1
|
Wang B, Li F, Hu J, Sun F, Han L, Zhang J, Zhu B. UBE2L3 promotes benzene-induced hematotoxicity via autophagy-dependent ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116773. [PMID: 39059346 DOI: 10.1016/j.ecoenv.2024.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Benzene is a common environmental pollutant and significant health hazard. Low-dose benzene exposure is common in most industrial settings, and some workers exhibit hematotoxicity characterized by impaired hematopoietic function. Consequently, understanding the early hematopoietic damage and biomarkers associated with low-dose benzene exposure is of critical importance for health risk assessment. Using data from a 5-year prospective cohort study on benzene exposure and the National Center for Biotechnology Information's Gene Expression Omnibus database, we detected significant downregulation of the ubiquitin-conjugating enzyme UBE2L3 (E2) in benzene-exposed subjects compared to control subjects. Liquid chromatography tandem mass spectrometry and co-immunoprecipitation experiments illustrated the binding interaction between UBE2L3 and the ubiquitin-protein ligase ZNF598 (E3). We applied deep learning algorithms to predict candidate interacting proteins and then conducted validation via co-immunoprecipitation experiments, which showed that ZNF598 engages in binding with the autophagy protein LAMP-2. Subsequent overexpression and knockdown of UBE2L3 coupled with immunofluorescence experiments and transmission electron microscopy revealed that UBE2L3 disrupts the ubiquitination-degradation of LAMP-2 by ZNF598, reduces GPX4 expression levels, and activates an autophagy-dependent ferroptosis pathway. It also leads to increased lipid peroxidation, thereby promoting ferroptosis and contributing to the hematotoxicity induced by benzene. In summary, our results suggest that UBE2L3 may be involved in early hematopoietic damage by modulating the autophagy-dependent ferroptosis signaling pathway in benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Boshen Wang
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210000, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fei Li
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210000, China
| | - Juan Hu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210000, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fengmei Sun
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210000, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lei Han
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210000, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Juan Zhang
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210000, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Baoli Zhu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, Jiangsu 210000, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
2
|
Lu L, Luo L, Li X, Liu W, Wu B, Cai Q, Li J, Huang Y, Chen Y, Zheng Y, Hu J. Genetic prediction of causal association between serum bilirubin and hematologic malignancies: a two-sample Mendelian randomized and bioinformatics study. Front Oncol 2024; 14:1364834. [PMID: 38651155 PMCID: PMC11033852 DOI: 10.3389/fonc.2024.1364834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction An increasing number of cohort studies have shown a correlation between serum bilirubin and tumors, but no definitive causal relationship has been established between serum bilirubin and hematological malignancies.Therefore, the aim of the present study was to assess the causal relationship of serum bilirubin, including total bilirubin (TBIL) and direct bilirubin (DBIL), with hematological malignancies, including leukemia, lymphoma, and myeloma. Methods We used a genome-wide association study (GWAS) collection of TBIL, DBIL, and hematological malignancies data. Using two-sample Mendelian randomization(MR), we assessed the impact of TBIL and DBIL on hematological malignancies. For this study, the inverse variance weighting method (IVW) was the primary method of MR analysis. In the sensitivity analysis, the weighted median method, MR Egger regression, and MR-PRESSO test were used. To understand the mechanisms behind TBIL and DBIL, we used three different approaches based on screening single nucleotide polymorphisms (SNPs) and their associated genes, followed by bioinformatics analysis. Results The IVW test results showed evidence of effects of TBIL (odds ratio [OR]: 4.47, 95% confidence interval [CI]: 1.58-12.62) and DBIL (OR: 3.31, 95% CI: 1.08-10.18) on the risk of acute myeloid leukemia (AML).The findings from bioinformatics indicated that TBIL could potentially undergo xenobiotic metabolism through cytochrome P450 and contribute to chemical carcinogenesis. Discussion In this study, two-sample MR analysis revealed a causal relationship between TBIL, DBIL, and AML.
Collapse
Affiliation(s)
- Lihua Lu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Luting Luo
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xiang Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Wanying Liu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Boheng Wu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qing Cai
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jiazheng Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yan Huang
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanxin Chen
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yongzhi Zheng
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianda Hu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Wang T, Cao Y, Xia Z, Christiani DC, Au WW. Review on novel toxicological effects and personalized health hazard in workers exposed to low doses of benzene. Arch Toxicol 2024; 98:365-374. [PMID: 38142431 DOI: 10.1007/s00204-023-03650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Several recent reports indicate health hazards for workers with below occupational limit exposure to benzene (BZ). Our updated review indicates that such low exposures induced traditional as well as novel toxicity/genotoxicity, e.g., increased mitochondria copy numbers, prolongation of telomeres, impairment of DNA damage repair response (DDRR), perturbations of expression in non-coding RNAs, and epigenetic changes. These abnormalities were associated with alterations of gene expression and cellular signaling pathways which affected hematopoietic cell development, expression of apoptosis, autophagy, etc. The overarching mechanisms for induction of health risk are impaired DDRR, inhibition of tumor suppressor genes, and changes of MDM2-p53 axis activities that contribute to perturbed control for cancer pathways. Evaluation of the unusual dose-responses to BZ exposure indicates cellular over-compensation and reprogramming to overcome toxicity and to promote survival. However, these abnormal mechanisms also promote the induction of leukemia. Further investigations indicate that the current exposure limits for workers to BZ are unacceptable. Based on these studies, the new exposure limits should be less than 0.07 ppm rather than the current 1 ppm. This review also emphasizes the need to conduct appropriate bioassays, and to provide more reliable decisions on health hazards as well as on exposure limits for workers. In addition, it is important to use scientific data to provide significantly improved risk assessment, i.e., shifting from a population- to an individual-based risk assessment.
Collapse
Affiliation(s)
- Tongshuai Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yiyi Cao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhaolin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Shanghai Medical College of Fudan University, Shanghai, 200032, China
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - David C Christiani
- Department of Environmental Health, Harvard University TH Chan School of Public Health, Harvard Medical School, Boston, MA, USA
| | - William W Au
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
4
|
Holland R, Khan MAH, Matthews JC, Bonifacio S, Walters R, Koria P, Clowes J, Rodgers K, Jones T, Patel L, Cross R, Sandberg F, Shallcross DE. Investigating the Variation of Benzene and 1,3-Butadiene in the UK during 2000-2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11904. [PMID: 36231204 PMCID: PMC9564389 DOI: 10.3390/ijerph191911904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The concentrations of benzene and 1,3-butadiene in urban, suburban, and rural sites of the U.K. were investigated across 20 years (2000-2020) to assess the impacts of pollution control strategies. Given the known toxicity of these pollutants, it is necessary to investigate national long-term trends across a range of site types. We conclude that whilst legislative intervention has been successful in reducing benzene and 1,3-butadiene pollution from vehicular sources, previously overlooked sources must now be considered as they begin to dominate in contribution to ambient pollution. Benzene concentrations in urban areas were found to be ~5-fold greater than those in rural areas, whilst 1,3-butadiene concentrations were up to ~10-fold greater. The seasonal variation of pollutant concentration exhibited a maximum in the winter and a minimum in the summer with summer: winter ratios of 1:2.5 and 1:1.6 for benzene and 1,3-butadiene, respectively. Across the period investigated (2000-2020), the concentrations of benzene decreased by 85% and 1,3-butadiene concentrations by 91%. A notable difference could be seen between the two decades studied (2000-2010, 2010-2020) with a significantly greater drop evident in the first decade than in the second, proving, whilst previously successful, legislative interventions are no longer sufficiently limiting ambient concentrations of these pollutants. The health impacts of these pollutants are discussed, and cancer impact indices were utilized allowing estimation of cancer impacts across the past 20 years for different site types. Those particularly vulnerable to the adverse health effects of benzene and 1,3-butadiene pollution are discussed.
Collapse
Affiliation(s)
- Rayne Holland
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | | | | | - Rhian Walters
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Priya Koria
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Joanna Clowes
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Karla Rodgers
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Temi Jones
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Leeya Patel
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Rhianna Cross
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Freya Sandberg
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Dudley E. Shallcross
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Department Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
5
|
Zhang J, Vikrant K, Kim KH, Dong F. Photocatalytic destruction of volatile aromatic compounds by platinized titanium dioxide in relation to the relative effect of the number of methyl groups on the benzene ring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153605. [PMID: 35114233 DOI: 10.1016/j.scitotenv.2022.153605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The photocatalytic destruction (PCD) of volatile organic compounds (VOC) into environmentally benign compounds is one of the most ideal routes for the management of indoor air quality. It is nevertheless not easy to achieve the mineralization of aromatic VOC through PCD technology because of their recalcitrant structures (i.e., conjugated π benzene ring). In this research, the PCD potential against three model aromatic hydrocarbons (i.e., benzene (B), toluene (T), and m-xylene (X): namely, BTX) has been explored using a titanium dioxide (TiO2) supported platinum (Pt) catalyst after the high-temperature hydrogen (H2)-based reduction (R) pre-treatment (i.e., Pt/TiO2-R). The effects of the key process variables (e.g., relative humidity (RH), oxygen (O2) content, flow rate, VOC concentration, and the co-presence of VOC) on the PCD efficiency and related mechanisms were also assessed in detail. The PCD efficiency is seen to increase with the rise in the increasing number of methyl groups on the benzene ring (in the order of benzene (46.5%), toluene (68.2%), and m-xylene (95.9%)), as the adsorption and activation of the VOC molecule on the photocatalyst surface are promoted by the increased distribution of electrons on the benzene ring. The BTX were oxidated subsequently by the photogenerated reactive oxygen species (ROS), i.e., the hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). The overall results of this study are expected to help expand the applicability of photocatalysis towards air quality management by offering detailed insights into the factors and processes governing the photocatalytic decomposition of aromatic VOCs.
Collapse
Affiliation(s)
- Jinjian Zhang
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
6
|
Wang B, Xu S, Wang T, Xu K, Yin L, Li X, Sun R, Pu Y, Zhang J. LincRNA-p21 promotes p21-mediated cell cycle arrest in benzene-induced hematotoxicity by sponging miRNA-17-5p. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118706. [PMID: 34971743 DOI: 10.1016/j.envpol.2021.118706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Benzene is widely employed in manufacturing and causes hematotoxic effects and leukemia in humans. A long intergenic noncoding RNA (lincRNA)-microRNA (miRNA)-mRNA coexpression and competing endogenous RNA (ceRNA) regulatory network was constructed by bioinformatics analysis based on a benzene-induced aplastic anemia (BIAA) mouse model. In this population-based study, we observed a trend consistent with that in the BIAA mice: lincRNA-p21 and p21 were upregulated, while miRNA-17-5p expression was downregulated in benzene-exposed workers. Moreover, multiple linear regressions indicated that lincRNA-p21 was negatively associated with white blood cell (WBC) counts. Predictive thresholds of hematotoxicity were identified by ROC curve analysis with S-phenylmercapturic acid (SPMA) and lincRNA-p21 showing a better predictive ability than the other parameters and the combination of SPMA and lincRNA-p21 exhibiting the highest predictive value for hematotoxicity. LincRNA-p21 was predominantly present in the cytoplasm of bone marrow cells (BMCs) and K562 cells as assessed by fluorescence in situ hybridization (FISH). Upon exploring the underlying mechanism by which lincRNA-p21 mediates benzene-induced hematotoxicity, we observed that the negative regulation of 1,4-benzoquinone (1,4-BQ) on cell cycle arrest and inhibition of K562 cell proliferation was partially relieved by lincRNA-p21 knockdown, which can inhibit the expression of P21 and thereby suppress the toxic effects of 1,4-BQ. Finally, dual-luciferase reporter gene and RIP assay showed that, by acting as a sponge, lincRNA-p21 reduced the activity of miRNA-17-5p and consequently increased the expression of p21. In conclusion, our research suggested that benzene induces hematotoxicity via the lincRNA-p21/miRNA-17-5p/p21 signaling which might contribute to the underlying mechanism of lincRNA-p21 in benzene-induced hematotoxicity. Therefore, lincRNA-p21 can serve as a potential biomarker for the early detection of hematopoiesis inhibition in individuals with long-term exposure to low-dose benzene.
Collapse
Affiliation(s)
- Boshen Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210000, Jiangsu, China
| | - Shouxiang Xu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Tong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaoqin Li
- Yangzhou Center for Disease Control and Prevention, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
7
|
Sun R, Yu L, Xu K, Pu Y, Huang J, Liu M, Zhang J, Yin L, Pu Y. Evi1 involved in benzene-induced haematotoxicity via modulation of PI3K/mTOR pathway and negative regulation Serpinb2. Chem Biol Interact 2022; 354:109836. [PMID: 35092719 DOI: 10.1016/j.cbi.2022.109836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Benzene is a widely used chemical and an environmental pollutant. Exposure to benzene can cause blood diseases, but the mechanisms underlying benzene haematotoxicity have not been fully clarified. Ecotropic virus integration site-1 (Evi1), a transcription factor, plays important roles in normal haematopoiesis and haematological diseases. In this study, we investigated the role and mechanism of Evi1 in benzene-induced haematotoxicity. We found that benzene exposure significantly increased Evi1 level in white blood cells (WBCs) in occupational benzene workers as well as mouse bone marrow cells. Further in vitro results demonstrated that compared with control cells exposed to same 1,4-benzoquinone (1,4-BQ, an important active metabolite of benzene) concentration, Evi1 downregulation significantly reduced cell proliferation, and disrupted cell viability, apoptosis, erythroid and megakaryotic cell differentiation and cell cycle. Additionally, down-regulation of Evi1 suppressed phosphoinositide 3-kinase (PI3K)/mTOR signalling pathway and elevated its target gene Serpinb2 following 1,4-BQ exposure. Moreover, the PI3K activator could partially relieve the inhibitory effect of down-regulation of Evi1 on cell proliferation and increase cell arrest in in G2/M phase. What's more, downregulation of Serpinb2 could partially alleviate proliferation inhibition and reverse cell cycle changes in G0/G1 phase and S phase induced by Evi1 inhibition. In conclusion, our data revealed that Evi1 downregulation aggravated the inhibition of cell proliferation and arrested cells in the G0/G1 phase when exposed to 1,4-BQ, potentially by inactivating the PI3K/mTOR pathway and upregulating downstream target gene Serpinb2. Our study provides novel insights on mechanism by which Evi1 participates in benzene-induced haematotoxicity.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
8
|
Factors Affecting Adverse Health Effects of Gasoline Station Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910014. [PMID: 34639318 PMCID: PMC8508572 DOI: 10.3390/ijerph181910014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022]
Abstract
This cross-sectional study examined the risk factors affecting adverse health effects from benzene exposure among gasoline station workers in Khon Kean province, Thailand. An interview questionnaire of adverse symptoms relating to benzene toxicity was administered to 151 workers. Area samplings for benzene concentration and spot urine for tt-muconic acid (tt-MA), a biomarker of benzene exposure, were collected. The factors associated with adverse symptoms were analysed by using multiple logistic regression. It was found that these symptoms mostly affected fuelling workers (77.5%), and the detected air benzene reached an action level or higher than 50% of NIOSH REL (>50 ppb). The top five adverse symptoms, i.e., fatigue, headache, dizziness, nasal congestion, and runny nose, were reported among workers exposed to benzene. More specific symptoms of benzene toxicity were chest pain, bleeding/epistaxis, and anaemia. The detected tt-MA of workers was 506.7 ug/g Cr (IQR), which was a value above the BEI and higher than that of asymptomatic workers. Risk factors significantly associated with adverse symptoms, included having no safety training experience (ORadj = 5.22; 95% CI: 2.16–12.58) and eating during work hours (ORadj = 16.08; 95% CI: 1.96–131.74). This study urges the tightening of health and safety standards at gasoline stations to include training and eating restrictions while working in hazardous areas.
Collapse
|
9
|
Cox LA, Ketelslegers HB, Lewis RJ. The shape of low-concentration dose-response functions for benzene: implications for human health risk assessment. Crit Rev Toxicol 2021; 51:95-116. [PMID: 33853483 DOI: 10.1080/10408444.2020.1860903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Are dose-response relationships for benzene and health effects such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) supra-linear, with disproportionately high risks at low concentrations, e.g. below 1 ppm? To investigate this hypothesis, we apply recent mode of action (MoA) and mechanistic information and modern data science techniques to quantify air benzene-urinary metabolite relationships in a previously studied data set for Tianjin, China factory workers. We find that physiologically based pharmacokinetics (PBPK) models and data for Tianjin workers show approximately linear production of benzene metabolites for air benzene (AB) concentrations below about 15 ppm, with modest sublinearity at low concentrations (e.g. below 5 ppm). Analysis of the Tianjin worker data using partial dependence plots reveals that production of metabolites increases disproportionately with increases in air benzene (AB) concentrations above 10 ppm, exhibiting steep sublinearity (J shape) before becoming saturated. As a consequence, estimated cumulative exposure is not an adequate basis for predicting risk. Risk assessments must consider the variability of exposure concentrations around estimated exposure concentrations to avoid over-estimating risks at low concentrations. The same average concentration for a specified duration is disproportionately risky if it has higher variance. Conversely, if chronic inflammation via activation of inflammasomes is a critical event for induction of MDS and other health effects, then sufficiently low concentrations of benzene are predicted not to cause increased risks of inflammasome-mediated diseases, no matter how long the duration of exposure. Thus, we find no evidence that the dose-response relationship is supra-linear at low doses; instead sublinear or zero excess risk at low concentrations is more consistent with the data. A combination of physiologically based pharmacokinetic (PBPK) modeling, Bayesian network (BN) analysis and inference, and partial dependence plots appears a promising and practical approach for applying current data science methods to advance benzene risk assessment.
Collapse
Affiliation(s)
- Louis A Cox
- Cox Associates LLC, Denver, CO, USA.,Department of Business Analytics, University of Colorado, Denver, CO, USA
| | - Hans B Ketelslegers
- Concawe Division, European Petroleum Refiners Association, Brussels, Belgium
| | - R Jeffrey Lewis
- Concawe Division, European Petroleum Refiners Association, Brussels, Belgium.,ExxonMobil Biomedical Sciences, Inc, Clinton, NJ, USA
| |
Collapse
|
10
|
Sharma P, Maithani M, Gupta V, Bansal P. Ayurvedic formulations containing benzoic and ascorbic acids as additives: benzene formation during storage and impact of additives on quality parameters. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:59-65. [PMID: 32745071 DOI: 10.1515/jcim-2020-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/03/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Ayurvedic formulations are becoming the prior choice of people as health care supplements. The increasing demand for these formulations has led to extensive development of Ayurvedic pharmaceutical industries worldwide. The reaction between the preservatives (sodium benzoates and ascorbic acid) used in these formulations could generate benzene. Benzene is classified as class-1 human carcinogen and responsible for various short and long term health effects. METHODS In this study, 25 formulations (containing ascorbic acid and sodium benzoate) of various manufacturers available as over the counter products were obtained and their benzene content were determined using gas chromatograph with flame ionization detector. RESULTS The result showed that 64% of the formulations were free from benzene contamination whereas 36% of formulations were found to be contaminated with benzene. A simple, less time-consuming, economic, and validated gas chromatographic method for estimation of benzene in Ayurvedic formulations was also developed successfully in present study. CONCLUSIONS The data revealed that the level of benzene was within permissible limits, yet the presence of a carcinogen in the marketed formulations intended for internal use is an alarming situation.
Collapse
Affiliation(s)
- Priyanka Sharma
- University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Mukesh Maithani
- Multidisciplinary Research Unit, Veer Chandra Singh Garhwali Government Institute of Medical Science and Research, Srinagar, Pauri Garhwal, India
| | - Vikas Gupta
- University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Parveen Bansal
- University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| |
Collapse
|
11
|
Vikrant K, Kim KH, Szulejko JE, Boukhvalov D, Shang J, Rinklebe J. Evidence of inter-species swing adsorption between aromatic hydrocarbons. ENVIRONMENTAL RESEARCH 2020; 181:108814. [PMID: 31784078 DOI: 10.1016/j.envres.2019.108814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
In this research, the competitive adsorption characteristics between aromatic hydrocarbons were investigated. It is well-known that an industrial effluent may contain a mixture of pollutants. The composition of effluents is usually highly variable in nature to depend upon the feedstock. Hence, one of the pollutants that is present in larger amounts may have the potential to dominate the sorption processes. Although many studies have investigated the competitive adsorption of volatile organic compounds (VOCs) onto activated carbon (AC) in detail, little is known about how the overall process is influenced when a fresh incoming VOC molecule encounters a sorbent bed pre-loaded with other VOCs. Consequently, the objective of the present study was to investigate the stability of pre-adsorbed VOC molecules in the presence of other potentially competitive VOCs in the influent stream. In this regard, the sorbent bed of AC was first preloaded with benzene (50 ppm (0.16 mg L-1)) and subsequently challenged by either high purity nitrogen or a stream of xylene (at 10, 50, or 100 ppm (0.043, 0.22, or 0.43 mg L-1)). The desorption rate of preloaded benzene and uptake rate of challenger xylene were assessed simultaneously. The maximum desorption rates of benzene (Rb) against two challenge scenarios (e.g., 100 ppm (0.43 mg L-1) xylene and pure N2) were very different from each other, i.e., 663 vs. 257 g kg-1 h-1, and their final benzene recoveries were 84% and 42%, respectively. The initially high desorption rate for the former quickly decreased with decreasing benzene residual capacity (C, mg g-1). Interestingly, the adsorption capacity of xylene increased considerably after the preloading of benzene (relative to no preloading). As such, 10% breakthrough volumes (BTV10) of 100, 50, and 10 ppm (0.43, 0.22, and 0.043 mg L-1) xylene challenge scenarios increased significantly from 100 to 186, 43.4 to 694, and 600 to 1000 L atm g-1, respectively. The prevalent mechanisms were analyzed using density functional theory (DFT)-based modelling approaches. The results demonstrated effective replacement of pre-adsorbed molecules with weaker affinity (e.g., benzene) when challenged by molecules with stronger affinity (e.g., xylene) toward the sorbent; this was accompanied by noticeable synergistic enhancement in the adsorption capacity of the latter.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Jan E Szulejko
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Danil Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing, 210037, PR China; Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002, Ekaterinburg, Russia
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Lyon-Caen S, Siroux V, Lepeule J, Lorimier P, Hainaut P, Mossuz P, Quentin J, Supernant K, Meary D, Chaperot L, Bayat S, Cassee F, Valentino S, Couturier-Tarrade A, Rousseau-Ralliard D, Chavatte-Palmer P, Philippat C, Pin I, Slama R, Study Group TS. Deciphering the Impact of Early-Life Exposures to Highly Variable Environmental Factors on Foetal and Child Health: Design of SEPAGES Couple-Child Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3888. [PMID: 31615055 PMCID: PMC6843812 DOI: 10.3390/ijerph16203888] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/20/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
In humans, studies based on Developmental Origins of Health and Disease (DOHaD) concept and targeting short half-lived chemicals, including many endocrine disruptors, generally assessed exposures from spot biospecimens. Effects of early-life exposure to atmospheric pollutants were reported, based on outdoor air pollution levels. For both exposure families, exposure misclassification is expected from these designs: for non-persistent chemicals, because a spot biospecimen is unlikely to capture exposure over windows longer than a few days; for air pollutants, because indoor levels are ignored. We developed a couple-child cohort relying on deep phenotyping and extended personal exposure assessment aiming to better characterize the effects of components of the exposome, including air pollutants and non-persistent endocrine disruptors, on child health and development. Pregnant women were included in SEPAGES couple-child cohort (Grenoble area) from 2014 to 2017. Maternal and children exposure to air pollutants was repeatedly assessed by personal monitors. DNA, RNA, serum, plasma, placenta, cord blood, meconium, child and mother stools, living cells, milk, hair and repeated urine samples were collected. A total of 484 pregnant women were recruited, with excellent compliance to the repeated urine sampling protocol (median, 43 urine samples per woman during pregnancy). The main health outcomes are child respiratory health using early objective measures, growth and neurodevelopment. Compared to former studies, the accuracy of assessment of non-persistent exposures is expected to be strongly improved in this new type of birth cohort tailored for the exposome concept, with deep phenotyping and extended exposure characterization. By targeting weaknesses in exposure assessment of the current approaches of cohorts on effects of early life environmental exposures with strong temporal variations, and relying on a rich biobank to provide insight on the underlying biological pathways whereby exposures affect health, this design is expected to provide deeper understanding of the interplay between the Exposome and child development and health.
Collapse
Affiliation(s)
- Sarah Lyon-Caen
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
| | - Valérie Siroux
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
| | - Johanna Lepeule
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
| | - Philippe Lorimier
- Biological Ressources Centre (CRB), Grenoble University Hospital, 38700 La Tronche, France.
| | - Pierre Hainaut
- Inserm, CNRS, Team of Tumor Molecular Pathology and Biomarkers, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
| | - Pascal Mossuz
- Biological Ressources Centre (CRB), Grenoble University Hospital, 38700 La Tronche, France.
| | - Joane Quentin
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
- Pediatric Department, Grenoble University Hospital, 38700 La Tronche, France.
| | - Karine Supernant
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
| | - David Meary
- CNRS, LPNC UMR 5105, University Grenoble Alpes, 38000 Grenoble, France.
| | - Laurence Chaperot
- Inserm, CNRS, Team of Immunobiology and Immunotherapy in Chronic Diseases, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Research and Development Laboratory, 38700 Grenoble, France.
| | - Sam Bayat
- Pediatric Department, Grenoble University Hospital, 38700 La Tronche, France.
- Inserm UA7, Synchrotron Radiation for Biomedicine Laboratory (STROBE), University Grenoble Alpes, 38000 Grenoble, France.
| | - Flemming Cassee
- National Institute for Public Health and the Environment, 3720 Bilthoven, The Netherlands.
- Institute of Risk Assessment Studies, Utrecht University, 3508 Utrecht, The Netherlands.
| | - Sarah Valentino
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France.
| | | | | | | | - Claire Philippat
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
| | - Isabelle Pin
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
- Pediatric Department, Grenoble University Hospital, 38700 La Tronche, France.
| | - Rémy Slama
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB (Institute for Advanced Biosciences) Joint Research Center, University Grenoble Alpes, 38700 Grenoble, France.
| | | |
Collapse
|
13
|
Zhang F, Munoz FM, Sun L, Zhang S, Lau SS, Monks TJ. Cell-specific regulation of Nrf2 during ROS-Dependent cell death caused by 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ). Chem Biol Interact 2019; 302:1-10. [DOI: 10.1016/j.cbi.2019.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/05/2019] [Accepted: 01/25/2019] [Indexed: 01/06/2023]
|