1
|
Izadifar Z, Charrez B, Almeida M, Robben S, Pilobello K, van der Graaf-Mas J, Marquez SL, Ferrante TC, Shcherbina K, Gould R, LoGrande NT, Sesay AM, Ingber DE. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels. Biosens Bioelectron 2024; 265:116683. [PMID: 39213819 PMCID: PMC11391946 DOI: 10.1016/j.bios.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Despite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype. We demonstrate the reliable and reproducible functionality of this system in living human Gut and Liver Chip cultures. Changes in tissue barrier function and oxygen tension along with their functional and metabolic responses to chemical stimuli (e.g., calcium chelation, oligomycin) were continuously and noninvasively monitored on-chip for up to 23 days. A physiologically relevant microaerobic microenvironment that supports co-culture of human intestinal cells with living Lactococcus lactis bacteria also was demonstrated in the Gut Chip. The integration of multi-functional sensors into Organ Chips provides a robust and scalable platform for the simultaneous, continuous, and non-invasive monitoring of multiple physiological functions that can significantly enhance the comprehensive and reliable evaluation of engineered tissues in Organ Chip models in basic research, preclinical modeling, and drug development.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Berenice Charrez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Micaela Almeida
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Stijn Robben
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Department of Microelectronics, Technical University Delft, Delft, 2628 CD, Netherlands
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janet van der Graaf-Mas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Susan L Marquez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Kostyantyn Shcherbina
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Russell Gould
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
3
|
Spitz S, Schobesberger S, Brandauer K, Ertl P. Sensor-integrated brain-on-a-chip platforms: Improving the predictive validity in neurodegenerative research. Bioeng Transl Med 2024; 9:e10604. [PMID: 38818126 PMCID: PMC11135156 DOI: 10.1002/btm2.10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 06/01/2024] Open
Abstract
Affecting millions of individuals worldwide, neurodegenerative diseases (NDDs) pose a significant and growing health concern in people over the age of 60 years. Contributing to this trend are the steady increase in the aging population coupled with a persistent lack of disease-altering treatment strategies targeting NDDs. The absence of efficient therapeutics can be attributed to high failure rates in clinical trials and the ineptness of animal models in preceding preclinical studies. To that end, in recent years, significant research effort has been dedicated to the development of human cell-based preclinical disease models characterized by a higher degree of predictive validity. However, a key requirement of any in vitro model constitutes the precise knowledge and replication of the target tissues' (patho-)physiological microenvironment. Herein, microphysiological systems have demonstrated superiority over conventional static 2D/3D in vitro cell culture systems, as they allow for the emulation and continuous monitoring of the onset, progression, and remission of disease-associated phenotypes. This review provides an overview of recent advances in the field of NDD research using organ-on-a-chip platforms. Specific focus is directed toward non-invasive sensing strategies encompassing electrical, electrochemical, and optical sensors. Additionally, promising on- and integrable off-chip sensing strategies targeting key analytes in NDDs will be presented and discussed in detail.
Collapse
Affiliation(s)
- Sarah Spitz
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
- Present address:
Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | - Peter Ertl
- Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
| |
Collapse
|
4
|
Memon MS, Kadir B, Kamani L, Chandio AA. Seroprevalence of Hepatitis-E Virus-Immunoglobulin G and its association with Chronic Liver Disease. Pak J Med Sci 2024; 40:1011-1016. [PMID: 38827844 PMCID: PMC11140340 DOI: 10.12669/pjms.40.5.8448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 06/05/2024] Open
Abstract
Background & Objective Viral hepatitis is a major public health concern in low-middle income countries. Hepatitis-E infection (HEV) is found globally but most prevalent in low-income countries especially those with poor sanitation systems, access to clean drinking water and health services. Superinfection with HEV in patients with chronic liver disease (CLD) can cause severe hepatic decompensation leading to increased morbidity and mortality. To determine the frequency of seroprevalence of Hepatitis-E virus Immunoglobulin g (IgG) and its association with chronic liver disease. Methods A cross-sectional study was conducted in Asian Institute of Medical Sciences, Hyderabad, Pakistan from January till May 2022. A total of 196 patients of aged ≥ 18 years, presenting in gastroenterology clinics were included in the study after informed consent. Result Among 196 patients, one third of patient were male (73.5%). Out of which 162 (82.7%) had liver disease and 34 (17.3%) were without liver disease. The median age of patient was 45 (33-51) years. The overall seroprevalence of HEV IgG among study population was 69.4%. HEV IgG was present in 114 and 22 in CLD and non CLD patients respectively. Multivariable regression shows no association between seroprevalence of HEV in CLD and non-CLD patient (AOR 1.02, 95% CI 0.45-2.313). Conclusion Our study showed high frequency of HEV seropositivity. No difference was observed in HEV seropositivity among CLD and non-CLD patients.
Collapse
Affiliation(s)
- Muhammad Sadik Memon
- Muhammad Sadik Memon, Professor, Asian Institute of Medical Sciences (AIMS) Hospital, Hyderabad, Pakistan
| | - Bushra Kadir
- Bushra Kadir, Consultant Gastroenterologist, Asian Institute of Medical Sciences (AIMS) Hospital, Hyderabad, Pakistan
| | - Lubna Kamani
- Lubna Kamani, Professor & Director GI Residency Program, Liaquat National Hospital, Karachi, Pakistan
| | - Ayaz Ahmed Chandio
- Ayaz Ahmed Chandio, Biostatician, Asian Institute of Medical Sciences (AIMS) Hospital, Hyderabad, Pakistan
| |
Collapse
|
5
|
Zhao Y, Lv X, Chen Y, Zhang C, Zhou D, Deng Y. Neuroinflammatory response on a newly combinatorial cell-cell interaction chip. Biomater Sci 2024; 12:2096-2107. [PMID: 38441146 DOI: 10.1039/d4bm00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Neuroinflammation is a common feature in various neurological disorders. Understanding neuroinflammation and neuro-immune interactions is of significant importance. However, the intercellular interactions in the inflammatory model are intricate. Microfluidic chips, with their complex micrometer-scale structures and real-time observation capabilities, offer unique advantages in tackling these complexities compared to other techniques. In this study, microfluidic chip technology was used to construct a microarray physical barrier structure with 15 μm spacing, providing well-defined cell growth areas and clearly delineated interaction channels. Moreover, an innovative hydrophilic treatment process on the glass surface facilitated long-term co-culture of cells. The developed neuroinflammation model on the chip revealed that SH-SY5Y cytotoxicity was predominantly influenced by co-cultured THP-1 cells. The co-culture model fostered complex interactions that may exacerbate cytotoxicity, including irregular morphological changes of cells, cell viability reduction, THP-1 cell migration, and the release of inflammatory factors. The integration of the combinatorial cell-cell interaction chip not only offers a clear imaging detection platform but also provides diverse data on cell migration distance, migration direction, and migration angle. Furthermore, the designed ample space for cell culture, along with microscale channels with fluid characteristics, allow for the study of inflammatory factor distribution patterns on the chip, offering vital theoretical data on biological relevance that conventional experiments cannot achieve. The fabricated user-friendly, reusable, and durable co-culture chip serves as a valuable in vitro tool, providing an intuitive platform for gaining insights into the complex mechanisms underlying neuroinflammation and other interacting models.
Collapse
Affiliation(s)
- Yimeng Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yu Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Chen Zhang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Di Zhou
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
6
|
Liu B, Dou J, Cao J. Nuclear respiratory factor 1 regulates super enhancer-controlled SPIDR to protect hepatocellular carcinoma cells from oxidative stress. BMC Gastroenterol 2024; 24:97. [PMID: 38438958 PMCID: PMC10913589 DOI: 10.1186/s12876-024-03183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Cellular response to oxidative stress plays significant roles in hepatocellular carcinoma (HCC) development, yet the exact mechanism by which HCC cells respond to oxidative stress remains poorly understood. This study aimed to investigate the role and mechanism of super enhancer (SE)-controlled genes in oxidative stress response of HCC cells. METHODS The GSE112221 dataset was used to identify SEs by HOMER. Functional enrichment of SE-controlled genes was performed by Metascape. Transcription factors were predicted using HOMER. Prognosis analysis was conducted using the Kaplan-Meier Plotter website. Expression correlation analysis was performed using the Tumor Immune Estimation Resource web server. NRF1 and SPIDR expression in HCC and normal liver tissues was analyzed based on the TCGA-LIHC dataset. ChIP-qPCR was used to detect acetylation of lysine 27 on histone 3 (H3K27ac) levels of SE regions of genes, and the binding of NRF1 to the SE of SPIDR. To mimic oxidative stress, HepG2 and Hep3B cells were stimulated with H2O2. The effects of NRF1 and SPIDR on the oxidative stress response of HCC cells were determined by the functional assays. RESULTS A total of 318 HCC-specific SE-controlled genes were identified. The functions of these genes was significant association with oxidative stress response. SPIDR and RHOB were enriched in the "response to oxidative stress" term and were chosen for validation. SE regions of SPIDR and RHOB exhibited strong H3K27ac modification, which was significantly inhibited by JQ1. JQ1 treatment suppressed the expression of SPIDR and RHOB, and increased reactive oxygen species (ROS) levels in HCC cells. TEAD2, TEAD3, NRF1, HINFP and TCFL5 were identified as potential transcription factors for HCC-specific SE-controlled genes related to oxidative stress response. The five transcription factors were positively correlated with SPIDR expression, with the highest correlation coefficient for NRF1. NRF1 and SPIDR expression was up-regulated in HCC tissues and cells. NRF1 activated SPIDR transcription by binding to its SE. Silencing SPIDR or NRF1 significantly promoted ROS accumulation in HCC cells. Under oxidative stress, silencing SPIDR or NRF1 increased ROS, malondialdehyde (MDA) and γH2AX levels, and decreased superoxide dismutase (SOD) levels and cell proliferation of HCC cells. Furthermore, overexpression of SPIDR partially offset the effects of NRF1 silencing on ROS, MDA, SOD, γH2AX levels and cell proliferation of HCC cells. CONCLUSION NRF1 driven SPIDR transcription by occupying its SE, protecting HCC cells from oxidative stress-induced damage. NRF1 and SPIDR are promising biomarkers for targeting oxidative stress in the treatment of HCC.
Collapse
Affiliation(s)
- Baowang Liu
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Jian Dou
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Sun YD, Zhang H, Li YM, Han JJ. Abnormal metabolism in hepatic stellate cells: Pandora's box of MAFLD related hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189086. [PMID: 38342420 DOI: 10.1016/j.bbcan.2024.189086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Metabolic associated fatty liver disease (MAFLD) is a significant risk factor for the development of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs), as key mediators in liver injury response, are believed to play a crucial role in the repair process of liver injury. However, in MAFLD patients, the normal metabolic and immunoregulatory mechanisms of HSCs become disrupted, leading to disturbances in the local microenvironment. Abnormally activated HSCs are heavily involved in the initiation and progression of HCC. The metabolic disorders and abnormal activation of HSCs not only initiate liver fibrosis but also contribute to carcinogenesis. In this review, we provide an overview of recent research progress on the relationship between the abnormal metabolism of HSCs and the local immune system in the liver, elucidating the mechanisms of immune imbalance caused by abnormally activated HSCs in MAFLD patients. Based on this understanding, we discuss the potential and challenges of metabolic-based and immunology-based mechanisms in the treatment of MAFLD-related HCC, with a specific focus on the role of HSCs in HCC progression and their potential as targets for anti-cancer therapy. This review aims to enhance researchers' understanding of the importance of HSCs in maintaining normal liver function and highlights the significance of HSCs in the progression of MAFLD-related HCC.
Collapse
Affiliation(s)
- Yuan-Dong Sun
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Hao Zhang
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China
| | - Yuan-Min Li
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Shandong Cancer Hospital and Institute Affiliated Shandong First Medical University, Shandong Academy of Medical Sciences, China.
| |
Collapse
|
8
|
Ahamed MA, Khalid MAU, Dong M, Politza AJ, Zhang Z, Kshirsagar A, Liu T, Guan W. Sensitive and specific CRISPR-Cas12a assisted nanopore with RPA for Monkeypox detection. Biosens Bioelectron 2024; 246:115866. [PMID: 38029710 PMCID: PMC10842690 DOI: 10.1016/j.bios.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Monkeypox virus (MPXV) poses a global health emergency, necessitating rapid, simple, and accurate detection to manage its spread effectively. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technique has emerged as a promising next-generation molecular diagnostic approach. Here, we developed a highly sensitive and specific CRISPR-Cas12a assisted nanopore (SCAN) with isothermal recombinase polymerase amplification (RPA) for MPXV detection. The RPA-SCAN method offers a sensitivity unachievable with unamplified SCAN while also addressing the obstacles of PCR-SCAN for point-of-care applications. We demonstrated that size-counting of single molecules enables analysis of reaction-time dependent distribution of the cleaved reporter. Our MPXV-specific RPA assay achieved a limit of detection (LoD) of 19 copies in a 50 μL reaction system. By integrating 2 μL of RPA amplifications into a 20 μL CRISPR reaction, we attained an overall LoD of 16 copies/μL (26.56 aM) of MPXV at a 95% confidence level using the SCAN sensor. We also verified the specificity of RPA-SCAN in distinguishing MPXV from cowpox virus with 100% accuracy. These findings suggest that the isothermal RPA-SCAN device is well-suited for highly sensitive and specific Monkeypox detection. Given its electronic nature and miniaturization potential, the RPA-SCAN system paves the way for diagnosing a wide array of other infectious pathogens at the point of care.
Collapse
Affiliation(s)
- Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, 16802, USA
| | | | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, 16802, USA
| | - Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, 16802, USA
| | - Zhikun Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park, 16802, USA
| | - Aneesh Kshirsagar
- Department of Electrical Engineering, Pennsylvania State University, University Park, 16802, USA
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, 16802, USA.
| |
Collapse
|
9
|
Kim H, Kim EJ, Ngo HV, Nguyen HD, Park C, Choi KH, Park JB, Lee BJ. Cellular Efficacy of Fattigated Nanoparticles and Real-Time ROS Occurrence Using Microfluidic Hepatocarcinoma Chip System: Effect of Anticancer Drug Solubility and Shear Stress. Pharmaceuticals (Basel) 2023; 16:1330. [PMID: 37765137 PMCID: PMC10536289 DOI: 10.3390/ph16091330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to evaluate the effectiveness of organ-on-chip system investigating simultaneous cellular efficacy and real-time reactive oxygen species (ROS) occurrence of anticancer drug-loaded nanoparticles (NPs) using hepatocarcinoma cells (HepG2) chip system under static and hepatomimicking shear stress conditions (5 dyne/cm2). Then, the role of hepatomimetic shear stress exposed to HepG2 and drug solubility were compared. The highly soluble doxorubicin (DOX) and poorly soluble paclitaxel (PTX) were chosen. Fattigated NPs (AONs) were formed via self-assembly of amphiphilic albumin (HSA)-oleic acid conjugate (AOC). Then, drug-loaded AONs (DOX-AON or PTX-AON) were exposed to a serum-free HepG2 medium at 37 °C and 5% carbon dioxide for 24 h using a real-time ROS sensor chip-based microfluidic system. The cellular efficacy and simultaneous ROS occurrence of free drugs and drug-loaded AONs were compared. The cellular efficacy of drug-loaded AONs varied in a dose-dependent manner and were consistently correlated with real-time of ROS occurrence. Drug-loaded AONs increased the intracellular fluorescence intensity and decreased the cellular efficacy compared to free drugs under dynamic conditions. The half-maximal inhibitory concentration (IC50) values of free DOX (13.4 μg/mL) and PTX (54.44 μg/mL) under static conditions decreased to 11.79 and 38.43 μg/mL, respectively, under dynamic conditions. Furthermore, DOX- and PTX-AONs showed highly decreased IC50 values of 5.613 and 21.86 μg/mL, respectively, as compared to free drugs under dynamic conditions. It was evident that cellular efficacy and real-time ROS occurrence were well-correlated and highly dependent on the drug-loaded nanostructure, drug solubility and physiological shear stress.
Collapse
Affiliation(s)
- Hoyoung Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| | - Eun-Ji Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| | - Hai V. Ngo
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| | - Hy D. Nguyen
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Kyung Hyun Choi
- Advanced Micro-Mechatronics Lab, Mechatronics Engineering, Jeju National University, Jeju 63243, Republic of Korea;
- BioSpero, Jeju 63309, Republic of Korea
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| |
Collapse
|
10
|
Farooqi M, Kang CU, Choi KH. Organ-on-Chip: Advancing Nutraceutical Testing for Improved Health Outcomes. ACS OMEGA 2023; 8:31632-31647. [PMID: 37692213 PMCID: PMC10483668 DOI: 10.1021/acsomega.3c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The recent global wave of organic food consumption and the vitality of nutraceuticals for human health benefits has driven the need for applying scientific methods for phytochemical testing. Advanced in vitro models with greater physiological relevance than conventional in vitro models are required to evaluate the potential benefits and toxicity of nutraceuticals. Organ-on-chip (OOC) models have emerged as a promising alternative to traditional in vitro models and animal testing due to their ability to mimic organ pathophysiology. Numerous studies have demonstrated the effectiveness of OOC models in identifying pharmaceutically relevant compounds and accurately assessing compound-induced toxicity. This review examines the utility of traditional in vitro nutraceutical testing models and discusses the potential of OOC technology as a preclinical testing tool to examine the biomedical potential of nutraceuticals by reducing the need for animal testing. Exploring the capabilities of OOC models in carrying out plant-based bioactive compounds can significantly contribute to the authentication of nutraceuticals and drug discovery and validate phytochemicals medicinal characteristics. Overall, OOC models can facilitate a more systematic and efficient assessment of nutraceutical compounds while overcoming the limitations of current traditional in vitro models.
Collapse
Affiliation(s)
- Muhammad
Awais Farooqi
- Department of Mechatronics
Engineering, Jeju National University, Jeju, Jeju-do 690756, Republic
of Korea
| | - Chul-Ung Kang
- Department of Mechatronics
Engineering, Jeju National University, Jeju, Jeju-do 690756, Republic
of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics
Engineering, Jeju National University, Jeju, Jeju-do 690756, Republic
of Korea
| |
Collapse
|
11
|
Imtiaz C, Farooqi MA, Bhatti T, Lee J, Moin R, Kang CU, Farooqi HMU. Focused Ultrasound, an Emerging Tool for Atherosclerosis Treatment: A Comprehensive Review. Life (Basel) 2023; 13:1783. [PMID: 37629640 PMCID: PMC10455721 DOI: 10.3390/life13081783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Focused ultrasound (FUS) has emerged as a promising noninvasive therapeutic modality for treating atherosclerotic arterial disease. High-intensity focused ultrasound (HIFU), a noninvasive and precise modality that generates high temperatures at specific target sites within tissues, has shown promising results in reducing plaque burden and improving vascular function. While low-intensity focused ultrasound (LIFU) operates at lower energy levels, promoting mild hyperthermia and stimulating tissue repair processes. This review article provides an overview of the current state of HIFU and LIFU in treating atherosclerosis. It focuses primarily on the therapeutic potential of HIFU due to its higher penetration and ability to achieve atheroma disruption. The review summarizes findings from animal models and human trials, covering the effects of FUS on arterial plaque and arterial wall thrombolysis in carotid, coronary and peripheral arteries. This review also highlights the potential benefits of focused ultrasound, including its noninvasiveness, precise targeting, and real-time monitoring capabilities, making it an attractive approach for the treatment of atherosclerosis and emphasizes the need for further investigations to optimize FUS parameters and advance its clinical application in managing atherosclerotic arterial disease.
Collapse
Affiliation(s)
- Cynthia Imtiaz
- Ocean and Biomedical Ultrasound Laboratory, Department of Ocean System Engineering, Jeju National University, Jeju-si 63243, Republic of Korea; (C.I.)
| | - Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Theophilus Bhatti
- Interdisciplinary Department of Advanced Convergence Technology and Science, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jooho Lee
- Ocean and Biomedical Ultrasound Laboratory, Department of Ocean System Engineering, Jeju National University, Jeju-si 63243, Republic of Korea; (C.I.)
| | - Ramsha Moin
- Department of Pediatrics, Elaj Hospital, Gujranwala 52250, Pakistan
| | - Chul Ung Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Republic of Korea
| | | |
Collapse
|
12
|
Zouaghi N, Aziz S, Shah I, Aamouche A, Jung DW, Lakssir B, Ressami EM. Miniaturized Rapid Electrochemical Immunosensor Based on Screen Printed Carbon Electrodes for Mycobacterium tuberculosis Detection. BIOSENSORS 2023; 13:589. [PMID: 37366954 PMCID: PMC10296126 DOI: 10.3390/bios13060589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
In 2019, over 21% of an estimated 10 million new tuberculosis (TB) patients were either not diagnosed at all or diagnosed without being reported to public health authorities. It is therefore critical to develop newer and more rapid and effective point-of-care diagnostic tools to combat the global TB epidemic. PCR-based diagnostic methods such as Xpert MTB/RIF are quicker than conventional techniques, but their applicability is restricted by the need for specialized laboratory equipment and the substantial cost of scaling-up in low- and middle-income countries where the burden of TB is high. Meanwhile, loop-mediated isothermal amplification (LAMP) amplifies nucleic acids under isothermal conditions with a high efficiency, helps in the early detection and identification of infectious diseases, and can be performed without the need for sophisticated thermocycling equipment. In the present study, the LAMP assay was integrated with screen-printed carbon electrodes and a commercial potentiostat for real time cyclic voltammetry analysis (named as the LAMP-Electrochemical (EC) assay). The LAMP-EC assay was found to be highly specific to TB-causing bacteria and capable of detecting even a single copy of the Mycobacterium tuberculosis (Mtb) IS6110 DNA sequence. Overall, the LAMP-EC test developed and evaluated in the present study shows promise to become a cost-effective tool for rapid and effective diagnosis of TB.
Collapse
Affiliation(s)
- Noura Zouaghi
- LISA Laboratory, National Applied Science School, Cadi Ayyad University, Marrakech 40000, Morocco; (N.Z.); (A.A.)
- Moroccan Foundation for Advanced Science, Innovation and Research, Digitalization & Microelectronics Smart Devices Laboratory, Rabat Design Center, Rabat 10112, Morocco; (B.L.); (E.M.R.)
| | - Shahid Aziz
- Department of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-Si 63243, Republic of Korea;
- Institute of Basic Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju-Si 63243, Republic of Korea
| | - Imran Shah
- Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Risalpur 24090, Pakistan;
| | - Ahmed Aamouche
- LISA Laboratory, National Applied Science School, Cadi Ayyad University, Marrakech 40000, Morocco; (N.Z.); (A.A.)
| | - Dong-won Jung
- Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-Si 63243, Republic of Korea
| | - Brahim Lakssir
- Moroccan Foundation for Advanced Science, Innovation and Research, Digitalization & Microelectronics Smart Devices Laboratory, Rabat Design Center, Rabat 10112, Morocco; (B.L.); (E.M.R.)
| | - El Mostafa Ressami
- Moroccan Foundation for Advanced Science, Innovation and Research, Digitalization & Microelectronics Smart Devices Laboratory, Rabat Design Center, Rabat 10112, Morocco; (B.L.); (E.M.R.)
| |
Collapse
|
13
|
Kang MJ, Cho YW, Kim TH. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. BIOSENSORS 2023; 13:bios13050501. [PMID: 37232862 DOI: 10.3390/bios13050501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
Non-invasive, non-destructive, and label-free sensing techniques are required to monitor real-time stem cell differentiation. However, conventional analysis methods, such as immunocytochemistry, polymerase chain reaction, and Western blot, involve invasive processes and are complicated and time-consuming. Unlike traditional cellular sensing methods, electrochemical and optical sensing techniques allow non-invasive qualitative identification of cellular phenotypes and quantitative analysis of stem cell differentiation. In addition, various nano- and micromaterials with cell-friendly properties can greatly improve the performance of existing sensors. This review focuses on nano- and micromaterials that have been reported to improve sensing capabilities, including sensitivity and selectivity, of biosensors towards target analytes associated with specific stem cell differentiation. The information presented aims to motivate further research into nano-and micromaterials with advantageous properties for developing or improving existing nano-biosensors to achieve the practical evaluation of stem cell differentiation and efficient stem cell-based therapies.
Collapse
Affiliation(s)
- Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
14
|
Nazari H, Shrestha J, Naei VY, Bazaz SR, Sabbagh M, Thiery JP, Warkiani ME. Advances in TEER measurements of biological barriers in microphysiological systems. Biosens Bioelectron 2023; 234:115355. [PMID: 37159988 DOI: 10.1016/j.bios.2023.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Biological barriers are multicellular structures that precisely regulate the transport of ions, biomolecules, drugs, cells, and other organisms. Transendothelial/epithelial electrical resistance (TEER) is a label-free method for predicting the properties of biological barriers. Understanding the mechanisms that control TEER significantly enhances our knowledge of the physiopathology of different diseases and aids in the development of new drugs. Measuring TEER values within microphysiological systems called organ-on-a-chip devices that simulate the microenvironment, architecture, and physiology of biological barriers in the body provides valuable insight into the behavior of barriers in response to different drugs and pathogens. These integrated systems should increase the accuracy, reproducibility, sensitivity, resolution, high throughput, speed, cost-effectiveness, and reliable predictability of TEER measurements. Implementing advanced micro and nanoscale manufacturing techniques, surface modification methods, biomaterials, biosensors, electronics, and stem cell biology is necessary for integrating TEER measuring systems with organ-on-chip technology. This review focuses on the applications, advantages, and future perspectives of integrating organ-on-a-chip technology with TEER measurement methods for studying biological barriers. After briefly reviewing the role of TEER in the physiology and pathology of barriers, standard techniques for measuring TEER, including Ohm's law and impedance spectroscopy, and commercially available devices are described. Furthermore, advances in TEER measurement are discussed in multiple barrier-on-a-chip system models representing different organs. Finally, we outline future trends in implementing advanced technologies to design and fabricate nanostructured electrodes, complicated microfluidic chips, and membranes for more advanced and accurate TEER measurements.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Milad Sabbagh
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia; Institute of Molecular Medicine, Sechenov University, 119991, Moscow, Russia.
| |
Collapse
|
15
|
Sunildutt N, Parihar P, Chethikkattuveli Salih AR, Lee SH, Choi KH. Revolutionizing drug development: harnessing the potential of organ-on-chip technology for disease modeling and drug discovery. Front Pharmacol 2023; 14:1139229. [PMID: 37180709 PMCID: PMC10166826 DOI: 10.3389/fphar.2023.1139229] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
The inefficiency of existing animal models to precisely predict human pharmacological effects is the root reason for drug development failure. Microphysiological system/organ-on-a-chip technology (organ-on-a-chip platform) is a microfluidic device cultured with human living cells under specific organ shear stress which can faithfully replicate human organ-body level pathophysiology. This emerging organ-on-chip platform can be a remarkable alternative for animal models with a broad range of purposes in drug testing and precision medicine. Here, we review the parameters employed in using organ on chip platform as a plot mimic diseases, genetic disorders, drug toxicity effects in different organs, biomarker identification, and drug discoveries. Additionally, we address the current challenges of the organ-on-chip platform that should be overcome to be accepted by drug regulatory agencies and pharmaceutical industries. Moreover, we highlight the future direction of the organ-on-chip platform parameters for enhancing and accelerating drug discoveries and personalized medicine.
Collapse
Affiliation(s)
- Naina Sunildutt
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | - Pratibha Parihar
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| | | | - Sang Ho Lee
- College of Pharmacy, Jeju National University, Jeju, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
16
|
Monteduro AG, Rizzato S, Caragnano G, Trapani A, Giannelli G, Maruccio G. Organs-on-chips technologies – A guide from disease models to opportunities for drug development. Biosens Bioelectron 2023; 231:115271. [PMID: 37060819 DOI: 10.1016/j.bios.2023.115271] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 11/24/2022] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Current in-vitro 2D cultures and animal models present severe limitations in recapitulating human physiopathology with striking discrepancies in estimating drug efficacy and side effects when compared to human trials. For these reasons, microphysiological systems, organ-on-chip and multiorgans microdevices attracted considerable attention as novel tools for high-throughput and high-content research to achieve an improved understanding of diseases and to accelerate the drug development process towards more precise and eventually personalized standards. This review takes the form of a guide on this fast-growing field, providing useful introduction to major themes and indications for further readings. We start analyzing Organs-on-chips (OOC) technologies for testing the major drug administration routes: (1) oral/rectal route by intestine-on-a-chip, (2) inhalation by lung-on-a-chip, (3) transdermal by skin-on-a-chip and (4) intravenous through vascularization models, considering how drugs penetrate in the bloodstream and are conveyed to their targets. Then, we focus on OOC models for (other) specific organs and diseases: (1) neurodegenerative diseases with brain models and blood brain barriers, (2) tumor models including their vascularization, organoids/spheroids, engineering and screening of antitumor drugs, (3) liver/kidney on chips and multiorgan models for gastrointestinal diseases and metabolic assessment of drugs and (4) biomechanical systems recapitulating heart, muscles and bones structures and related diseases. Successively, we discuss technologies and materials for organ on chips, analyzing (1) microfluidic tools for organs-on-chips, (2) sensor integration for real-time monitoring, (3) materials and (4) cell lines for organs on chips. (Nano)delivery approaches for therapeutics and their on chip assessment are also described. Finally, we conclude with a critical discussion on current significance/relevance, trends, limitations, challenges and future prospects in terms of revolutionary impact on biomedical research, preclinical models and drug development.
Collapse
Affiliation(s)
- Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Giusi Caragnano
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology IRCCS "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento and Institute of Nanotechnology, CNR-Nanotec and INFN Sezione di Lecce, Via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
17
|
Liu J, Zhao W, Qin M, Luan X, Li Y, Zhao Y, Huang C, Zhang L, Li M. Real-time measurement of the trans-epithelial electrical resistance in an organ-on-a-chip during cell proliferation. Analyst 2023; 148:516-524. [PMID: 36625356 DOI: 10.1039/d2an01931k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The trans-epithelial electrical resistance (TEER) is widely used to quantitatively evaluate cellular barrier function at the organ level in vitro. The measurement of the TEER in organ-on-chips (organ chips) plays a significant role in medical and pharmacological research. However, due to the limitation of the electrical equivalent model for organ chips, the existing TEER measurements usually neglect the changes of the TEER during cell proliferation, resulting in the low accuracy of the measurements. Here, we proposed a new whole-region model of the TEER and developed a real-time TEER measurement system that contains an organ chip with a plate electrode. A whole region circuit model considering the impedance of the non-cell covered region was also established, which enables TEER measurements to be independent of the changes in the cell covered region. The impedance of the non-cell covered region is here attributed to the resistance of the porous membrane. By combining the real-time measurement system and the whole region model, subtle changes in cellular activity during the proliferation stage were measured continuously every 6 minutes and a more sensitive TEER response was obtained. Furthermore, the TEER measurement accuracy was also verified by the real-time measurement of the TEER with stimulation using the permeability enhancer ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA). The obtained results indicated that the new proposed whole region model and the real-time measurement system have higher accuracy and greater sensitivity than the traditional model.
Collapse
Affiliation(s)
- Jinlong Liu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenjie Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Meiyan Qin
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaofeng Luan
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuang Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yang Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chengjun Huang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lingqian Zhang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Mingxiao Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
18
|
Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Min S, Byeon Y, Kim M, Lee Y, Lee SH, Lee Y, Farooqi HMU, Lee HK, Paeng DG. Production enhancement of human adipose-derived mesenchymal stem cells by low-intensity ultrasound stimulation. Sci Rep 2022; 12:22041. [PMID: 36543825 PMCID: PMC9772213 DOI: 10.1038/s41598-022-24742-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Low-intensity ultrasound (LIUS) enhances the proliferation rate of various mammalian stem cells through mechanical stimulation. This study quantitively finds suitable LIUS stimulation parameters for increasing the proliferation rate of human adipose-derived mesenchymal stem cells (hAdMSCs) for mass production. Various stimulation conditions of LIUS were assessed based on the beam pattern of the ultrasonic transducer and the attenuation of the sound waves. Using optimal LIUS stimulation parameters for enhancing proliferation of hAdMSCs taken from bromodeoxyuridine (BrdU) incorporation assay, long-term culture of hAdMSCs was performed for 16 days. The resultant hAdMSCs were characterized for various biomarkers such as CD34-, CD45-, CD73+, CD95+, CD105+ and cytological staining and a cytokine array assay. LIUS stimulation parameters found for enhancing the hAdMSCs proliferation were the frequency of 5 MHz, an intensity of 300 mWcm-2, a duration of 10 min per day, and continuous waves with a 100% duty cycle. The LIUS stimulated hAdMSCs group showed a 3.25-fold increase in the cell number compared to the control group after 16 days of culture. By confirming the effects of quantitatively measured LIUS stimulation on the enhancement of hAdMSCs proliferation, this study may be a foundation for the applications of LIUS stimulation in the industrial-scale production of hAdMSCs.
Collapse
Affiliation(s)
- Soohong Min
- EHL Bio Inc, Gyeonggi, South Korea ,grid.411277.60000 0001 0725 5207Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | | | - Min Kim
- EHL Bio Inc, Gyeonggi, South Korea
| | | | | | | | - Hafiz Muhammad Umer Farooqi
- grid.411277.60000 0001 0725 5207Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | | | - Dong-Guk Paeng
- grid.411277.60000 0001 0725 5207Department of Ocean System Engineering, Jeju National University, Jeju, South Korea ,grid.27755.320000 0000 9136 933XDepartment of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
20
|
Koo KM, Kim CD, Ju FN, Kim H, Kim CH, Kim TH. Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability. BIOSENSORS 2022; 12:bios12121162. [PMID: 36551129 PMCID: PMC9775431 DOI: 10.3390/bios12121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 05/28/2023]
Abstract
Redox reactions in live cells are generated by involving various redox biomolecules for maintaining cell viability and functions. These qualities have been exploited in the development of clinical monitoring, diagnostic approaches, and numerous types of biosensors. Particularly, electrochemical biosensor-based live-cell detection technologies, such as electric cell-substrate impedance (ECIS), field-effect transistors (FETs), and potentiometric-based biosensors, are used for the electrochemical-based sensing of extracellular changes, genetic alterations, and redox reactions. In addition to the electrochemical biosensors for live-cell detection, cancer and stem cells may be immobilized on an electrode surface and evaluated electrochemically. Various nanomaterials and cell-friendly ligands are used to enhance the sensitivity of electrochemical biosensors. Here, we discuss recent advances in the use of electrochemical sensors for determining cell viability and function, which are essential for the practical application of these sensors as tools for pharmaceutical analysis and toxicity testing. We believe that this review will motivate researchers to enhance their efforts devoted to accelerating the development of electrochemical biosensors for future applications in the pharmaceutical industry and stem cell therapeutics.
Collapse
|
21
|
Abakumova T, Vaneev A, Naumenko V, Shokhina A, Belousov V, Mikaelyan A, Balysheva K, Gorelkin P, Erofeev A, Zatsepin T. Intravital electrochemical nanosensor as a tool for the measurement of reactive oxygen/nitrogen species in liver diseases. J Nanobiotechnology 2022; 20:497. [DOI: 10.1186/s12951-022-01688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractReactive oxygen/nitrogen species (ROS/RNS) are formed during normal cellular metabolism and contribute to its regulation, while many pathological processes are associated with ROS/RNS imbalances. Modern methods for measuring ROS/RNS are mainly based on the use of inducible fluorescent dyes and protein-based sensors, which have several disadvantages for in vivo use. Intravital electrochemical nanosensors can be used to quantify ROS/RNS with high sensitivity without exogenous tracers and allow dynamic ROS/RNS measurements in vivo. Here, we developed a method for quantifying total ROS/RNS levels in the liver and evaluated our setup in live mice using three common models of liver disease associated with ROS activation: acute liver injury with CCl4, partial hepatectomy (HE), and induced hepatocellular carcinoma (HCC). We have demonstrated using intravital electrochemical detection that any exposure to the peritoneum in vivo leads to an increase in total ROS/RNS levels, from a slight increase to an explosion, depending on the procedure. Analysis of the total ROS/RNS level in a partial hepatectomy model revealed oxidative stress, both in mice 24 h after HE and in sham-operated mice. We quantified dose-dependent ROS/RNS production in CCl4-induced injury with underlying neutrophil infiltration and cell death. We expect that in vivo electrochemical measurements of reactive oxygen/nitrogen species in the liver may become a routine approach that provides valuable data in research and preclinical studies.
Collapse
|
22
|
Wang EY, Zhao Y, Okhovatian S, Smith JB, Radisic M. Intersection of stem cell biology and engineering towards next generation in vitro models of human fibrosis. Front Bioeng Biotechnol 2022; 10:1005051. [PMID: 36338120 PMCID: PMC9630603 DOI: 10.3389/fbioe.2022.1005051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 08/31/2023] Open
Abstract
Human fibrotic diseases constitute a major health problem worldwide. Fibrosis involves significant etiological heterogeneity and encompasses a wide spectrum of diseases affecting various organs. To date, many fibrosis targeted therapeutic agents failed due to inadequate efficacy and poor prognosis. In order to dissect disease mechanisms and develop therapeutic solutions for fibrosis patients, in vitro disease models have gone a long way in terms of platform development. The introduction of engineered organ-on-a-chip platforms has brought a revolutionary dimension to the current fibrosis studies and discovery of anti-fibrotic therapeutics. Advances in human induced pluripotent stem cells and tissue engineering technologies are enabling significant progress in this field. Some of the most recent breakthroughs and emerging challenges are discussed, with an emphasis on engineering strategies for platform design, development, and application of machine learning on these models for anti-fibrotic drug discovery. In this review, we discuss engineered designs to model fibrosis and how biosensor and machine learning technologies combine to facilitate mechanistic studies of fibrosis and pre-clinical drug testing.
Collapse
Affiliation(s)
- Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jacob B. Smith
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Choroidal Thickness in Different Patterns of Diabetic Macular Edema. J Clin Med 2022; 11:jcm11206169. [PMID: 36294492 PMCID: PMC9605356 DOI: 10.3390/jcm11206169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
This observational study investigated the changes in choroidal thickness (ChT) in different patterns of diabetic macular edema (DME) based on image processing using enhanced-depth imaging spectral-domain optical coherence tomography (EDI-SD-OCT). Participants with ocular conditions affecting the fundus view, including retinal diseases, were excluded. After observing the patient’s medical record, multicolor fundus photos, thickness maps, and subtypes of DME were diagnosed according to the criteria reported by the Early Treatment Diabetic Retinopathy Study (ETDRS). Edema was classified as focal or diffuse and was subdivided into cystic macular edema (CME), CME with subretinal fluid (CME+), and spongy macular edema (SME). Image processing was performed on the B-scan images from SD-OCT to segment the choroid layer and obtain the choroid thickness. A total of 159 eyes of 81 patients (46 males and 35 females; 57.53 ± 9.78 years of age), and 57 eyes of 30 healthy individuals (age 57.34 ± 8.76 years) were enrolled in this study. Out of 159 eyes, 76 had focal macular edema (FME), 13 exhibited SME, and 51 presented CME. Among those with cystic macular edema, 19 eyes showed subretinal fluid (CME+). The average choroidal thickness in FME, diffuse SME, CME, and CME+ was 216.95 ± 52.94 µm, 243.00 ± 46.34 µm, 221.38 ± 60.78 µm, and 249.63 ± 53.90 µm, respectively. The average choroidal thickness in age-matched controls was 213.88 ± 45.60 µm. Choroidal thickness increases with the severity of edema; choroidal thickness was higher in diffuse macular edema than in FME. However, choroidal thickness increased in cystic macular edema with subretinal fluid (CME+).
Collapse
|
24
|
Liu M, Xiang Y, Yang Y, Long X, Xiao Z, Nan Y, Jiang Y, Qiu Y, Huang Q, Ai K. State-of-the-art advancements in Liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosens Bioelectron 2022; 218:114758. [DOI: 10.1016/j.bios.2022.114758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 12/12/2022]
|
25
|
Seroprevalence of Hepatitis E Virus Antibodies (IgG) in the Community of Rawalpindi. LIVERS 2022. [DOI: 10.3390/livers2030009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Knowledge regarding the prevalence of the hepatitis E virus (HEV) in the general population can indicate public health and personal hygiene practices in a community. HEV spreads through the fecal-oral route and contaminates drinking water through sewage. Moreover, poverty also contributes to its prevalence in developing countries, including Pakistan. A cross-sectional study was conducted on 650 blood samples taken from suspected patients of HEV in the Rawalpindi cantonment area (Pakistan) from April to November 2019 at the Department of Virology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, Pakistan. Out of them, 444 (68.15%) were male and 206 (31.85%) were female; the detection of anti-HEV IgG antibodies was carried out using a commercial Anti-Hepatitis E virus antibody (IgG) ELISA Kit. The overall anti-HEV IgG prevalence percentages were 19.23% and 4.77% in males and females, respectively. Patients were categorized into eight groups with ages ranging between 1 and 90 years. HEV IgG seroprevalence was the highest in ages 31–40 (6.46%). The study concluded that males aged 40 or above were susceptible and infected with hepatitis E.
Collapse
|
26
|
Chethikkattuveli Salih AR, Asif A, Samantasinghar A, Umer Farooqi HM, Kim S, Choi KH. Renal Hypoxic Reperfusion Injury-on-Chip Model for Studying Combinational Vitamin Therapy. ACS Biomater Sci Eng 2022; 8:3733-3740. [PMID: 35878885 DOI: 10.1021/acsbiomaterials.2c00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renal ischemic-reperfusion injury decreases the chances of long-term kidney graft survival and may lead to the loss of a transplanted kidney. During organ excision, the cycle of warm ischemia from the donor and cold ischemia is due to storage in a cold medium after revascularization following organ transplantation. The reperfusion of the kidney graft activates several pathways that generate reactive oxygen species, forming a hypoxic-reperfusion injury. Animal models are generally used to model and investigate renal hypoxic-reperfusion injury. However, these models face ethical concerns and present a lack of robustness and intraspecies genetic variations, among other limitations. We introduce a microfluidics-based renal hypoxic-reperfusion (RHR) injury-on-chip model to overcome current limitations. Primary human renal proximal tubular epithelial cells and primary human endothelial cells were cultured on the apical and basal sides of a porous membrane. Hypoxic and normoxic cell culture media were used to create the RHR injury-on-chip model. The disease model was validated by estimating various specific hypoxic biomarkers of RHR. Furthermore, retinol, ascorbic acid, and combinational doses were tested to devise a therapeutic solution for RHR. We found that combinational vitamin therapy can decrease the chances of RHR injury. The proposed RHR injury-on-chip model can serve as an alternative to animal testing for injury investigation and the identification of new therapies.
Collapse
Affiliation(s)
| | - Arun Asif
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea.,BioSpero Inc., Jeju Science Park, Jeju-si, Jeju-do 63243 Korea.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Hafiz Muhammad Umer Farooqi
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do 63243, Republic of Korea
| |
Collapse
|
27
|
Circadian and Tidal Changes in Snapping Shrimp (Alpheus brevicristatus) Sound Observed by a Moored Hydrophone in the Coastal Sea of Western Jeju. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous studies have evaluated the acoustic characteristics of soniferous snapping shrimp, but a few are based on long-term mooring measurements. In this study, underwater ambient noise signals were collected from a hydrophone moored 10 m from the sea bed in the coastal sea of western Jeju, South Korea, from mid-September 2019 for 90 days to analyze the variation in the sound of snapping shrimp. The kernel signal and a threshold value were utilized to identify the snapping shrimp, and the snap rate per minute was computed for quantitative analysis. The results show that the mean and standard deviation of the snap rate in the western sea of Jeju was 2132 ± 432 per minute during the whole measurement period. The surface water temperature and tidal level decreased by 7 °C from 25 °C and 50 cm from 190 cm, respectively, over 90 days. The snap rate decreased from September mainly due to the decrease in water temperature by 71 times per minute for every 1 °C decrease. It showed a circadian cycle, increasing by 17~24% at sunrise and sunset compared to the daytime minimum. The snap rate at night was the highest in late summer but the rate dropped like the one during the day in late fall. The snap rate at high tide was 13% higher on average than at low tide. The circadian and tidal changes of the snapping shrimp sound from long-term mooring measurements may be used as primary data for underwater ambient noise and the ecological behavior of snapping shrimp.
Collapse
|
28
|
Khalid MAU, Kim KH, Chethikkattuveli Salih AR, Hyun K, Park SH, Kang B, Soomro AM, Ali M, Jun Y, Huh D, Cho H, Choi KH. High performance inkjet printed embedded electrochemical sensors for monitoring hypoxia in a gut bilayer microfluidic chip. LAB ON A CHIP 2022; 22:1764-1778. [PMID: 35244110 DOI: 10.1039/d1lc01079d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing devices have shown tremendous potential for monitoring state-of-the-art organ chip devices. However, challenges like miniaturization while maintaining higher performance, longer operating times for continuous monitoring, and fabrication complexities limit their use. Herein simple, low-cost, and solution-processible inkjet dispenser printing of embedded electrochemical sensors for dissolved oxygen (DO) and reactive oxygen species (ROS) is proposed for monitoring developmental (initially normoxia) and induced hypoxia in a custom-developed gut bilayer microfluidic chip platform for 6 days. The DO sensors showed a high sensitivity of 31.1 nA L mg-1 with a limit of detection (LOD) of 0.67 mg L-1 within the 0-9 mg L-1 range, whereas the ROS sensor had a higher sensitivity of 1.44 nA μm-1 with a limit of detection of 1.7 μm within the 0-300 μm range. The dynamics of the barrier tight junctions are quantified with the help of an in-house developed trans-epithelial-endothelial electrical impedance (TEEI) sensor. Immunofluorescence staining was used to evaluate the expressions of HIF-1α and tight junction protein (TJP) ZO-1. This platform can also be used to enhance bioavailability assays, drug transport studies under an oxygen-controlled environment, and even other barrier organ models, as well as for various applications like toxicity testing, disease modeling and drug screening.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Khalid
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- School of Mechanical Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Kyung Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | | | - Kinam Hyun
- BioSpero, Inc., Jeju-do, Republic of Korea
| | | | - Bohye Kang
- BioSpero, Inc., Jeju-do, Republic of Korea
| | - Afaque Manzoor Soomro
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- Department of Electrical Engineering, Sukkur IBA University, Sukkur, Sindh, Pakistan
| | - Muhsin Ali
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | - Yesl Jun
- Center for Bio Platform Technology, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Republic of Korea.
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Heeyeong Cho
- Center for Bio Platform Technology, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Republic of Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- BioSpero, Inc., Jeju-do, Republic of Korea
| |
Collapse
|
29
|
Heo YJ, Lee N, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Empagliflozin Reduces the Progression of Hepatic Fibrosis in a Mouse Model and Inhibits the Activation of Hepatic Stellate Cells via the Hippo Signalling Pathway. Biomedicines 2022; 10:biomedicines10051032. [PMID: 35625768 PMCID: PMC9138578 DOI: 10.3390/biomedicines10051032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatic fibrosis is the excessive production and deposition of the extracellular matrix, resulting in the activation of the fibrogenic phenotype of hepatic stellate cells (HSCs). The Hippo/Yes-associated protein (YAP) signalling pathway is a highly conserved kinase cascade that is critical in regulating cell proliferation, differentiation, and survival, and controls stellate cell activation. Empagliflozin, a sodium-glucose cotransporter type-2 inhibitor, is an antidiabetic drug that may prevent fibrotic progression by reducing hepatic steatosis and inflammation. However, little is known about its mechanism of action in liver fibrosis. In this study, we used male C57 BL/6 J mice fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) as a model for hepatic fibrosis. For 5 weeks, the mice received either a vehicle or empagliflozin based on their assigned group. Empagliflozin attenuated CDAHFD-induced liver fibrosis. Thereafter, we identified the Hippo pathway, along with its effector, YAP, as a key pathway in the mouse liver. Hippo signalling is inactivated in the fibrotic liver, but empagliflozin treatment activated Hippo signalling and decreased YAP activity. In addition, empagliflozin downregulated the expression of pro-fibrogenic genes and activated Hippo signalling in HSCs. We identified a mechanism by which empagliflozin ameliorates liver fibrosis.
Collapse
Affiliation(s)
- Yu-Jung Heo
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-E.C.); (Y.K.)
| | - Ja-Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Seung-Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Dae-Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-E.C.); (Y.K.)
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
| | - Hae-Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Korea; (Y.-J.H.); (N.L.); (J.-Y.J.); (S.-J.H.); (D.-J.K.); (K.-W.L.)
- Correspondence: ; Tel.: +82-31-219-4498
| |
Collapse
|
30
|
Kanabekova P, Kadyrova A, Kulsharova G. Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. MICROMACHINES 2022; 13:428. [PMID: 35334720 PMCID: PMC8950395 DOI: 10.3390/mi13030428] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Mortality from liver disease conditions continues to be very high. As liver diseases manifest and progress silently, prompt measures after diagnosis are essential in the treatment of these conditions. Microfluidic organs-on-chip platforms have significant potential for the study of the pathophysiology of liver diseases in vitro. Different liver-on-a-chip microphysiological platforms have been reported to study cell-signaling pathways such as those activating stellate cells within liver diseases. Moreover, the drug efficacy for liver conditions might be evaluated on a cellular metabolic level. Here, we present a comprehensive review of microphysiological platforms used for modelling liver diseases. First, we briefly introduce the concept and importance of organs-on-a-chip in studying liver diseases in vitro, reflecting on existing reviews of healthy liver-on-a-chip platforms. Second, the techniques of cell cultures used in the microfluidic devices, including 2D, 3D, and spheroid cells, are explained. Next, the types of liver diseases (NAFLD, ALD, hepatitis infections, and drug injury) on-chip are explained for a further comprehensive overview of the design and methods of developing liver diseases in vitro. Finally, some challenges in design and existing solutions to them are reviewed.
Collapse
Affiliation(s)
- Perizat Kanabekova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Adina Kadyrova
- Department of Biological Sciences, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Gulsim Kulsharova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| |
Collapse
|
31
|
Study of the Anticancer Potential of Plant Extracts Using Liver Tumor Microphysiological System. Life (Basel) 2022; 12:life12020135. [PMID: 35207423 PMCID: PMC8880716 DOI: 10.3390/life12020135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
Background: Plants have been considered a vital source of modern pharmaceutics since the paleolithic age. Contemporary chemotherapeutic drugs for cancer therapy are chemical entities sourced from plants. However, synthetic drugs or their derivatives come with severe to moderate side effects for human health. Hence, the quest to explore and discover plant-based novel anticancer drugs is ongoing. Anticancer activities are the primary method to estimate the potential and efficacy of an extract or compound for drug discovery. However, traditional in vitro anticancer activity assays often show poor efficacy due to the lack of in-vivo-like cellular environment. In comparison, the animal-based in vivo assays lack human genetic makeup and have ethical concerns. Aim: This study aimed to overcome the limitations of traditional cell-culture-based anticancer assays and find the most suitable assay for anticancer activity of plant extracts. We first reported utilizing a liver tumor microphysiological system in the anticancer effect assessment of plant extracts. Methodology: Methanolic extracts of Acer cappadocicum Gled were used to assess anticancer activity against liver tumor microphysiological system (MPS), and cell viability, liver function tests, and antioxidant enzyme activities were performed. Additionally, an embedded transepithelial electrical resistance sensor was utilized for the real-time monitoring of the liver tumor MPS. The results were also compared with the traditional cell culture model. Results: The study demonstrated the superiority of the TEER sensor-based liver tumor MPS by its better anticancer activity based on cell viability and biomarker analysis compared to the traditional in vitro cell culture model. The anticancer effects of the plant extracts were successfully observed in real time, and methanolic extracts of Acer cappadocicum Gled increased the alanine transaminase and aspartate aminotransferase secretion, which may reveal the different mechanisms of these extracts and suggest a clue for the future molecular study of the anticancer pathways. Conclusion: Our results show that the liver tumor microphysiological system could be a better platform for plant-based anticancer activity assessment than traditional cell culture models.
Collapse
|
32
|
Kausar F, Kim KH, Farooqi HMU, Farooqi MA, Kaleem M, Waqar R, Khalil AAK, Khuda F, Abdul Rahim CS, Hyun K, Choi KH, Mumtaz AS. Evaluation of Antimicrobial and Anticancer Activities of Selected Medicinal Plants of Himalayas, Pakistan. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010048. [PMID: 35009052 PMCID: PMC8747275 DOI: 10.3390/plants11010048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 05/28/2023]
Abstract
Medicinal plants are known for their diverse use in the traditional medicine of the Himalayan region of Pakistan. The present study is designed to investigate the anticancer and antimicrobial activities of Prunus cornuta and Quercus semicarpifolia. The anticancer activity was performed using cancerous human cell lines (HepG2, Caco-2, A549, MDA-MB-231, and NCI-H1437 carcinoma cells), while the antimicrobial activity was conducted with the agar-well diffusion method. Furthermore, toxicity studies were performed on alveolar and renal primary epithelial cells. Initially, different extracts were prepared by maceration techniques using n-hexane, chloroform, ethyl acetate, butanol, and methanol. The preliminary phytochemical screening showed the presence of secondary metabolites such as alkaloids, tannins, saponins, flavonoids, glycosides, and quinones. The chloroform extract of P. cornuta (PCC) exhibited significant inhibitory activity against Acinetobacter baumannii (16 mm) and Salmonella enterica (14.5 mm). The A. baumannii and S. enterica strains appeared highly susceptible to n-hexane extract of P. cornuta (PCN) with an antibacterial effect of 15 mm and 15.5 mm, respectively. The results also showed that the methanolic extracts of Quercus semecarpifolia (QSM) exhibited considerable antibacterial inhibitory activity in A. baumannii (18 mm), Escherichia coli (15 mm). The QSN and QSE extracts also showed good inhibition in A. baumannii with a 16 mm zone of inhibition. The Rhizopus oryzae strain has shown remarkable mycelial inhibition by PCM and QSN with 16 mm and 21 mm inhibition, respectively. Furthermore, the extracts of P. cornuta and Q. semicarpifolia exhibited prominent growth inhibition of breast (MDA-MB-231) and lung (A549) carcinoma cells with 19-30% and 22-39% cell viabilities, respectively. The gut cell line survival was also significantly inhibited by Q. semicarpifolia (24-34%). The findings of this study provide valuable information for the future development of new antibacterial and anticancer medicinal agents from P. cornuta and Q. semicarpifolia extracts.
Collapse
Affiliation(s)
- Farzana Kausar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.K.); (M.K.); (R.W.)
| | - Kyung-Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
| | - Hafiz Muhammad Umer Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
- National Control Laboratory for Biologicals, Drug Regulatory Authority of Pakistan, Islamabad 44090, Pakistan
| | - Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
| | - Muhammad Kaleem
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.K.); (M.K.); (R.W.)
| | - Rooma Waqar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.K.); (M.K.); (R.W.)
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan;
| | - Chethikkattuveli Salih Abdul Rahim
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
| | - Kinam Hyun
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
| | - Kyung-Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
- BioSpero, Inc., Jeju-si 63243, Korea
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.K.); (M.K.); (R.W.)
| |
Collapse
|
33
|
Moreira Teixeira L, Mezzanotte L. New bioimaging avenues for organs‐on‐chips by integration of bioluminescence. VIEW 2021. [DOI: 10.1002/viw.20200177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Liliana Moreira Teixeira
- Department of Developmental Bioengineering Technical Medical Centre University of Twente Enschede The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine Erasmus Medical Center Rotterdam The Netherlands
- Department of Molecular Genetics Erasmus Medical Center Rotterdam The Netherlands
| |
Collapse
|
34
|
Chethikkattuveli Salih AR, Hyun K, Asif A, Soomro AM, Farooqi HMU, Kim YS, Kim KH, Lee JW, Huh D, Choi KH. Extracellular Matrix Optimization for Enhanced Physiological Relevance in Hepatic Tissue-Chips. Polymers (Basel) 2021; 13:3016. [PMID: 34503056 PMCID: PMC8434375 DOI: 10.3390/polym13173016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/12/2023] Open
Abstract
The cellular microenvironment is influenced explicitly by the extracellular matrix (ECM), the main tissue support biomaterial, as a decisive factor for tissue growth patterns. The recent emergence of hepatic microphysiological systems (MPS) provide the basic physiological emulation of the human liver for drug screening. However, engineering microfluidic devices with standardized surface coatings of ECM may improve MPS-based organ-specific emulation for improved drug screening. The influence of surface coatings of different ECM types on tissue development needs to be optimized. Additionally, an intensity-based image processing tool and transepithelial electrical resistance (TEER) sensor may assist in the analysis of tissue formation capacity under the influence of different ECM types. The current study highlights the role of ECM coatings for improved tissue formation, implying the additional role of image processing and TEER sensors. We studied hepatic tissue formation under the influence of multiple concentrations of Matrigel, collagen, fibronectin, and poly-L-lysine. Based on experimental data, a mathematical model was developed, and ECM concentrations were validated for better tissue development. TEER sensor and image processing data were used to evaluate the development of a hepatic MPS for human liver physiology modeling. Image analysis data for tissue formation was further strengthened by metabolic quantification of albumin, urea, and cytochrome P450. Standardized ECM type for MPS may improve clinical relevance for modeling hepatic tissue microenvironment, and image processing possibly enhance the tissue analysis of the MPS.
Collapse
Affiliation(s)
- Abdul Rahim Chethikkattuveli Salih
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (A.R.C.S.); (K.H.); (A.A.); (H.M.U.F.); (K.H.K.); (J.W.L.)
| | - Kinam Hyun
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (A.R.C.S.); (K.H.); (A.A.); (H.M.U.F.); (K.H.K.); (J.W.L.)
| | - Arun Asif
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (A.R.C.S.); (K.H.); (A.A.); (H.M.U.F.); (K.H.K.); (J.W.L.)
| | - Afaque Manzoor Soomro
- Department of Electrical Engineering, Sukkur IBA University, Airport Road, Sukkur 65200, Pakistan;
| | - Hafiz Muhammad Umer Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (A.R.C.S.); (K.H.); (A.A.); (H.M.U.F.); (K.H.K.); (J.W.L.)
| | | | - Kyung Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (A.R.C.S.); (K.H.); (A.A.); (H.M.U.F.); (K.H.K.); (J.W.L.)
| | - Jae Wook Lee
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (A.R.C.S.); (K.H.); (A.A.); (H.M.U.F.); (K.H.K.); (J.W.L.)
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (A.R.C.S.); (K.H.); (A.A.); (H.M.U.F.); (K.H.K.); (J.W.L.)
- BioSpero, Inc., Jeju-si 63243, Korea;
| |
Collapse
|