1
|
Liu JJ, Yang XQ, Li ZY, Miao JY, Li SB, Zhang WP, Lin YC, Lin LB. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): a comprehensive review. FRONTIERS IN PLANT SCIENCE 2024; 14:1309038. [PMID: 38264031 PMCID: PMC10804856 DOI: 10.3389/fpls.2023.1309038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Gastrodia elata Blume, a fully mycoheterotrophic perennial plant of the family Orchidaceae, is a traditional Chinese herb with medicinal and edible value. Interestingly, G. elata requires symbiotic relationships with Mycena and Armillaria strains for seed germination and plant growth, respectively. However, there is no comprehensive summary of the symbiotic mechanism between fungi and G. elata. Here, the colonization and digestion of hyphae, the bidirectional exchange of nutrients, the adaptation of fungi and G. elata to symbiosis, and the role of microorganisms and secondary metabolites in the symbiotic relationship between fungi and G. elata are summarized. We comprehensively and deeply analyzed the mechanism of symbiosis between G. elata and fungi from three perspectives: morphology, nutrition, and molecules. The aim of this review was to enrich the understanding of the mutualistic symbiosis mechanisms between plants and fungi and lay a theoretical foundation for the ecological cultivation of G. elata.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Xiao-Qi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Zong-Yang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Jia-Yun Miao
- Yunnan Senhao Fungi Industry Co., Ltd, Zhaotong, Yunnan, China
| | - Shi-Bo Li
- Yunnan Senhao Fungi Industry Co., Ltd, Zhaotong, Yunnan, China
| | - Wen-Ping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| |
Collapse
|
2
|
Nam DE, Cha MJ, Kim YD, Awasthi M, Do Y, Kong SG, Chung KW. Microsatellite Dataset for Cultivar Discrimination in Spring Orchid ( Cymbidium goeringii). Genes (Basel) 2023; 14:1610. [PMID: 37628661 PMCID: PMC10454716 DOI: 10.3390/genes14081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cymbidium goeringii Reichb. fil., locally known as the spring orchid in the Republic of Korea, is one of the most important and popular horticultural species in the family Orchidaceae. C. goeringii cultivars originated from plants with rare phenotypes in wild mountains where pine trees commonly grow. This study aimed to determine the cultivar-specific combined genotypes (CGs) of short sequence repeats (SSRs) by analyzing multiple samples per cultivar of C. goeringii. In this study, we collected more than 4000 samples from 67 cultivars and determined the genotypes of 12 SSRs. Based on the most frequent combined genotypes (CG1s), the average observed allele number and combined matching probability were 11.8 per marker and 3.118 × 10-11, respectively. Frequencies of the CG1 in 50 cultivars (n ≥ 10) ranged from 40.9% to 100.0%, with an average of 70.1%. Assuming that individuals with the CG1 are genuine in the corresponding cultivars, approximately 30% of C. goeringii on the farms and markets may be not genuine. The dendrogram of the phylogenetic tree and principal coordinate analysis largely divided the cultivars into three groups according to their countries of origin; however, the genetic distances were not great among the cultivars. In conclusion, this dataset of C. goeringii cultivar-specific SSR profiles could be used for ecogenetic studies and forensic authentication. This study suggests that genetic authentication should be introduced for the sale of expensive C. goeringii cultivars. We believe that this study will help establish a genetic method for the forensic authentication of C. goeringii cultivars.
Collapse
Affiliation(s)
- Da Eun Nam
- Department of Biological Sciences and BK21 Team for Field-Oriented BioCore Human Resources Development, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
| | - Min Ju Cha
- Department of Biological Sciences and BK21 Team for Field-Oriented BioCore Human Resources Development, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
| | - Yae Dam Kim
- Department of Biological Sciences and BK21 Team for Field-Oriented BioCore Human Resources Development, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
| | - Manisha Awasthi
- Department of Biological Sciences and BK21 Team for Field-Oriented BioCore Human Resources Development, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
| | - Yuno Do
- Department of Biological Sciences and BK21 Team for Field-Oriented BioCore Human Resources Development, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
| | - Sam-Geun Kong
- Department of Biological Sciences and BK21 Team for Field-Oriented BioCore Human Resources Development, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
| | - Ki Wha Chung
- Department of Biological Sciences and BK21 Team for Field-Oriented BioCore Human Resources Development, Kongju National University, 56 Gongjudaehak-ro, Gongju 32588, Republic of Korea
| |
Collapse
|
3
|
Bai X, Wang G, Ren Y, Su Y, Han J. Insights into taxonomy and phylogenetic relationships of eleven Aristolochia species based on chloroplast genome. FRONTIERS IN PLANT SCIENCE 2023; 14:1119041. [PMID: 36860895 PMCID: PMC9969298 DOI: 10.3389/fpls.2023.1119041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The Aristolochia, as an important genus comprised of over 400 species, has attracted much interest because of its unique chemical and pharmacological properties. However, the intrageneric taxonomy and species identification within Aristolochia have long been difficult because of the complexity of their morphological variations and lack of high-resolution molecular markers. METHODS In this study, we sampled 11 species of Aristolochia collected from distinct habitats in China, and sequenced their complete chloroplast (cp) genomes. RESULTS The 11 cp genomes of Aristolochia ranged in size from 159,375bp (A. tagala) to 160,626 bp (A. tubiflora), each containing a large single-copy (LSC) region (88,914-90,251 bp), a small single-copy (SSC) region (19,311-19,917 bp), and a pair of inverted repeats (IR) (25,175-25,698 bp). These cp genomes contained 130-131 genes each, including 85 protein-coding genes (CDS), 8 ribosomal RNA genes, and 37-38 transfer RNA genes. In addition, the four types of repeats (forward, palindromic, reverse, and complement repeats) were examined in Aristolochia species. A. littoralis had the highest number of repeats (168), while A. tagala had the lowest number (42). The total number of simple sequence repeats (SSRs) is at least 99 in A. kwangsiensis, and, at most, 161 in A. gigantea. Interestingly, we detected eleven highly mutational hotspot regions, including six gene regions (clpP, matK, ndhF, psbT, rps16, trnK-UUU) and five intergenic spacer regions (ccsA-ndhD, psbZ-trnG-GCC, rpl33-rps18, rps16-trnQ-UUG, trnS-GCU-trnG-UCC). The phylogenetic analysis based on the 72 protein-coding genes showed that 11 Aristolochia species were divided into two clades which strongly supported the generic segregates of the subgenus Aristolochia and Siphisia. DISCUSSION This research will provide the basis for the classification, identification, and phylogeny of medicinal plants of Aristolochiaceae.
Collapse
|
4
|
Zeng T, Shi M, Zhong Z, Zhang D. Development of microsatellite markers for the mycoheterotrophic species Burmannia nepalensis (Miers) Hook.f. based on RAD sequencing. Gene 2022; 96:293-298. [DOI: 10.1266/ggs.21-00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tong Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences
| | - Miaomiao Shi
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences
| | | | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences
| |
Collapse
|
5
|
Alves MF, Pinheiro F, Nunes CEP, Prosdocimi F, Sarzi DS, Furtado C, Mayer JLS. Reproductive development and genetic structure of the mycoheterotrophic orchid Pogoniopsis schenckii Cogn. BMC PLANT BIOLOGY 2021; 21:332. [PMID: 34253186 PMCID: PMC8276481 DOI: 10.1186/s12870-021-03118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Pogoniopsis schenckii Cogn. is a mycoheterotrophic orchid that can be used as a model to understand the influence of mycoheterotrophy at different stages of the reproductive cycle. We aimed to verify the presence of endophytic and epiphytic fungi at each stage of the reproductive process and investigated how the breeding system may relate to genetic structure and diversity of populations. In this study we performed anatomical and ultrastructural analyses of the reproductive organs, field tests to confirm the breeding system, and molecular analysis to assess genetic diversity and structure of populations. RESULTS During the development of the pollen grain, embryo sac and embryogenesis, no fungal infestation was observed. The presence of endophytic fungal hyphae was observed just within floral stems and indehiscent fruit. Beyond assuring the presence of fungus that promote seed germination, specific fungi hyphae in the fruit may affect other process, such as fruit ripening. As other mycoheterotrophic orchids, P. schenckii is autogamous, which may explain the low genetic diversity and high genetic structure in populations. CONCLUSIONS We discuss an interesting interaction: fungal hyphae in the indehiscent fruit. These fungal hyphae seem to play different roles inside fruit tissues, such as acting in the fruit maturation process and increasing the proximity between fungi and plant seeds even before dispersion occurs. As other mycoheterotrophic orchids, P. schenckii is autogamous, which may explain the low genetic diversity and high genetic structure in populations. Altogether, our findings provide important novel information about the mechanisms shaping ecology and evolution of fragmented populations of mycoheterotrophic plant.
Collapse
Affiliation(s)
- Mariana Ferreira Alves
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil.
| | - Fabio Pinheiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deise Schroder Sarzi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Furtado
- Departamento de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Wang Y, Shahid MQ, Ghouri F, Baloch FS. De Novo Assembly and Annotation of the Juvenile Tuber Transcriptome of a Gastrodia elata Hybrid by RNA Sequencing: Detection of SSR Markers. Biochem Genet 2020; 58:914-934. [DOI: 10.1007/s10528-020-09983-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
|
7
|
Vu HT, Tran N, Nguyen TD, Vu QL, Bui MH, Le MT, Le L. Complete Chloroplast Genome of Paphiopedilum delenatii and Phylogenetic Relationships among Orchidaceae. PLANTS (BASEL, SWITZERLAND) 2020; 9:E61. [PMID: 31906501 PMCID: PMC7020410 DOI: 10.3390/plants9010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 02/05/2023]
Abstract
Paphiopedilum delenatii is a native orchid of Vietnam with highly attractive floral traits. Unfortunately, it is now listed as a critically endangered species with a few hundred individuals remaining in nature. In this study, we performed next-generation sequencing of P. delenatii and assembled its complete chloroplast genome. The whole chloroplast genome of P. delenatii was 160,955 bp in size, 35.6% of which was GC content, and exhibited typical quadripartite structure of plastid genomes with four distinct regions, including the large and small single-copy regions and a pair of inverted repeat regions. There were, in total, 130 genes annotated in the genome: 77 coding genes, 39 tRNA genes, 8 rRNA genes, and 6 pseudogenes. The loss of ndh genes and variation in inverted repeat (IR) boundaries as well as data of simple sequence repeats (SSRs) and divergent hotspots provided useful information for identification applications and phylogenetic studies of Paphiopedilum species. Whole chloroplast genomes could be used as an effective super barcode for species identification or for developing other identification markers, which subsequently serves the conservation of Paphiopedilum species.
Collapse
Affiliation(s)
- Huyen-Trang Vu
- Faculty of Biotechnology, Nguyen Tat Thanh University, District 4, Hochiminh City 72820, Vietnam; (H.-T.V.); (T.-D.N.); (M.-H.B.)
- Faculty of Biotechnology, International University-Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 7000000, Vietnam; (N.T.); (M.-T.L.)
| | - Ngan Tran
- Faculty of Biotechnology, International University-Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 7000000, Vietnam; (N.T.); (M.-T.L.)
| | - Thanh-Diem Nguyen
- Faculty of Biotechnology, Nguyen Tat Thanh University, District 4, Hochiminh City 72820, Vietnam; (H.-T.V.); (T.-D.N.); (M.-H.B.)
| | - Quoc-Luan Vu
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology, Dalat 670000, Vietnam;
| | - My-Huyen Bui
- Faculty of Biotechnology, Nguyen Tat Thanh University, District 4, Hochiminh City 72820, Vietnam; (H.-T.V.); (T.-D.N.); (M.-H.B.)
| | - Minh-Tri Le
- Faculty of Biotechnology, International University-Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 7000000, Vietnam; (N.T.); (M.-T.L.)
| | - Ly Le
- Faculty of Biotechnology, International University-Vietnam National University, Linh Trung Ward, Thu Duc District, Hochiminh City 7000000, Vietnam; (N.T.); (M.-T.L.)
- Vingroup Big Data Institute, Hai Ba Trung District, Hanoi 100000, Vietnam
| |
Collapse
|
8
|
Ogaki K, Suetsugu K, Kishikawa K, Kyogoku D, Shutoh K, Isagi Y, Kaneko S. New microsatellite markers recognize differences in tandem repeats among four related Gastrodia species (Orchidaceae). Genes Genet Syst 2019; 94:225-229. [PMID: 31813889 DOI: 10.1266/ggs.19-00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gastrodia is the most species-rich genus among mycoheterotrophic plants, and is thus an essential taxon to understand the mechanism of species diversification in mycoheterotrophs. In this study, we developed microsatellite markers with high transferability for four Gastrodia species to examine genetic differentiation and similarity among species, populations and individuals. The 12 microsatellite markers developed from a G. fontinalis library showed high transferability for the ramets that identified G. nipponica, G. kuroshimensis and G. takeshimensis. In addition to the high transferability of these markers, we observed low allele variation within a sampled population of each species and allele differences among the four species. The 12 markers described here will be useful for investigating the genetic differences among and within the Gastrodia species, which evolved by a limitation of gene flow.
Collapse
Affiliation(s)
- Kenji Ogaki
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University
| | - Keiju Kishikawa
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University
| | | | - Kohtaroh Shutoh
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University.,The Hokkaido University Museum, Hokkaido University
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University
| | - Shingo Kaneko
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University
| |
Collapse
|
9
|
Ko YZ, Shih HC, Tsai CC, Ho HH, Liao PC, Chiang YC. Screening transferable microsatellite markers across genus Phalaenopsis (Orchidaceae). BOTANICAL STUDIES 2017; 58:48. [PMID: 29143146 PMCID: PMC5688051 DOI: 10.1186/s40529-017-0200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Molecular identification based on microsatellite loci is an important technology to improve the commercial breeding of the moth orchid. There are more than 30,000 cultivars have been enrolled at the Royal Horticultural Society (RHS). In this study, genomic microsatellite primer sets were developed from Phalaenopsis aphrodite subsp. formosana to further examine the transferability of across 21 Phalaenopsis species. METHODS AND RESULTS Twenty-eight polymorphic microsatellite markers were obtained using the magnetic bead enrichment method, with high transferability of the 21 species of the genus Phalaenopsis, especially in the subgenus Phalaenopsis. The 28 newly developed polymorphic microsatellite markers with high polymorphism information content values. The best and second fit grouping (K) are inferred as two and four by the ΔK evaluation in the assignment test. This result indicates that these microsatellite markers are discernible to subgenus Phalaenopsis. CONCLUSIONS Our results indicate that these new microsatellite markers are useful for delimiting species within genus Phalaenopsis. As expected, the genetic relationships between species of subgenus Phalaenopsis can be well distinguished based on the assignment test. These molecular markers could apply to assess the paternity of Phalaenopsis as well as investigating hybridization among species of genus Phalaenopsis.
Collapse
Affiliation(s)
- Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
| | - Huei-Chuan Shih
- Department of Nursing, Meiho University, Pingtung, 912 Taiwan
| | - Chi-Chu Tsai
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, 900 Taiwan
- National Pingtung University of Science and Technology, Pingtung, 912 Taiwan
| | - Hsing-Hua Ho
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804 Taiwan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
RNA-Seq SSRs of Moth Orchid and Screening for Molecular Markers across Genus Phalaenopsis (Orchidaceae). PLoS One 2015; 10:e0141761. [PMID: 26523377 PMCID: PMC4629892 DOI: 10.1371/journal.pone.0141761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022] Open
Abstract
Background The moth orchid (Phalaenopsis species) is an ornamental crop that is highly commercialized worldwide. Over 30,000 cultivars of moth orchids have been registered at the Royal Horticultural Society (RHS). These cultivars were obtained by artificial pollination of interspecific hybridization. Therefore, the identification of different cultivars is highly important in the worldwide market. Methods/Results We used Illumina sequencing technology to analyze an important species for breeding, Phalaenopsis aphrodite subsp. formosana and develop the expressed sequence tag (EST)-simple sequence repeat (SSR) markers. After de novo assembly, the obtained sequence covered 29.1 Mb, approximately 2.2% of the P. aphrodite subsp. formosana genome (1,300 Mb), and a total of 1,439 EST-SSR loci were detected. SSR occurs in the exon region, including the 5’ untranslated region (UTR), coding region (CDS), and 3’UTR, on average every 20.22 kb. The di- and tri-nucleotide motifs (51.49% and 35.23%, respectively) were the two most frequent motifs in the P. aphrodite subsp. formosana. To validate the developed EST-SSR loci and to evaluate the transferability to the genus Phalaenopsis, thirty tri-nucleotide motifs of the EST-SSR loci were randomly selected to design EST-SSR primers and to evaluate the polymorphism and transferability across 22 native Phalaenopsis species that are usually used as parents for moth orchid breeding. Of the 30 EST-SSR loci, ten polymorphic and transferable SSR loci across the 22 native taxa can be obtained. The validated EST-SSR markers were further proven to discriminate 12 closely related Phalaenopsis cultivars. The results show that it is not difficult to obtain universal SSR markers by transcriptome deep sequencing in Phalaenopsis species. Conclusions This study supported that transcriptome analysis based on deep sequencing is a powerful tool to develop SSR loci in non-model species. A large number of EST-SSR loci can be isolated, and about 33.33% EST-SSR loci are universal markers across the Phalaenopsis breeding germplasm after preliminary validation. The potential universal EST-SSR markers are highly valuable for identifying all of Phalaenopsis cultivars.
Collapse
|