1
|
Abdallah OM, Sedky Y, Shebl HR. Comprehensive evaluation of the antibacterial and antibiofilm activities of NiTi orthodontic wires coated with silver nanoparticles and nanocomposites: an in vitro study. BMC Oral Health 2024; 24:1345. [PMID: 39501221 PMCID: PMC11539822 DOI: 10.1186/s12903-024-05104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Fixed orthodontic appliances act as a niche for microbial growth and colonization. Coating orthodontic wires with antimicrobial silver nanoparticles (AgNPs) and nanocomposite was adopted in this study to augment the biological activity of these wires by increasing their antibacterial and antibiofilm properties and inhibiting bacterial infections that cause white spot lesions and lead to periodontal disease. METHODS Three concentrations of biologically synthesized AgNPs were used for coating NiTi wires. The shape, size, and charge of the AgNPs were determined. Six groups of 0.016 × 0.022-inch NiTi orthodontic wires, each with six wires, were used; and coated with AgNPs and nanocomposites. The antimicrobial and antibiofilm activities of these coated wires were tested against normal flora and multidrug-resistant bacteria (Gram-positive and Gram-negative bacterial isolates). The surface topography, roughness, elemental percentile, and ion release were characterized. RESULTS AgNPs and nanocomposite coated NiTi wires showed significant antimicrobial and antibiofilm activities. The chitosan-silver nanocomposite (CS-Ag) coated wires had the greatest bacterial growth inhibition against both Gram-positive and Gram-negative bacteria. The surface roughness of the coated wires was significantly reduced, impacting the surface topography and with recorded low Ni and Ag ion release rates. CONCLUSIONS NiTi orthodontic wires coated with AgNPs, and nanocomposites have shown increased antimicrobial and antibiofilm activities, with decreased surface roughness, friction resistance and limited- metal ion release.
Collapse
Affiliation(s)
- Omnia M Abdallah
- Microbiology Department, Faculty of Dentistry, Misr International University, Cairo, Egypt.
| | - Youssef Sedky
- Orthodontic Department, Faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Heba R Shebl
- Microbiology Department, Faculty of Dentistry, Misr International University, Cairo, Egypt
| |
Collapse
|
2
|
Eker F, Duman H, Akdaşçi E, Witkowska AM, Bechelany M, Karav S. Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1618. [PMID: 39452955 PMCID: PMC11510578 DOI: 10.3390/nano14201618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (F.E.); (H.D.); (E.A.)
| |
Collapse
|
3
|
Yin IX, Xu VW, Xu GY, Yu OY, Niu JY, Chu CH. Synthesis and Application of Silver Nanoparticles for Caries Management: A Review. Pharmaceuticals (Basel) 2024; 17:1264. [PMID: 39458905 PMCID: PMC11510209 DOI: 10.3390/ph17101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Silver nanoparticles have unique physical, chemical, and biological properties that make them attractive for medical applications. They have gained attention in dentistry for their potential use in caries management. This study reviews the different synthesis methods of silver nanoparticles and the application of them for caries management. Silver nanoparticles are tiny silver and are typically less than 100 nanometres in size. They have a high surface area-to-volume ratio, making them highly reactive and allowing them to interact with bacteria and other materials at the molecular level. Silver nanoparticles have low toxicity and biocompatibility. Researchers have employed various methods to synthesise silver nanoparticles, including chemical, physical, and biological methods. By controlling the process, silver nanoparticles have defined sizes, shapes, and surface properties for wide use. Silver nanoparticles exhibit strong antibacterial properties, capable of inhibiting a broad range of bacteria, including antibiotic-resistant strains. They inhibit the growth of cariogenic bacteria, such as Streptococcus mutans. They can disrupt bacterial cell membranes, interfere with enzyme activity, and inhibit bacterial replication. Silver nanoparticles can inhibit biofilm formation, reducing the risk of caries development. Additionally, nano silver fluoride prevents dental caries by promoting tooth remineralisation. They can interact with the tooth structure and enhance the deposition of hydroxyapatite, aiding in repairing early-stage carious lesions. Silver nanoparticles can also be incorporated into dental restorative materials such as composite resins and glass ionomer cements. The incorporation can enhance the material's antibacterial properties, reducing the risk of secondary caries and improving the longevity of the restoration.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China; (I.X.Y.); (V.W.X.); (G.Y.X.); (O.Y.Y.); (J.Y.N.)
| |
Collapse
|
4
|
He L, Zhang W, Liu J, Pan Y, Li S, Xie Y. Applications of nanotechnology in orthodontics: a comprehensive review of tooth movement, antibacterial properties, friction reduction, and corrosion resistance. Biomed Eng Online 2024; 23:72. [PMID: 39054528 PMCID: PMC11270802 DOI: 10.1186/s12938-024-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Nanotechnology has contributed important innovations to medicine and dentistry, and has also offered various applications to the field of orthodontics. Intraoral appliances must function in a complex environment that includes digestive enzymes, a diverse microbiome, mechanical stress, and fluctuations of pH and temperature. Nanotechnology can improve the performance of orthodontic brackets and archwires by reducing friction, inhibiting bacterial growth and biofilm formation, optimizing tooth remineralization, improving corrosion resistance and biocompatibility of metal substrates, and accelerating or decelerating orthodontic tooth movement through the application of novel nanocoatings, nanoelectromechanical systems, and nanorobots. This comprehensive review systematically explores the orthodontic applications of nanotechnology, particularly its impacts on tooth movement, antibacterial activity, friction reduction, and corrosion resistance. A search across PubMed, the Web of Science Core Collection, and Google Scholar yielded 261 papers, of which 28 met our inclusion criteria. These selected studies highlight the significant benefits of nanotechnology in orthodontic devices. Recent clinical trials demonstrate that advancements brought by nanotechnology may facilitate the future delivery of more effective and comfortable orthodontic care.
Collapse
Affiliation(s)
- Longwen He
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Wenzhong Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Junfeng Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yuemei Pan
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yueqiang Xie
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Thimmaiah C, Thomas NA, Baskaradoss JK, Raja VV, Swetha KR, Chonat A. Mapping the Dental Applications of Nanosilver Fluoride: A Narrative Review. Int J Clin Pediatr Dent 2024; 17:833-837. [PMID: 39372529 PMCID: PMC11451906 DOI: 10.5005/jp-journals-10005-2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Advances in nanotechnology have been changing the face of dentistry with their diverse range of dental applications. Silver nanoparticles (AgNPs) are a relatively new breakthrough in dentistry. Aim The main objective of this paper is to discuss the current progress in the field of dentistry and highlight the aspects regarding silver nanoparticle incorporation, emphasizing the properties, applications, and advantages of nanosilver fluoride (NSF) that it brings to dentistry. Materials and methods An extensive electronic scientific search was conducted on published articles in various databases, such as Medline (PubMed), CENTRAL (Cochrane), Scopus, and Web of Science, using the search terms AgNPs, nano dentistry, caries prevention, and oral health. Further brief communications, randomized controlled trials (RCT), in vitro research, and animal studies written in English were also considered. Case reports, editorial reviews, and opinion letters were excluded from the first phase of our research. Results Pertaining to various kinds of literature reviews in journals, around 345 articles were retrieved. After screening, about 28 articles met all the selection criteria, focusing on NSF for the contemporary management of dental caries, emphasizing microinvasive therapeutic methods that can successfully halt the progression of caries at the initial level and minimize the loss of sound tooth structure. Conclusion Due to its exceptional properties and wide range of clinical applications, AgNPs incorporated in fluoride may be employed as an effective, affordable, and improved anticaries agent that brings about superior enhancements in the fields of orthodontics, restorative dentistry, and pediatric and preventive dentistry. How to cite this article Thimmaiah C, Thomas NA, Baskaradoss JK, et al. Mapping the Dental Applications of Nanosilver Fluoride: A Narrative Review. Int J Clin Pediatr Dent 2024;17(7):833-837.
Collapse
Affiliation(s)
- Charisma Thimmaiah
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nithya Annie Thomas
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jagan K Baskaradoss
- Department of Developmental and Preventive Sciences, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Vighnesh V Raja
- Department of Orthodontics and Dentofacial Orthopedics, Annoor Dental College & Hospital, Muvattupuzha, Kochi, Kerala, India
| | - KR Swetha
- Department of Pediatric and Preventive Dentistry, Adhiparasakthi Dental College & Hospital (APDCH), Chennai, Tamil Nadu, India
| | - Anagha Chonat
- Department of Pediatric and Preventive Dentistry, Indira Gandhi Institute of Dental Sciences (IGIDS), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| |
Collapse
|
6
|
Sycińska-Dziarnowska M, Szyszka-Sommerfeld L, Ziąbka M, Spagnuolo G, Woźniak K. Use of Antimicrobial Silver Coatings on Fixed Orthodontic Appliances, Including Archwires, Brackets, and Microimplants: A Systematic Review. Med Sci Monit 2024; 30:e944255. [PMID: 38843112 PMCID: PMC11166089 DOI: 10.12659/msm.944255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 06/10/2024] Open
Abstract
Orthodontic treatments, while essential for achieving optimal oral health, present challenges in infection control due to the propensity for bacterial adhesion and biofilm formation on orthodontic appliances. Silver-coated orthodontic materials have emerged as a promising solution, leveraging the potent antimicrobial properties of silver nanoparticles (AgNPs). Antibacterial coatings are used in orthodontics to prevent the formation of bacterial biofilms. This systematic review evaluated the literature on antimicrobial silver coatings on fixed orthodontic appliances, including archwires, brackets, and microimplants. Two evaluators, working independently, rigorously conducted a comprehensive search of various databases, including PubMed, PubMed Central, Embase, Scopus and Web of Science. This systematic review comprehensively examined in vitro studies investigating the antimicrobial efficacy of silver-coated orthodontic archwires, brackets, and microimplants. The review registered in PROSPERO CRD42024509189 synthesized findings from 18 diverse studies, revealing consistent and significant reductions in bacterial adhesion, biofilm formation, and colony counts with the incorporation of AgNPs. Key studies demonstrated the effectiveness of silver-coated archwires and brackets against common oral bacteria, such as Streptococcus mutans and Staphylococcus aureus. Microimplants coated with AgNPs also exhibited notable antimicrobial activity against a range of microorganisms. The systematic review revealed potential mechanisms underlying these antimicrobial effects, highlighted implications for infection prevention in orthodontic practice, and suggested future research avenues. Despite some study heterogeneity and limitations, the collective evidence supports the potential of silver-coated orthodontic materials in mitigating bacterial complications, emphasizing their relevance in advancing infection control measures in orthodontics.
Collapse
Affiliation(s)
| | - Liliana Szyszka-Sommerfeld
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Laboratory for Propaedeutics of Orthodontics and Facial Congenital Defects, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Ziąbka
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH University of Cracow, Cracow, Poland
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Napoli, Italy
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Krzysztof Woźniak
- Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
7
|
Duraisamy S, Anandan N, Kannan R. Evaluation of Antibacterial Effect of Hybrid Nano-coating of Stainless Steel Orthodontic Brackets on Streptococcus Mutans - An In vitro Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1784-S1791. [PMID: 38882773 PMCID: PMC11174312 DOI: 10.4103/jpbs.jpbs_1190_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 06/18/2024] Open
Abstract
Nano-coating of orthodontic brackets with a combination or hybrid of metals and metal oxides may reduce the streptococcus mutans count and incidence of enamel decalcification seen around brackets in patients undergoing fixed orthodontic treatment. In total, 255 orthodontic brackets (3M Unitek, Monrovia, California, USA) were divided into one control group (group I) of 60 and three experimental groups of 65 each (groups II, III, and IV). The experimental group brackets were coated with a combination of silver-zinc oxide, copper oxide -zinc oxide, and silver-copper oxide nanoparticles using physical vapour deposition method. The two nanoparticles used for each group were mixed in the ratio of 1:1 by weight for providing a uniform hybrid coating. Sixty brackets from each group were used for microbiological evaluation of antibacterial activity against Streptococcus mutans in blood agar medium, and the remaining five brackets from each experimental group were used for SEM analysis to check the uniformity of the coating. Nano-coated brackets demonstrated better antibacterial properties than uncoated brackets. Copper oxide-zinc oxide nanoparticles coated brackets demonstrated better antibacterial properties than the silver-zinc oxide and silver- copper oxide coated brackets.
Collapse
Affiliation(s)
- Sangeetha Duraisamy
- Professor, Department of Orthodontics, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, Tamil Nadu, India
| | - Nirmala Anandan
- Professor and HOD, Department of Biochemistry, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, Tamil Nadu, India
| | - Ravi Kannan
- Professor and HOD, Department of Orthodontics, SRM Dental College, Bharathi Salai, Ramapuram, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Bian C, Guo Y, Zhu M, Liu M, Xie X, Weir MD, Oates TW, Masri R, Xu HHK, Zhang K, Bai Y, Zhang N. New generation of orthodontic devices and materials with bioactive capacities to improve enamel demineralization. J Dent 2024; 142:104844. [PMID: 38253119 DOI: 10.1016/j.jdent.2024.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE The article reviewed novel orthodontic devices and materials with bioactive capacities in recent years and elaborated on their properties, aiming to provide guidance and reference for future scientific research and clinical applications. DATA, SOURCES AND STUDY SELECTION Researches on remineralization, protein repellent, antimicrobial activity and multifunctional novel bioactive orthodontic devices and materials were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS The new generation of orthodontic devices and materials with bioactive capacities has broad application prospects. However, most of the current studies are limited to in vitro studies and cannot explore the true effects of various bioactive devices and materials applied in oral environments. More research, especially in vivo researches, is needed to assist in clinical application. CLINICAL SIGNIFICANCE Enamel demineralization (ED) is a common complication in orthodontic treatments. Prolonged ED can lead to dental caries, impacting both the aesthetics and health of teeth. It is of great significance to develop antibacterial orthodontic devices and materials that can inhibit bacterial accumulation and prevent ED. However, materials with only preventive effect may fall short of addressing actual needs. Hence, the development of novel bioactive orthodontic materials with remineralizing abilities is imperative. The article reviewed the recent advancements in bioactive orthodontic devices and materials, offering guidance and serving as a reference for future scientific research and clinical applications.
Collapse
Affiliation(s)
- Ce Bian
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yiman Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Mengyao Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Miao Liu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
9
|
Atteya SM, Amer HA, Saleh SM, Safwat Y. The effect of nano silver fluoride, self-assembling peptide and sodium fluoride varnish on salivary cariogenic bacteria: a randomized controlled clinical trial. Clin Oral Investig 2024; 28:167. [PMID: 38388987 PMCID: PMC10884112 DOI: 10.1007/s00784-024-05562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
OBJECTIVES To compare the antibacterial effect of Nanosilver Fluoride varnish (NSF) varnish, P11-4 and Sodium Fluoride (NaF) varnish against salivary Streptococcus mutans (S. mutans) and Lactobacilli. METHODS 66 patients aged 10-24 years old were randomly assigned to receive single application of NSF, P11-4 or NaF varnish. Baseline unstimulated saliva samples were collected before the agents were applied and S.mutans and Lactobacilli colony forming units (CFU) were counted. After one, three and six months, microbiological samples were re-assessed. Groups were compared at each time point and changes across time were assessed. Multivariable linear regression compared the effect of P11-4 and NSF to NaF on salivary S. mutans and Lactobacilli log count at various follow up periods. RESULTS There was a significant difference in salivary S. mutans log count after 1 month between P11-4 (B= -1.29, p = 0.049) and NaF but not at other time points nor between NSF and NaF at any time point. The significant reduction in bacterial counts lasted up to one month in all groups, to three months after using P11-4 and NaF and returned to baseline values after six months. CONCLUSION In general, the antimicrobial effect of P11-4 and NSF on salivary S. mutans and Lactobacilli was not significantly different from NaF varnish. P11-4 induced greater reduction more quickly than the two other agents and NSF antibacterial effect was lost after one month. CLINICAL RELEVANCE NSF varnish and P11-4 have antimicrobial activity that does not significantly differ from NaF by 3 months. P11-4 has the greatest antibacterial effect after one month with sustained effect till 3 months. The antibacterial effect of NSF lasts for one month. NaF remains effective till 3 months. TRIAL REGISTRATION This trial was prospectively registered on the clinicaltrials.gov registry with ID: NCT04929509 on 18/6/2021.
Collapse
Affiliation(s)
- Sara M Atteya
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champollion St, Egypt, Azarita, Alexandria, 21527, Egypt.
| | - Hala A Amer
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champollion St, Egypt, Azarita, Alexandria, 21527, Egypt
| | - Susan M Saleh
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Champollion St, Egypt, Azarita, Alexandria, 21527, Egypt
| | - Yara Safwat
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Anishya D, Jain RK. Vanillin-Mediated Green-Synthesised Silver Nanoparticles' Characterisation and Antimicrobial Activity: An In-Vitro Study. Cureus 2024; 16:e51659. [PMID: 38318582 PMCID: PMC10839412 DOI: 10.7759/cureus.51659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Background and aim Nanoparticles in general due to their enhanced antimicrobial effects and other beneficial effects are used in dentistry. Silver nanoparticles (AgNPs) have emerged as the metal nanoparticle with the most advantages among the many types. The objective of the study was to synthesise vanillin-mediated AgNPs, then characterise those nanoparticles and assess their antimicrobial effectiveness. Materials and methods One-step synthesis of stable and crystalline AgNPs was done with vanillin as the reducing and capping agent. After being crushed into powder form, the produced AgNPs were subjected to characterisation. A scanning electron Microscope SEM) analysis was done for morphological details of the AgNPs. SEM with energy dispersive X-ray spectroscopy analysis (EDAX) and Fourier transform infrared (FTIR) testing were done for elemental analysis. AgNPs' antimicrobial properties were tested using the agar well diffusion technique. Results The SEM analysis revealed that the synthesized AgNps were porous and agglomerative clusters and varied in sizes between 30-35 nm. SEM-EDAX revealed the presence of 76.2 weight (wt)% Ag, 4.9 wt% carbon, and 18.9 wt% of oxygen. FTIR prominent peaks were observed at 1431.97 cm and 1361.20 cm indicating the presence of AgNPs. Both low and high concentrations of AgNps showed good antimicrobial effects against Streptococcus mutans (S. mutans). Conclusion Vanillin can be successfully used as a reducing agent for creating AgNPs. Due to their effective antimicrobial activity against S.mutans at various concentrations, vanillin-mediated AgNPs can be used with dental materials to reduce the risk of dental caries and enamel demineralization.
Collapse
Affiliation(s)
- Daphane Anishya
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ravindra Kumar Jain
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
11
|
Kumar R, Nagesh S, Mani SP. Preparation and Assessment of Antimicrobial Effect of Strontium and Copper Co-substituted Hydroxyapatite Nanoparticle-Incorporated Orthodontic Composite: A Preliminary In Vitro Study. Cureus 2023; 15:e47495. [PMID: 38021789 PMCID: PMC10663871 DOI: 10.7759/cureus.47495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aims Enamel demineralization and white spot lesions (WSLs) during orthodontic treatment have always been a challenge to orthodontists. The advancement of nanotechnology has paved the way for the incorporation of bioactive compounds in orthodontic materials especially orthodontic composites for prevention and management of WSLs. The present study aims to prepare, characterize, and then incorporate copper and strontium doped nanohydroxyapatite into orthodontic composite material and test its antibacterial efficacy. Materials and methods The present in vitro study involved the preparation of the strontium and copper co-substituted hydroxyapatite (SrCuHA) nanoparticles (Nps) using the sol-gel method. The prepared Nps were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FTIR). The Nps were incorporated into a commercially available orthodontic composite. The antimicrobial properties of the SrCuHA Nps-incorporated composite were tested using the Agar well diffusion method against Staphylococcus aureus(S. aureus), Streptococcus mutans (S. mutans), and Escherichia coli (E. coli). Results The SrCuHA Nps were successfully prepared. EDAX, FTIR, and SEM analyses revealed the successful formation of the Nps. The SrCuHA-incorporated orthodontic composite at a higher concentration of 40 μl showed the maximum zone of inhibition (ZOI) against S. mutans. The control group showed the maximum ZOI against E. coli and the SrCuHA Nps-incorporated composite at 20 μl showed the maximum inhibition against S. aureus. Conclusion In the present study, successful preparation of SrCuHA Nps followed by incorporation in the orthodontic adhesive was done. The prepared nanoparticle was characterized and the SrCuHA Nps-incorporated orthodontic composite demonstrated comparable ZOI against S. mutans to the control.
Collapse
Affiliation(s)
- Raja Kumar
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shweta Nagesh
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - S P Mani
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
12
|
Zhang R, Han B, Liu X. Functional Surface Coatings on Orthodontic Appliances: Reviews of Friction Reduction, Antibacterial Properties, and Corrosion Resistance. Int J Mol Sci 2023; 24:ijms24086919. [PMID: 37108082 PMCID: PMC10138808 DOI: 10.3390/ijms24086919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Surface coating technology is an important way to improve the properties of orthodontic appliances, allowing for reduced friction, antibacterial properties, and enhanced corrosion resistance. It improves treatment efficiency, reduces side effects, and increases the safety and durability of orthodontic appliances. Existing functional coatings are prepared with suitable additional layers on the surface of the substrate to achieve the abovementioned modifications, and commonly used materials mainly include metal and metallic compound materials, carbon-based materials, polymers, and bioactive materials. In addition to single-use materials, metal-metal or metal-nonmetal materials can be combined. Methods of coating preparation include, but are not limited to, physical vapor deposition (PVD), chemical deposition, sol-gel dip coating, etc., with a variety of different conditions for preparing the coatings. In the reviewed studies, a wide variety of surface coatings were found to be effective. However, the present coating materials have not yet achieved a perfect combination of these three functions, and their safety and durability need further verification. This paper reviews and summarizes the effectiveness, advantages and disadvantages, and clinical perspectives of different coating materials for orthodontic appliances in terms of friction reduction, antibacterial properties, and enhanced corrosion resistance, and discusses more possibilities for follow-up studies as well as for clinical applications in detail.
Collapse
Affiliation(s)
- Ruichu Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xiaomo Liu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
13
|
Luiz MT, di Filippo LD, Dutra JAP, Viegas JSR, Silvestre ALP, Anselmi C, Duarte JL, Calixto GMF, Chorilli M. New Technological Approaches for Dental Caries Treatment: From Liquid Crystalline Systems to Nanocarriers. Pharmaceutics 2023; 15:pharmaceutics15030762. [PMID: 36986624 PMCID: PMC10054708 DOI: 10.3390/pharmaceutics15030762] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Dental caries is the most common oral disease, with high prevalence rates in adolescents and low-income and lower-middle-income countries. This disease originates from acid production by bacteria, leading to demineralization of the dental enamel and the formation of cavities. The treatment of caries remains a global challenge and the development of effective drug delivery systems is a potential strategy. In this context, different drug delivery systems have been investigated to remove oral biofilms and remineralize dental enamel. For a successful application of these systems, it is necessary that they remain adhered to the surfaces of the teeth to allow enough time for the removal of biofilms and enamel remineralization, thus, the use of mucoadhesive systems is highly encouraged. Among the systems used for this purpose, liquid crystalline systems, polymer-based nanoparticles, lipid-based nanoparticles, and inorganic nanoparticles have demonstrated great potential for preventing and treating dental caries through their own antimicrobial and remineralization properties or through delivering drugs. Therefore, the present review addresses the main drug delivery systems investigated in the treatment and prevention of dental caries.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | - Leonardo Delello di Filippo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | | | | | - Caroline Anselmi
- School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil
- Correspondence: ; Tel.: +55-16-3301-6998
| |
Collapse
|
14
|
Padmanabhan DS. Nanotechnology in Orthodontics. Semin Orthod 2023. [DOI: 10.1053/j.sodo.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Tristán-López JD, Niño-Martínez N, Kolosovas-Machuca ES, Patiño-Marín N, De Alba-Montero I, Bach H, Martínez-Castañón GA. Application of Silver Nanoparticles to Improve the Antibacterial Activity of Orthodontic Adhesives: An In Vitro Study. Int J Mol Sci 2023; 24:ijms24021401. [PMID: 36674917 PMCID: PMC9861692 DOI: 10.3390/ijms24021401] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
There is a significant change in the bacterial plaque populations in the oral cavity during and after orthodontic treatment. Numerous studies have demonstrated that 2−96% of patients could increase the risk of white spot lesions. Streptococcus mutans and Lactobacilli ssp. are responsible for these white spot lesions. In this work, silver nanoparticles (AgNPs) with a diameter of 11 nm and dispersed in water were impregnated onto three different commercial orthodontic adhesives at 535 μg/mL. The shear bond strength (SBS) was assessed on 180 human premolars and metallic brackets. The premolars were divided into six groups (three groups for the commercial adhesives and three groups for the adhesives with AgNPs). All the groups were tested for their bactericidal properties, and their MIC, MBC, and agar template diffusion assays were measured. After adding AgNPs, the SBS was not significantly modified for any adhesive (p > 0.05), and the forces measured during the SBS did not exceed the threshold of 6 to 8 MPa for clinical acceptability in all groups. An increase in the bactericidal properties against both S. mutans and L. acidophilus was measured when the adhesives were supplemented with AgNPs. It was concluded that AgNPs can be supplement commercial orthodontic adhesives without modifying their mechanical properties with improved bactericidal activity.
Collapse
Affiliation(s)
- Jesús-David Tristán-López
- Doctorado Institucional en Ingeniería y Ciencia de Materiales, Universidad Autonoma de San Luis Potosi, Sierra Leona No. 550 Col. Lomas 2da. Sección, C. P., San Luis Potosí 78210, Mexico
| | - Nereyda Niño-Martínez
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Av. Parque Chapultepec 1570, Privadas del Pedregal, C. P., San Luis Potosí 78295, Mexico
| | - Eleazar-Samuel Kolosovas-Machuca
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Av. Parque Chapultepec 1570, Privadas del Pedregal, C. P., San Luis Potosí 78295, Mexico
| | - Nuria Patiño-Marín
- Facultad de Estomatología, Universidad Autonoma de San Luis Potosi, Av. Dr. Manuel Nava No. 2, Zona Universitaria, C. P., San Luis Potosí 78290, Mexico
| | - Idania De Alba-Montero
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Av. Parque Chapultepec 1570, Privadas del Pedregal, C. P., San Luis Potosí 78295, Mexico
| | - Horacio Bach
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Gabriel-Alejandro Martínez-Castañón
- Facultad de Estomatología, Universidad Autonoma de San Luis Potosi, Av. Dr. Manuel Nava No. 2, Zona Universitaria, C. P., San Luis Potosí 78290, Mexico
- Correspondence: ; Tel./Fax: +52-444-8262300
| |
Collapse
|
16
|
Cao L, Xie X, Yu W, Xu HHK, Bai Y, Zhang K, Zhang N. Novel protein-repellent and antibacterial polymethyl methacrylate dental resin in water-aging for 6 months. BMC Oral Health 2022; 22:457. [PMID: 36309721 PMCID: PMC9618229 DOI: 10.1186/s12903-022-02506-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background The present study aimed to develop a novel protein-repellent and antibacterial polymethyl methacrylate (PMMA) dental resin with 2-methacryloyloxyethyl phosphorylcholine (MPC) and quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM), and to investigate the effects of water-aging for 6 months on the mechanical properties, protein adsorption, and antibacterial activity of the dental resin. Methods Four groups were tested: PMMA control; PMMA + 3% MPC; PMMA + 1.5% DMAHDM; and PMMA + 3% MPC + 1.5% DMADDM in acrylic resin powder. Specimens were water-aged for 1 d, 3 months, and 6 months at 37 ℃. Their mechanical properties were then measured using a three-point flexure test. Protein adsorption was measured using a micro bicinchoninic acid (BCA) method. A human saliva microcosm model was used to inoculate bacteria on water-aged specimens and to investigate the live/dead staining, metabolic activity of biofilms, and colony-forming units (CFUs). Results The flexural strength and elastic modulus showed a significant loss after 6 months of water-ageing for the PMMA control (mean ± SD; n = 10); in contrast, the new protein repellent and antibacterial PMMA resin showed no strength loss. The PMMA–MPC–DMAHDM-containing resin imparted a strong antibacterial effect by greatly reducing biofilm viability and metabolic activity. The biofilm CFU count was reduced by about two orders of magnitude (p < 0.05) compared with that of the PMMA resin control. The protein adsorption was 20% that of a commercial composite (p < 0.05). Furthermore, the PMMA–MPC–DMAHDM-containing resin exhibited a long-term antibacterial performance, with no significant difference between 1 d, 3 months and 6 months (p > 0.05). Conclusions The flexural strength and elastic modulus of the PMMA–MPC–DMAHDM-containing resin were superior to those of the PMMA control after 6 months of water-ageing. The novel PMMA resin incorporating MPC and DMAHDM exhibited potent and lasting protein-repellent and antibacterial properties.
Collapse
|
17
|
Razeghian-Jahromi I, Babanouri N, Ebrahimi Z, Najafi HZ, Sarbaz M, Montazeri-Najafabady N. Effect of 8% arginine toothpaste on Streptococcus mutans in patients undergoing fixed orthodontic treatment: randomized controlled trial. Dental Press J Orthod 2022; 27:e2220322. [PMID: 35792788 PMCID: PMC9255989 DOI: 10.1590/2177-6709.27.3.e2220322.oar] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: To assess the effect of toothpaste containing 8% arginine on Streptococcus mutans (S. mutans) in dental plaque around orthodontic brackets, and to draw a comparison with a regular fluoride toothpaste. Trial design: A single-center, parallel-arm, triple-blind, randomized controlled trial was conducted. Methods: The clinical trial was conducted at the Orthodontic Clinic, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran. Seventy-two patients (age range: 15-30 years) who required fixed orthodontic treatment were recruited and randomly assigned to arginine and fluoride groups. Randomization was performed using RANDOM.ORG online software, and the participants were divided into two parallel groups, with a 1:1 allocation ratio. Patients were requested to brush their teeth twice daily for 30 days with an experimental toothpaste. Plaque sampling was performed at two intervals, namely at the beginning of the study (T0) and 30 days later (T1). Real-time PCR was used to assess plaque samples in terms of the number of S. mutans surrounding stainless steel brackets in orthodontic patients. A triple-blind design was employed. Results: The baseline characteristics (age, sex, and the relative number of S. mutans) between the groups were similar (p>0.05). Only the arginine group showed a significant decrease in the relative number of bacteria between T0 and T1 (p=0.02). Conclusion: Arginine is an important prebiotic agent in maintaining healthy oral biofilms, and prevent dental caries during fixed orthodontic treatments. Trial registration: The trial was registered at the Iranian Registry of Clinical Trials (IRCT20181121041713N2), https://en.irct.ir/user/trial/42409/view.
Collapse
Affiliation(s)
| | - Neda Babanouri
- Shiraz University of Medical Sciences, Orthodontic Research Center (Shiraz, Iran)
| | - Zahra Ebrahimi
- Shiraz University of Medical Sciences, Orthodontic Research Center (Shiraz, Iran)
| | - Hooman Zarif Najafi
- Shiraz University of Medical Sciences, Orthodontic Research Center (Shiraz, Iran)
| | - Maryam Sarbaz
- Shiraz University of Medical Sciences, Orthodontic Research Center (Shiraz, Iran)
| | | |
Collapse
|
18
|
Nafarrate-Valdez RA, Martínez-Martínez RE, Zaragoza-Contreras EA, Áyala-Herrera JL, Domínguez-Pérez RA, Reyes-López SY, Donohue-Cornejo A, Cuevas-González JC, Loyola-Rodríguez JP, Espinosa-Cristóbal LF. Anti-Adherence and Antimicrobial Activities of Silver Nanoparticles against Serotypes C and K of Streptococcus mutans on Orthodontic Appliances. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:877. [PMID: 35888596 PMCID: PMC9323808 DOI: 10.3390/medicina58070877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Streptococcus mutans (S. mutans) is the main microorganism associated with the presence of dental caries and specific serotypes of this bacteria have been related to several systemic diseases limiting general health. In orthodontics, white spot lesions (WSL), represent a great challenge for clinicians due to the great fluctuation of their prevalence and incidence during conventional orthodontic treatments. Although silver nanoparticles (AgNP) have been demonstrated to have great antimicrobial properties in several microorganisms, including S. mutans bacteria, there is no available information about anti adherence and antimicrobial properties of AgNP exposed to two of the most relevant serotypes of S. mutans adhered on orthodontic materials used for conventional therapeutics. The objective of this study was to determine anti-adherence and antimicrobial levels of AgNP against serotypes c and k of S. mutans on conventional orthodontic appliances. Materials and Methods: An AgNP solution was prepared and characterized using dispersion light scattering (DLS) and transmission electron microscopy (TEM). Antimicrobial and anti-adherence activities of AgNP were determined using minimal inhibitory concentrations (MIC) and bacterial adherence testing against serotypes c and k of S. mutans clinically isolated and confirmed by PCR assay. Results: The prepared AgNP had spherical shapes with a good size distribution (29.3 ± 0.7 nm) with negative and well-defined electrical charges (−36.5 ± 5.7 mV). AgNP had good bacterial growth (55.7 ± 19.3 µg/mL for serotype c, and 111.4 ± 38.6 µg/mL for serotype k) and adherence inhibitions for all bacterial strains and orthodontic wires (p < 0.05). The serotype k showed statistically the highest microbial adherence (p < 0.05). The SS wires promoted more bacterial adhesion (149.0 ± 253.6 UFC/mL × 104) than CuNiTi (3.3 ± 6.0 UFC/mL × 104) and NiTi (101.1 ± 108.5 UFC/mL × 104) arches. SEM analysis suggests CuNiTi wires demonstrated better topographical conditions for bacterial adherence while AFM evaluation determined cell wall irregularities in bacterial cells exposed to AgNP. Conclusions: This study suggests the widespread use of AgNP as a potential anti-adherent and antimicrobial agent for the prevention of WSL during conventional orthodontic therapies and, collaterally, other systemic diseases.
Collapse
Affiliation(s)
- Rosa Amalia Nafarrate-Valdez
- Speciality Program in Orthodontics, Department of Dentistry, Biomedical Science Institute, Autonomous University of Ciudad Juarez (UACJ), Envolvente del PRONAF and Estocolmo Avenues, Juarez City 32310, Mexico;
| | - Rita Elizabeth Martínez-Martínez
- Master Program in Advanced Dentistry, Faculty of Dentistry, Autonomous University of San Luis Potosi, Manuel Nava Avenue, Universitary Campus, San Luis Potosí 78290, Mexico;
| | - Erasto Armando Zaragoza-Contreras
- Department of Engineering and Materials Chemistry, Centro de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - José Luis Áyala-Herrera
- School of Dentistry, Universidad De La Salle Bajío, Universidad Avenue, Lomas del Campestre, Guanajuato 37150, Mexico;
| | - Rubén Abraham Domínguez-Pérez
- Laboratory of Multidisciplinary Dental Research, Faculty of Medicine, Autonomous University of Queretaro, Clavel Street, Prados de La Capilla, Santiago de Querétaro 76176, Mexico;
| | - Simón Yobanny Reyes-López
- Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico;
| | - Alejandro Donohue-Cornejo
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| | - Juan Carlos Cuevas-González
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| | - Juan Pablo Loyola-Rodríguez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez, Ciudad Universitaria, Universitaria, Culiacán 80013, Mexico;
| | - León Francisco Espinosa-Cristóbal
- Master Program in Dental Sciences, Stomatology Department, Institute of Biomedical Sciences, Autonomous University of Juarez City (UACJ), Envolvente del PRONAF and Estocolmo s/n, Ciudad Juárez 32310, Mexico; (A.D.-C.); (J.C.C.-G.)
| |
Collapse
|
19
|
Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
During the orthodontic process, increased microbial colonization and dental plaque formation on the orthodontic appliances and auxiliaries are major complications, causing oral infectious diseases, such as dental caries and periodontal diseases. To reduce plaque accumulation, antimicrobial materials are increasingly being investigated and applied to orthodontic appliances and auxiliaries by various methods. Through the development of nanotechnology, nanoparticles (NPs) have been reported to exhibit excellent antibacterial properties and have been applied in orthodontic materials to decrease dental plaque accumulation. In this review, we present the current development, antibacterial mechanisms, biocompatibility, and application of antibacterial NPs in orthodontic materials.
Collapse
Affiliation(s)
- Zhang Yun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| | - Du Qin
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Fei Wei
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Li Xiaobing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|
20
|
Preparation of Nano-Apatite Grafted Glass-Fiber-Reinforced Composites for Orthodontic Application: Mechanical and In Vitro Biofilm Analysis. MATERIALS 2022; 15:ma15103504. [PMID: 35629533 PMCID: PMC9142944 DOI: 10.3390/ma15103504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023]
Abstract
This study aimed to fabricate nano-hydroxyapatite (nHA) grafted/non-grafted E-glass-fiber-based (nHA/EG) and E-glass fiber (EG) orthodontic retainers and to compare their properties with commercially available retainers. Stainless-steel (SS) retainers and everStick Ortho (EST) were used as control groups. The retainers were evaluated with Raman spectroscopy and bonded to bovine teeth. The samples were fatigued under cyclic loading (120,000 cycles) followed by static load testing. The failure behavior was evaluated under an optical microscope and scanning electron microscope. The strain growth on the orthodontic retainers was assessed (48h and 168h) by an adhesion test using Staphylococcus aureus and Candida albicans. The characteristic peaks of resin and glass fibers were observed, and the debonding force results showed a significant difference among all of the groups. SS retainers showed the highest bonding force, whereas nHA/EG retainers showed a non-significant difference from EG and EST retainers. SS retainers’ failure mode occurred mainly at the retainer–composite interface, while breakage occurred in glass-fiber-based retainers. The strains’ adhesion to EST and EG was reduced with time. However, it was increased with nHA/EG. Fabrication of nHA/EG retainers was successfully achieved and showed better debonding force compared to other glass-fiber-based groups, whereas non-linear behavior was observed for the strains’ adhesion.
Collapse
|
21
|
Pourhajibagher M, Bahador A. Physico-mechanical properties, antimicrobial activities, and anti-biofilm potencies of orthodontic adhesive containing cerium oxide nanoparticles against Streptococcus mutans. Folia Med (Plovdiv) 2022; 64:252-259. [DOI: 10.3897/folmed.64.e60418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 11/12/2022] Open
Abstract
Introduction: White spot lesions around orthodontic brackets may lead to the formation of dental caries during and following fixed orthodontic treatment.
Aim: This study aimed to evaluate the physico-mechanical properties and antimicrobial potencies of orthodontic adhesive doped with cerium oxide nanoparticles (CeO2-NPs) against Streptococcus mutans.
Materials and methods: After synthesis and conformation of CeO2-NPs by transmission electron microscope (TEM), shear bond strength (SBS) and adhesive remnant index (ARI) of modified orthodontic adhesive containing different concentrations of CeO2-NPs (0, 1, 2, 5, and 10 wt%) were measured. The antimicrobial effects of modified orthodontic adhesive were evaluated by disk agar diffusion method and biofilm formation inhibition assay.
Results: The pseudo-spherical shapes of CeO2-NPs were observed in TEM micrographs. The physico-mechanical finding showed that 5 wt% CeO2-NPs showed the highest concentration of CeO2-NPs and SBS value (18.21±9.06 MPa, p<0.05) simultaneously with no significant differences in ARI compared with the control group (p>0.05). There was a significant reduction in cell viability of S. mutans with increasing CeO2-NPs concentration. The 3.1 Log10 and 4.6 Log10 reductions were observed in the count of treated S. mutans with 5 and 10 wt% CeO2-NPs, respectively (p<0.05).
Conclusions: Overall, an orthodontic adhesive containing 5 wt% CeO2-NPs had antimicrobial properties against S. mutans without adverse effects on SBS and ARI.
Collapse
|
22
|
Budi HS, Jameel MF, Widjaja G, Alasady MS, Mahmudiono T, Mustafa YF, Fardeeva I, Kuznetsova M. Study on the role of nano antibacterial materials in orthodontics (a review). BRAZ J BIOL 2022; 84:e257070. [PMID: 35195179 DOI: 10.1590/1519-6984.257070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Nanoparticles (NPs) are insoluble particles with a diameter of fewer than 100 nanometers. Two main methods have been utilized in orthodontic therapy to avoid microbial adherence or enamel demineralization. Certain NPs are included in orthodontic adhesives or acrylic resins (fluorohydroxyapatite, fluorapatite, hydroxyapatite, SiO2, TiO2, silver, nanofillers), and NPs (i.e., a thin layer of nitrogen-doped TiO2 on the bracket surfaces) are coated on the surfaces of orthodontic equipment. Although using NPs in orthodontics may open up modern facilities, prior research looked at antibacterial or physical characteristics for a limited period of time, ranging from one day to several weeks, and the limits of in vitro studies must be understood. The long-term effectiveness of nanotechnology-based orthodontic materials has not yet been conclusively confirmed and needs further study, as well as potential safety concerns (toxic effects) associated with NP size.
Collapse
Affiliation(s)
- H S Budi
- Universitas Airlangga, Department of Oral Biology, Surabaya, Indonesia
| | | | - G Widjaja
- Universitas Krisnadwipayana, Jatiwaringin, Indonesia
| | | | - Trias Mahmudiono
- Faculty of Public Health Universitas Airlangga, Trias Mahmudiono, Departemen of Nutrition, Indonesia
| | - Y F Mustafa
- University of Mosul, College of Pharmacy, Department of Pharmaceutical Chemistry, Mosul, Iraq
| | | | - M Kuznetsova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Propaedeutics of Dental Diseases, Moscow, Russian Federation
| |
Collapse
|
23
|
Dasari A, Edunoori R, Chagam M, Velpula D, Kakuloor J, Renuka G. Comparison of the efficacy of Icon resin infiltration and Clinpro XT varnish on remineralization of white spot lesions: An in-vitro study. J Orthod Sci 2022; 11:12. [PMID: 35754423 PMCID: PMC9214422 DOI: 10.4103/jos.jos_141_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/05/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022] Open
|
24
|
Improvement of Properties of Stainless Steel Orthodontic Archwire Using TiO2:Ag Coating. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orthodontic treatment carries the risk of major complications such as enamel demineralization, tooth decay, gingivitis, and periodontal damage. A large number of elements of fixed orthodontic appliance results in the creation of additional plaque retention sites which increase the risk of biofilm creation. Modification of the surface of orthodontic elements may prevent the formation of bacterial biofilm. In this paper, surface modification of stainless steel orthodontic wires with TiO2: Ag was carried out by the sol-gel thin film dip-coating method. To obtain the anatase crystal structure, substrates were calcined for 2 h at 500 °C. The properties of the obtained coatings were investigated using scanning electron microscopy, X-ray diffraction, and electrochemical tests. Corrosion studies were performed in a Ringer’s solution, which simulated physiological solution. SEM and XRD analyses of the coated surface confirmed the presence of Ag nanoparticles which may have antimicrobial potential.
Collapse
|
25
|
Mirhashemi A, Bahador A, Sodagar A, Pourhajibagher M, Amiri A, Gholamrezayi E. Evaluation of antimicrobial properties of nano-silver particles used in orthodontics fixed retainer composites: an experimental in-vitro study. J Dent Res Dent Clin Dent Prospects 2021; 15:87-93. [PMID: 34386178 PMCID: PMC8346710 DOI: 10.34172/joddd.2021.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
Background. The present study evaluated the antimicrobial efficacy of composite resins containing nano-silver (NAg) particles used in fixed orthodontic retainers. Methods. Nano-composite resin samples with 1%, 2%, and 5% concentrations of NAg were prepared. The antimicrobial effectiveness of NAg was assessed against Streptococcus mutans, Streptococcus sanguis, and Lactobacillus acidophilus by the biofilm inhibition test (three-day-old biofilms), eluted components test (on days 3, 15, and 30), and disk-diffusion agar test after 48 hours. Measures of central tendency and index of dispersion were used to determine colony-forming units. Kruskal-Wallis test and Mann-Whitney U test were also used. Results. The biofilm inhibition test showed a significant decrease in the colonies of S. mutans (87.64%, 96.47%, and 99.76% decrease), S. sanguis (98.13%, 99.47%, and 99.93% decrease), and L. acidophilus (81.59%, 90.90%, and 99.61% decrease) at 1%, 2%, and 5% concentrations of Nag, respectively, compared to the control groups. The colony-forming unit (CFU)/mL of tested microorganisms continuously decreased with increased NAg concentration. In the eluted component test, no significant differences were noted in the 3rd, 15th, and 30th days between the different concentrations of Nag-containing composite resin disks and control samples. According to the disk-diffusion agar test, there was no growth inhibition zone for the composite resin disks containing 1% and 2% concentrations of Nag. However, the growth inhibition zone was seen with a 5% concentration, with a diameter of 9.5±0.71 mm for S. mutans, 8.5±0.71 mm for S. sanguis, and 8±1.41 for L. acidophilus. Conclusion. The incorporation of NAg into composite resins has antibacterial effects, possibly preventing dental caries around fixed orthodontic retainers.
Collapse
Affiliation(s)
- Amirhossein Mirhashemi
- Department of Orthodontics, Dentistry Faculty, Tehran university of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, Oral Microbiology Laboratory, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Sodagar
- Department of Orthodontics, Dentistry Faculty, Tehran university of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Amiri
- Dentist, General Practitioner, Tehran, Iran
| | - Elahe Gholamrezayi
- Department of Orthodontics, Dentistry Faculty, Tehran university of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Cortês IT, Rosalen PL, Berto LA, Castro ML, Pedrini DL, Porto AN, Cogo-Müller K, Nobre Franco GC. Effect of adrenaline and noradrenaline on biofilm formation and virulence factors of Streptococcus mutans UA159. Arch Oral Biol 2021; 125:105091. [PMID: 33652302 DOI: 10.1016/j.archoralbio.2021.105091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate in vitro the effects of adrenaline and noradrenaline on the biofilm formation on orthodontic brackets, acid production and expression of virulence genes of Streptococcus mutans UA159 (S. mutans). DESIGN S. mutans UA159 biofilm was formed on orthodontic brackets under exposure to adrenaline (100 μM), noradrenaline (50 μM) or PBS solution (control group) in triptone-yeast extract with 1 % sucrose. After 24 h, biofilm formation was quantified through Colony Forming Units / mL (CFU/mL) and RNA was extracted to perform gene expression analysis through real-time reverse transcriptase-PCR (RT-qPCR). Evaluation of acid production was carried out on planktonic cultures for 6 h. One-way ANOVA followed by Tukey's test was carried to determine statistical difference. The level of significance was set at 5 %. RESULTS Catecholamines stimulated biofilm formation of S. mutans in orthodontic brackets (p < 0,05) but did not interfere with acid production (pH reduction) or the expression of the tested genes related to biofilm formation (gtfB, gtfC, gbpA, gbpB, gbpC, gbpD and brpA), aciduric (relA) and acidogenic properties (ldh). CONCLUSIONS The present study was the first to demonstrate that catecholamines can stimulate S. mutans UA159 biofilm formation. These findings can contribute to clarify the role of stress on bacterial metabolism and contribute to the understanding of a possible role on caries development, mainly in orthodontic patients.
Collapse
Affiliation(s)
- Iago Torres Cortês
- State University of Campinas, School of Dentistry of Piracicaba, Piracicaba, SP, Brazil.
| | - Pedro Luiz Rosalen
- State University of Campinas, School of Dentistry of Piracicaba, Piracicaba, SP, Brazil; Graduate Program in Biological Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.
| | - Luciana Aranha Berto
- State University of Campinas, School of Dentistry of Piracicaba, Piracicaba, SP, Brazil.
| | | | | | | | - Karina Cogo-Müller
- State University of Campinas, School of Dentistry of Piracicaba, Piracicaba, SP, Brazil; State University of Campinas, Faculty of Pharmaceutical Sciences, Campinas, SP, Brazil.
| | | |
Collapse
|