and simple testing. They have been applied to monitor species related to environmental, health, and food issues. Herein, an outline of chronological events involving PADs is first reported. This work also introduces insights into fundamental parameters to engineer new analytical platforms, including the paper type and device operation. The discussions involve the main analytical techniques used as detection systems, such as colorimetry, fluorescence, and electrochemistry. It also showed recent advances involving PADs, especially combining optical and electrochemical detection into a single device. Dual/combined detection systems can overcome individual barriers of the analytical techniques, making possible simultaneous determinations, or enhancing the devices' sensitivity and/or selectivity. In addition, this review reports on distance-based detection, which is also considered a trend in analytical chemistry. Distance-based detection offers instrument-free analyses and avoids user interpretation errors, which are outstanding features for analyses at the point of need, especially for resource-limited regions. Finally, this review provides a critical overview of the practical specifications of the recent analytical platforms involving PADs, demonstrating their challenges. Therefore, this work can be a highly useful reference for new research and innovation.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Juliana L M Gongoni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Davi M de Farias
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diele A G Araujo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
2
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Shin KY, Kang M, Cho KH, Kang KT, Lee SH. Micro multi-nozzle jet coating of organic thin film for organic light-emitting diode lighting devices. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractUniform deposition across large areas of an organic layer is one of the challenges for the industrial application of solution-based organic light‐emitting diode (OLED). In this paper, we propose an organic thin film deposition method for OLED using a micro multi-nozzle jet coating process. The developed micro multi-nozzle jet head consists of eighteen nozzles (100 μm diameter), a side suction line, inlets, and a nozzle protection outer hole. To demonstrate organic thin film deposition for OLED lighting device fabrication, a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) solution was used as a hole injection layer (HIL). Thickness uniformity of the PEDOT:PSS thin film was analyzed by regulating the jetting pressure. Through single-path coating of twelve successive stable column-jet flows, PEDOT:PSS organic film of 26 mm width was coated on an ITO substrate at 1 m/s head speed. The PEDOT:PSS thin film of 24.25 ± 1.55 nm (CV = 6.39%) thickness was obtained by the proposed coating method. For the feasibility test, OLED lighting devices with emission areas of 20 mm × 20 mm and 70 mm × 70 mm were successfully fabricated using PEDOT:PSS films deposited by a micro multi-nozzle jet coating method.
Collapse
|
4
|
Hussain N, Jan Nazami M, Ma C, Hirtz M. High-precision tabletop microplotter for flexible on-demand material deposition in printed electronics and device functionalization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:125104. [PMID: 34972400 DOI: 10.1063/5.0061331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Microstructuring, in particular, the additive functionalization of surfaces with, e.g., conductive or bioactive materials plays a crucial role in many applications in sensing or printed electronics. Mostly, the lithography steps are made prior to assembling functionalized surfaces into the desired places of use within a bigger device as a microfluidic channel or an electronic casing. However, when this is not possible, most lithography techniques struggle with access to recessed or inclined/vertical surfaces for geometrical reasons. In particular, for "on-the-fly" printing aiming to add microstructures to already existing devices on demand and maybe even for one-time trials, e.g., in prototyping, a flexible "micropencil" allowing for direct write under direct manual control and on arbitrarily positioned surfaces would be highly desirable. Here, we present a highly flexible, micromanipulator-based setup for capillary printing of conductive and biomaterial ink formulations that can address a wide range of geometries as exemplified on vertical, recessed surfaces and stacked 3D scaffolds as models for hard to access surfaces. A wide range of feature sizes from tens to hundreds of micrometer can be obtained by the choice of capillary sizes and the on-demand in situ writing capabilities are demonstrated with completion of a circuit structure by gold line interconnects deposited with the setup.
Collapse
Affiliation(s)
- Navid Hussain
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mohammad Jan Nazami
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chunyan Ma
- College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Kubicek J, Fiedorova K, Vilimek D, Cerny M, Penhaker M, Janura M, Rosicky J. Recent Trends, Construction and Applications of Smart Textiles and Clothing for Monitoring of Health Activity: A Comprehensive Multidisciplinary Review. IEEE Rev Biomed Eng 2020; 15:36-60. [PMID: 33301410 DOI: 10.1109/rbme.2020.3043623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the area of biomedical signal monitoring, wearable electronics represents a dynamically growing field with a significant impact on the market of commercial products of biomedical signal monitoring and acquisition, as well as consumer electronic for vital functions monitoring. Since the electrodes are perceived as one of the most important part of the biomedical signal monitoring, they have been one of the most frequent subjects in the research community. Electronic textile (e-textile), also called smart textile represents a modern trend in the wearable electronics, integrating of functional materials with common clothing with the goal to realize the devices, which include sensors, antennas, energy harvesters and advanced textiles for self-cooling and heating. The area of textile electrodes and e-textile is perceived as a multidisciplinary field, integrating material engineering, chemistry, and biomedical engineering. In this review, we provide a comprehensive view on this area. This multidisciplinary review integrates the e-textile characteristics, materials and manufacturing of the textile electrodes, noise influence on the e-textiles performance, and mainly applications of the textile electrodes for biomedical signal monitoring and acquisition, including pressure sensors, electrocardiography, electromyography, electroencephalography and electrooculography monitoring.
Collapse
|