1
|
Kim HU, Park YH, An MY, Kim YK, Song C, Jung HS. Structural insights into calcium-induced conformational changes in human gelsolin. Biochem Biophys Res Commun 2024; 735:150826. [PMID: 39426132 DOI: 10.1016/j.bbrc.2024.150826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Gelsolin is known as one of the actin-binding proteins capable of severing and capping filamentous actin, and of undergoing structural changes in the presence of calcium ions to interact with actin filaments. In this study, single-particle 3D reconstruction using electron microscopy (EM) revealed that, in the presence of calcium, the structure of gelsolin undergoes structural changes before interacting with actin. These differences are subtle with similarities, as confirmed by the EM map. According to the results of the molecular dynamics simulations, these nuanced structural differences primarily manifest at the domain level when calcium is present. These results provide structural evidence that, in the presence of calcium, gelsolin enters a phase of conformational preparation to transition into the active state. This process enables gelsolin to bind to actin, whereupon gelsolin undergoes more drastic structural changes upon interaction with actin filaments, which allows it to participate in binding and severing to regulate the cytoskeleton. This is the first visualization of full-length gelsolin, and helps to clarify crucial aspects of the as of yet incompletely understood interaction between gelsolin and actin.
Collapse
Affiliation(s)
- Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea; Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea
| | - Yoon Ho Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mi Young An
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young Kwan Kim
- Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea
| | - Chihong Song
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea; Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Lee D, Song S, Kim S, Lee M, Kim E, Yoon S, Kim HU, Son S, Jung HS, Huh YS, Kim SM, Jeon TJ. Multicomponent-Loaded Vesosomal Drug Carrier for Controlled and Sustained Compound Release. Biomacromolecules 2023; 24:3898-3907. [PMID: 37435976 DOI: 10.1021/acs.biomac.3c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Liposomes have been extensively adopted in drug delivery systems with clinically approved formulations. However, hurdles remain in terms of loading multiple components and precisely controlling their release. Herein, we report a vesosomal carrier composed of liposomes encapsulated inside the core of another liposome for the controlled and sustained release of multiple contents. The inner liposomes are made of lipids with different compositions and are co-encapsulated with a photosensitizer. Upon induction of reactive oxygen species (ROS), the contents of the liposomes are released, with each type of liposome displaying distinct kinetics due to the variance in lipid peroxidation for differential structural deformation. In vitro experiments demonstrated immediate content release from ROS-vulnerable liposomes, followed by sustained release from ROS-nonvulnerable liposomes. Moreover, the release trigger was validated at the organismal level using Caenorhabditis elegans. This study demonstrates a promising platform for more precisely controlling the release of multiple components.
Collapse
Affiliation(s)
- Deborah Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Seoyoon Song
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Suheon Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Mina Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Sejin Son
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Polyhydroxyalkanoate Decelerates the Release of Paclitaxel from Poly(lactic-co-glycolic acid) Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14081618. [PMID: 36015244 PMCID: PMC9416746 DOI: 10.3390/pharmaceutics14081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Biodegradable nanoparticles (NPs) are preferred as drug carriers because of their effectiveness in encapsulating drugs, ability to control drug release, and low cytotoxicity. Although poly(lactide co-glycolide) (PLGA)-based NPs have been used for controlled release strategies, they have some disadvantages. This study describes an approach using biodegradable polyhydroxyalkanoate (PHA) to overcome these challenges. By varying the amount of PHA, NPs were successfully fabricated by a solvent evaporation method. The size range of the NPS ranged from 137.60 to 186.93 nm, and showed zero-order release kinetics of paclitaxel (PTX) for 7 h, and more sustained release profiles compared with NPs composed of PLGA alone. Increasing the amount of PHA improved the PTX loading efficiency of NPs. Overall, these findings suggest that PHA can be used for designing polymeric nanocarriers, which offer a potential strategy for the development of improved drug delivery systems for sustained and controlled release.
Collapse
|