1
|
Phasuksom K, Ariyasajjamongkol N, Sirivat A. Screen-printed electrode designed with MXene/doped-polyindole and MWCNT/doped-polyindole for chronoamperometric enzymatic glucose sensor. Heliyon 2024; 10:e24346. [PMID: 38293452 PMCID: PMC10826182 DOI: 10.1016/j.heliyon.2024.e24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The enzymatic glucose sensors as modified by MXene-dPIn and MWCNT-dPIn on a screen-printed carbon electrode (SPCE) were investigated. Herein, MXene was molybdenum carbide (Mo3C2) which has never been utilized and reported for glucose sensors. The biopolymer type to support the enzyme immobilization was examined and compared between chitosan (CHI) and κ-carrageenan (κC). MWCNT-dPIn obviously showed a larger electroactive surface area, lower charge transfer resistance and higher redox current than Mo3C2-dPIn, indicating that MWCNT-dPIn is superior to Mo3C2-dPIn. For the chitosan-based sensors, the sensitivity value of CHI-GOD/Mo3C2-dPIn is 3.53 μA mM-1 cm-2 in the linear range of 2.5-10 mM with the calculated LOD of 1.57 mM. The sensitivity value of CHI-GOD/MWCNT-dPIn is 18.85 μA mM-1 cm-2 in the linear range of 0.5-25 mM with the calculated LOD of 0.115 mM. For the κ-carrageenan based sensors, κC-GOD/MWCNT-dPIn exhibits the sensitivity of 15.80 μA mM-1 cm-2 and the widest linear range from 0.1 to 50 mM with the calculated LOD of 0.03 mM. The presently fabricated sensors exhibit excellent reproducibility, good selectivity, high stability, and disposal use. The fabricated glucose sensors are potential as practical glucose sensors as the detectable glucose ranges well cover the glucose levels found in blood, urine, and sweat for both healthy people and diabetic patients.
Collapse
Affiliation(s)
- Katesara Phasuksom
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttha Ariyasajjamongkol
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymers Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Alahmadi N, El-Said WA. Electrochemical Sensing of Dopamine Using Polypyrrole/Molybdenum Oxide Bilayer-Modified ITO Electrode. BIOSENSORS 2023; 13:578. [PMID: 37366943 PMCID: PMC10295939 DOI: 10.3390/bios13060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
The electrochemical sensing of biomarkers has attracted more and more attention due to the advantages of electrochemical biosensors, including their ease of use, excellent accuracy, and small analyte volumes. Thus, the electrochemical sensing of biomarkers has a potential application in early disease diagnosis diagnosis. Dopamine neurotransmitters have a vital role in the transmission of nerve impulses. Here, the fabrication of a polypyrrole/molybdenum dioxide nanoparticle (MoO3 NP)-modified ITO electrode based on a hydrothermal technique followed by electrochemical polymerization is reported. Several techniques were used to investigate the developed electrode's structure, morphology, and physical characteristics, including SEM, FTIR, EDX, N2 adsorption, and Raman spectroscopy. The results imply the formation of tiny MoO3 NPs with an average diameter of 29.01 nm. The developed electrode was used to determine low concentrations of dopamine neurotransmitters based on cyclic voltammetry and square wave voltammetry techniques. Furthermore, the developed electrode was used for monitoring dopamine in a human serum sample. The LOD for detecting dopamine by using MoO3 NPs/ITO electrodes based on the SWV technique was around 2.2 nmol L-1.
Collapse
Affiliation(s)
- Nadiyah Alahmadi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Waleed Ahmed El-Said
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
3
|
Tuning Pore Structure and Specific Surface Area of Graphene Frameworks via One-Step Fast Pyrolysis Strategy: Impact on Electrochemical Sensing Behavior of Catechol. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Phasuksom K, Sirivat A. Chronoampermetric detection of enzymatic glucose sensor based on doped polyindole/MWCNT composites modified onto screen-printed carbon electrode as portable sensing device for diabetes. RSC Adv 2022; 12:28505-28518. [PMID: 36320500 PMCID: PMC9535471 DOI: 10.1039/d2ra04947c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Doped-polyindole (dPIn) mixed with multi-walled carbon nanotubes (MWCNTs) were coated on a screen-printed electrode to improve the electroactive surface area and current response of the chronoamperometric enzymatic glucose sensor. Glucose oxidase mixed with chitosan (CHI-GOx) was immobilized on the electrode. (3-Aminopropyl) triethoxysilane (APTES) was used as a linker between the CHI-GOx and the dPIn. The current response of the glucose sensor increased with increasing glucose concentration according to a power law relation. The sensitivity of the CHI-GOx/APTES/dPIn was 55.7 μA mM−1 cm−2 with an LOD (limit of detection) of 0.01 mM, where the detectable glucose concentration range was 0.01–50 mM. The sensitivity of the CHI-GOx/APTES/1.5%MWCNT-dPIn was 182.9 μA mM−1 cm−2 with an LOD of 0.01 mM, where the detectable glucose concentration range was 0.01–100 mM. The detectable concentration ranges of glucose well cover the glucose concentrations in urine and blood. The fabricated enzymatic glucose sensors showed high stability during a storage period of four weeks and high selectivity relative to other interferences. Moreover, the sensor was successfully demonstrated as a continuous or step-wise glucose monitoring device. The preparation method employed here was facile and suitable for large quantity production. The glucose sensor fabricated here, consisting of the three-electrode cell of SPCE, were simple to use for glucose detection. Thus, it is promising to use as a prototype for real glucose monitoring for diabetic patients in the future. The enzymatic glucose sensor based on a dPIn and dPIn/MWCNT modified screen-printed carbon electrode with a facile method possessed good glucose response. The detectable glucose concentration range covers well the glucose concentrations in urine and blood.![]()
Collapse
Affiliation(s)
- Katesara Phasuksom
- Conductive and Electroactive Polymers Research Unit, Petroleum and Petrochemical College, Chulalongkorn University254 Chula 12 Phayathai Rd. PathumwanBangkok10330Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymers Research Unit, Petroleum and Petrochemical College, Chulalongkorn University254 Chula 12 Phayathai Rd. PathumwanBangkok10330Thailand
| |
Collapse
|
5
|
Zhu A, Wang T, Jiang Y, Hu S, Tang W, Liu X, Guo X, Ying Y, Wu Y, Wen Y, Yang H. SERS determination of dopamine using metal-organic frameworks decorated with Ag/Au noble metal nanoparticle composite after azo derivatization with p-aminothiophenol. Mikrochim Acta 2022; 189:207. [PMID: 35501414 DOI: 10.1007/s00604-022-05292-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
A specific surface-enhanced Raman scattering (SERS) assay for dopamine (DA) based on an azo derivatization reaction is proposed for the first time by preparation of p-aminothiophenol (PATP)-modified composite SERS substrate, composed of metal-organic framework (MIL-101) decorated with Au and Ag nanoparticles. As the result, the SERS method for detection of the azo reaction between PATP and DA exhibits superior sensitivity, selectivity, and stability. A reasonable linearity in the range 10-6 to 10-10 mol∙L-1 is achieved, and the limit of detection is 1.2 × 10-12 mol∙L-1. The reactive SERS assay is free from interference in complex physiological fluid. The feasibility of the proposed SERS method for the detection of DA levels in fetal bovine serum (FBS) samples and human serum samples is validated by HPLC-MS methods, displaying promising application potential in early disease diagnosis.
Collapse
Affiliation(s)
- Anni Zhu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Tiansheng Wang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Sen Hu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Wanxin Tang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
6
|
El Attar A, Chemchoub S, Diallo Kalan M, Oularbi L, El Rhazi M. Designing New Material Based on Functionalized Multi-Walled Carbon Nanotubes and Cu(OH)2–Cu2O/Polypyrrole Catalyst for Ethanol Oxidation in Alkaline Medium. Front Chem 2022; 9:805654. [PMID: 35186892 PMCID: PMC8854777 DOI: 10.3389/fchem.2021.805654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
In this work, copper(II) hydroxide (Cu(OH)2) and copper oxide (Cu2O) nanostructures are deposited on functionalized multi-walled carbon nanotubes/polypyrrole to report an efficient electrocatalyst for ethanol oxidation in alkaline medium. In the first step, the deposition of functionalized multi-walled nanotubes of carbon (F-MWCNTs) on the electrode surface was carried out using drop casting mode followed by the electrodeposition of polypyrrole (PPy) and copper nanoparticles (Cu-Nps) using galvanostatic mode. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed in order to study the morphology and the structure of the elaborated catalysts. Electrochemical characterization conducted by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed that the introduction of functionalized multi-walled carbon nanotubes enhances the electric properties of the nanocomposites and offers a large active surface area. The prepared electrocatalyst was then tested in a solution of 0.1 M NaOH containing 0.2 M of ethanol showing high performance (7 mA cm−2 at 0.85 V vs Ag/AgCl) and good stability (over 1800 s) toward ethanol oxidation.
Collapse
|
7
|
Patella B, Sortino A, Mazzara F, Aiello G, Drago G, Torino C, Vilasi A, O'Riordan A, Inguanta R. Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes. Anal Chim Acta 2021; 1187:339124. [PMID: 34753568 DOI: 10.1016/j.aca.2021.339124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]
Abstract
Dopamine is an important neurotransmitter involved in many human biological processes as well as in different neurodegenerative diseases. Monitoring the concentration of dopamine in biological fluids, i.e., blood and urine is an effective way of accelerating the early diagnosis of these types of diseases. Electrochemical sensors are an ideal choice for real-time screening of dopamine as they can achieve fast, portable inexpensive and accurate measurements. In this work, we present electrochemical dopamine sensors based on reduced graphene oxide coupled with Au or Pt nanoparticles. Sensors were developed by co-electrodeposition onto a flexible substrate, and a systematic investigation concerning the electrodeposition parameters (concentration of precursors, deposition time and potential) was carried out to maximize the sensitivity of the dopamine detection. Square wave voltammetry was used as an electrochemical technique that ensured a high sensitive detection in the nM range. The sensors were challenged against synthetic urine in order to simulate a real sample detection scenario where dopamine concentrations are usually lower than 600 nM. Our sensors show a negligible interference from uric and ascorbic acids which did not affect sensor performance. A wide linear range (0.1-20 μm for gold nanoparticles, 0.1-10 μm for platinum nanoparticles) with high sensitivity (6.02 and 7.19 μA μM-1 cm-2 for gold and platinum, respectively) and a low limit of detection (75 and 62 nM for Au and Pt, respectively) were achieved. Real urine samples were also assayed, where the concentrations of dopamine detected aligned very closely to measurements undertaken using conventional laboratory techniques. Sensor fabrication employed a cost-effective production process with the possibility of also being integrated into flexible substrates, thus allowing for the possible development of wearable sensing devices.
Collapse
Affiliation(s)
- Bernardo Patella
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Alessia Sortino
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Francesca Mazzara
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Giuseppe Aiello
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Giuseppe Drago
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Italy
| | - Claudia Torino
- Istituto di Fisiologia Clinica (IFC)-Consiglio Nazionale Delle Ricerche-Reggio Calabria-Italy, Italy
| | - Antonio Vilasi
- Istituto di Fisiologia Clinica (IFC)-Consiglio Nazionale Delle Ricerche-Reggio Calabria-Italy, Italy
| | - Alan O'Riordan
- Nanotechnology Group, Tyndall National Institute, University College Cork, Dyke Prade, Cork, Ireland
| | | |
Collapse
|
8
|
Silva LP, Silva TA, Moraes FC, Fatibello-Filho O. A voltammetric sensor based on a carbon black and chitosan-stabilized gold nanoparticle nanocomposite for ketoconazole determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4495-4502. [PMID: 34514492 DOI: 10.1039/d1ay01321a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A modified glassy carbon electrode with carbon black (CB) and gold nanoparticles (AuNPs) within a crosslinked chitosan (CTS) film is proposed in this work. The electroanalytical performance of the modified CB-CTS-AuNPs/GCE has been evaluated towards the voltammetric sensing of ketoconazole (KTO), a widespread antifungal drug. The nanocomposite was characterized by scanning electron microscopy, X-ray diffraction spectroscopy, and electrochemistry experiments. The evaluation of the electrochemical behaviour of KTO on the proposed modified electrode shows an irreversible oxidation process at a potential of +0.65 V (vs. Ag/AgCl (3.0 mol L-1 KCl)). This redox process was explored to carry out KTO sensing using square-wave voltammetry. The analytical curve was linear in the KTO concentration range from 0.10 to 2.9 μmol L-1, with a limit of detection (LOD) of 4.4 nmol L-1 and a sensitivity of 3.6 μA L μmol-1. This modified electrode was successfully applied to the determination of KTO in pharmaceutical formulations and biological fluid samples.
Collapse
Affiliation(s)
- Laís Pereira Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Minas Gerais, 36570-900, Brazil
| | - Fernando Cruz Moraes
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13560-970, Brazil.
| |
Collapse
|
9
|
Wang T, Wang C, Xu X, Li Z, Li D. One-Step Electrodeposition Synthesized Aunps/Mxene/ERGO for Selectivity Nitrite Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1892. [PMID: 34443726 PMCID: PMC8401988 DOI: 10.3390/nano11081892] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
In this paper, a new nanocomposite AuNPs/MXene/ERGO was prepared for sensitive electrochemical detection of nitrite. The nanocomposite was prepared by a facile one-step electrodeposition, HAuCl4, GO and MXene mixed in PBS solution with the applied potential of -1.4 V for 600 s. The modified material was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and cyclic voltammetry (CV). The electrochemical behavior of nitrite at the modified electrode was performed by CV and chronoamperometry. The AuNPs/MXene/ERGO/GCE showed a well-defined oxidation peak for nitrite at +0.83 V (Vs. Ag/AgCl) in 0.1 M phosphate buffer solution (pH 7). The amperometric responses indicated the sensor had linear ranges of 0.5 to 80 μM and 80 to 780 μM with the LOD (0.15 μM and 0.015 μM) and sensitivity (340.14 and 977.89 μA mM-1 cm-2), respectively. Moreover, the fabricated sensor also showed good selectivity, repeatability, and long-term stability with satisfactory recoveries for a real sample. We also propose the work that needs to be done in the future for material improvements in the conclusion.
Collapse
Affiliation(s)
- Tan Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| | - Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| | - Xianbao Xu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| | - Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China; (T.W.); (C.W.); (X.X.); (Z.L.)
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- China-EU Center for Information and Communication Technologies in Agriculture, China Agricultural University, Beijing 100083, China
- Beijing Engineering and Technology Research Center for Internet of Things in Agriculture, China Agricultural University, Beijing 100083, China
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
10
|
Perylene diimide/MXene-modified graphitic pencil electrode-based electrochemical sensor for dopamine detection. Mikrochim Acta 2021; 188:230. [PMID: 34117945 DOI: 10.1007/s00604-021-04884-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The synthesis of novel architecture comprising perylene diimide (PDI)-MXene (Ti3C2TX)-integrated graphitic pencil electrode for electrochemical detection of dopamine (DA) is reported. The good electron passage between PDI-MXene resulted in an unprecedented nano-adduct bearing enhanced electrocatalytic activity with low-energy electronic transitions. The anionic groups of PDI corroborated enhanced active surface area for selective binding and robust oxidation of DA, thereby decreasing the applied potential. Meanwhile, the MXene layers acted as functional conducive support for PDI absorption via strong H-bonding. The considerable conductivity of MXene enhanced electron transportation thus increasing the sensitivity of sensing interface. The inclusively engineered nano-adduct resulted in robust DA oxidation with ultra-sensitivity (38.1 μAμM-1cm-2), and low detection limit (240 nM) at very low oxidation potential (-0.135 V). Moreover, it selectively signaled DA in the presence of physiological interferents with wide linearity (100-1000 μM). The developed transducing interface performed well in human serum samples with RSD (0.1 to 0.4%) and recovery (98.6 to 100.2%) corroborating the viability of the practical implementation of this integrated system. Graphical abstract Schematic illustration of the oxidative process involved on constructed sensing interface for the development of a non-enzymatic dopamine sensor.
Collapse
|