1
|
Kim H, Yu H, Discher M, Kim MC, Choi Y, Lee H, Lee JT, Lee H, Kim YS, Kim HS, Lee J. A small-scale realistic inter-laboratory accident dosimetry comparison using the TL/OSL from mobile phone components. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2021.106696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Lee Y, Kang JK, Lee YH, Yoon HJ, Yang SS, Kim SH, Jang S, Park S, Heo DH, Jang WI, Yoo HJ, Paik EK, Lee HR, Seong KM. Chromosome aberration dynamics in breast cancer patients treated with radiotherapy: Implications for radiation biodosimetry. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503419. [PMID: 34798939 DOI: 10.1016/j.mrgentox.2021.503419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Although radiological accidents often result in partial-body radiation exposure, most biodosimetry studies focus on estimating whole-body exposure doses. We have evaluated time-dependent changes in chromosomal aberrations before, during, and after localized fractionated radiotherapy. Twelve patients with carcinoma in situ of the breast who underwent identical adjuvant radiation therapy (50 Gy in 25 fractions) were included in the study. Lymphocytes were collected from patients before, during, and after radiotherapy, to measure chromosome aberrations, such as dicentric chromosomes and translocations. Chromosome aberrations were then used to calculate whole- and partial-body biological absorbed doses of radiation. Dicentric chromosome frequencies in all study participants increased during radiotherapy (p < 0.05 in Kruskal-Wallis test). Increases of translocation frequencies during radiotherapy were observed in seven of the twelve patients. The increased levels of dicentric chromosomes and translocations persisted throughout our 1-year follow-up, and evidence of partial-body exposure (such as Papworth's U-value > 1.96) was observed more than 1 year after radiotherapy. We found that cytogenetic biomarkers reflected partial-body fractionated radiation exposure more than 1 year post-exposure. Our findings suggest that chromosome aberrations can be used to estimate biological absorbed radiation doses and can inform medical intervention for individuals suspected of fractionated or partial-body radiation exposure.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Jin-Kyu Kang
- Dongnam Radiation Emergency Medical Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Yang Hee Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyo Jin Yoon
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Su San Yang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Seung Hyun Kim
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Sunhoo Park
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Pathology, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Da Hye Heo
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Won Il Jang
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyung Jun Yoo
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Eun Kyung Paik
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Department of Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Hyo Rak Lee
- National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; Division of Hematology and Medical Oncology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea.
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea.
| |
Collapse
|
4
|
Burnett LR, Hughes RT, Rejeski AF, Moffatt LT, Shupp JW, Christy RJ, Winkfield KM. Review of the Terminology Describing Ionizing Radiation-Induced Skin Injury: A Case for Standardization. Technol Cancer Res Treat 2021; 20:15330338211039681. [PMID: 34613833 PMCID: PMC8504211 DOI: 10.1177/15330338211039681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ionizing radiation causes injury to the skin that produces a complex clinical presentation that is managed by various paradigms without clear standards. The situation is further complicated by the fact that clinicians and researchers often use different terms and billing codes to describe the spectrum of cutaneous injury. There is, however, general agreement between the two most commonly-used diagnostic scales, the Radiation Therapy Oncology Group and the Common Terminology Criteria for Adverse Events, and in their use to describe skin injury following radiation therapy. These scales are typically used by radiation oncologists to quantify radiation dermatitis, a component of the radiation-related disorders of the skin and subcutaneous tissue family of diagnoses. In rare cases, patients with severe injury may require treatment by wound care or burn specialists, in which case the disease is described as a “radiation burn” and coded as a burn or corrosion. Further compounding the issue, most US government agencies use the term Cutaneous Radiation Injury to indicate skin damage resulting from large, whole-body exposures. In contrast, the US Food and Drug Administration approves products for radiation dermatitis or “burns caused by radiation oncology procedures.” A review of the literature and comparison of clinical presentations shows that each of these terms represents a similar injury, and can be used interchangeably. Herein we provide a comparative review of the commonly used terminology for radiation-induced skin injury. Further, we recommend standardization across clinicians, providers, and researchers involved in the diagnosis, care, and investigation of radiation-induced skin injury. This will facilitate collaboration and broader inclusion criteria for grant-research and clinical trials and will assist in assessing therapeutic options particularly relevant to patient skin pigmentation response differences.
Collapse
Affiliation(s)
| | - Ryan T Hughes
- 12279Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Lauren T Moffatt
- 121577MedStar Health Research Institute, Washington, DC, USA.,12230Georgetown University School of Medicine, Washington, DC, USA
| | - Jeffrey W Shupp
- 121577MedStar Health Research Institute, Washington, DC, USA.,12230Georgetown University School of Medicine, Washington, DC, USA.,8405MedStar Washington Hospital Center, Washington, DC, USA
| | - Robert J Christy
- 110230US Army Institute for Surgical Research, San Antonio Texas, USA
| | | |
Collapse
|
5
|
Lee Y, Seo S, Jin YW, Jang S. Assessment of working environment and personal dosimeter-wearing compliance of industrial radiographers based on chromosome aberration frequencies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:151-164. [PMID: 31539897 DOI: 10.1088/1361-6498/ab4686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Industrial radiographers are exposed to relatively higher doses of radiation than other radiation-exposed workers in South Korea. The objective of our study was to investigate the impact of specific occupational conditions on chromosome aberration frequency and evaluate dosimeter-wearing compliance of industrial radiographers in Korea. We studied individual and occupational characteristics of 120 industrial radiographers working in South Korea and evaluated the frequency of dicentrics and translocations in chromosomes to estimate radiation exposure. The association between working conditions and chromosome aberration frequencies was assessed by Poisson regression analysis after adjusting for confounding factors. Legal personal dosimeter-wearing compliance among workers was investigated by correlation analysis between recorded dose and chromosome aberration frequency. Daily average number of radiographic films used in the last six months was associated with dicentrics frequency. Workers performing site radiography showed significantly higher translocation frequency than those working predominantly in shielded enclosures. The correlation between chromosome aberration frequency and recorded dose was higher in workers in the radiography occupation since 2012 (new workers) than other veteran workers. Our study found that site radiography could affect actual radiation exposure to workers. Controlling these working conditions and making an effort to improve personal dosimeter-wearing compliance among veteran workers as well as new workers may be necessary to reduce radiation exposure as much as possible in their workplace.
Collapse
Affiliation(s)
- Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Young Woo Jin
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seongjae Jang
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|