1
|
Ajabnoor R. Different Shades of Desmoid-Type Fibromatosis (DTF): Detection of Noval Mutations in the Clinicopathologic Analysis of 32 Cases. Diagnostics (Basel) 2024; 14:2161. [PMID: 39410565 PMCID: PMC11476057 DOI: 10.3390/diagnostics14192161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Desmoid-type fibromatosis (DTF) is a locally aggressive myofibroblastic/fibroblastic neoplasm with a high risk of local recurrence. It has a variety of histologic features that might confuse diagnosis, especially when detected during core needle biopsy. The Wnt/β-catenin pathway is strongly linked to the pathogenesis of DT fibromatosis. METHOD This study examined 33 desmoid-type fibromatoses (DTFs) from 32 patients, analyzing its clinical characteristics, histologic patterns, occurrence rates, relationship with clinical outcomes, immunohistochemical and molecular findings. RESULTS The DTFs exhibit a range of 1 to 7 histologic patterns per tumor, including conventional, hypercellular, myxoid, hyalinized/hypocellular, staghorn/hemangiopericytomatous blood vessels pattern, nodular fasciitis-like, and keloid-like morphology. No substantial association was found between the existence of different histologic patterns and the clinical outcome. All thirty-three (100%) samples of DTF had a variable percentage of cells that were nuclear positive for β-catenin. An NGS analysis detected novel non-CTNNB1 mutations in two DTFs, including BCL10, MPL, and RBM10 gene mutations. CONCLUSIONS This study reveals a diverse morphology of DTFs that could result in misdiagnosis. Therefore, surgical pathologists must comprehend this thoroughly. Also, the importance of the newly identified non-CTNNB1 gene mutations is still unclear. More research and analyses are needed to completely grasp the clinical implications of these mutations.
Collapse
Affiliation(s)
- Rana Ajabnoor
- Department of Pathology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah 22252, Saudi Arabia
| |
Collapse
|
2
|
Abo-Elenin MHH, Kamel R, Nofal S, Ahmed AAE. The crucial role of beta-catenin in the osteoprotective effect of semaglutide in an ovariectomized rat model of osteoporosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03378-z. [PMID: 39254876 DOI: 10.1007/s00210-024-03378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Postmenopausal osteoporosis is a common chronic medical illness resulting from an imbalance between bone resorption and bone formation along with microarchitecture degeneration attributed to estrogen deficiency and often accompanied by other medical conditions such as weight gain, depression, and insomnia. Semaglutide (SEM) is a recently introduced GLP-1 receptor agonist (GLP-1RA) for the treatment of obesity and type 2 diabetes mellitus by mitigating insulin resistance. It has been discovered that the beneficial effects of GLP-1 are associated with alterations in lipolysis, adipogenesis, and anti-inflammatory processes. GLP-1 analogs transmit signals directly to adipose tissue. Mesenchymal stem cells (MSCs) are multidisciplinary cells that originate from bone marrow, migrate to injury sites, and promote bone regeneration. MSCs can differentiate into osteoblasts, adipose cells, and cartilage cells. Our aim is to investigate the role of semaglutide on bone formation and the Wnt signaling pathway. Osteoporosis was induced in female rats by ovariectomy, and the ovariectomized rats were treated with alendronate as standard treatment with a dose of 3 mg/kg orally and semaglutide with two doses (150 mcg/kg and 300 mcg/kg) S.C. for 10 successive weeks. Semaglutide ameliorates bone detrimental changes induced by ovariectomy. It improves bone microarchitecture and preserves bone mineral content. Semaglutide ameliorates ovariectomy-induced osteoporosis and increases the expression of β-catenin, leading to increased bone formation and halted receptor activator of nuclear factor kappa-Β ligand (RANKL's) activation. Semaglutide can be used as a potential prophylactic and therapeutic drug against osteoporosis, possibly by activating Wnt signaling and decreasing bone resorption.
Collapse
Affiliation(s)
| | - Rehab Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| | - Amany Ali Eissa Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| |
Collapse
|
3
|
Sommovilla J, Shepard D, Liska D. Management of Desmoid Disease in Familial Adenomatous Polyposis. Clin Colon Rectal Surg 2024; 37:185-190. [PMID: 38606047 PMCID: PMC11006445 DOI: 10.1055/s-0043-1770731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Desmoid disease, though technically a benign condition, is nevertheless a leading cause of morbidity and mortality in patients with familial adenomatous polyposis (FAP). Desmoid disease impacts approximately 30% of FAP patients, with several known risk factors. It runs the gamut in terms of severity-ranging from small, slow-growing asymptomatic lesions to large, focally destructive, life-threatening masses. Desmoids usually occur following surgery, and several patient risk factors have been established, including female sex, family history of desmoid disease, 3' APC mutation, and extraintestinal manifestations of FAP. Desmoid disease-directed therapy is individualized and impacted by desmoid stage, severity, postsurgical anatomy, and consequences of disease. Medical therapy consists of options in multiple classes of drugs: nonsteroidal anti-inflammatory drugs, hormonal therapy, tyrosine kinase inhibitors, and cytotoxic agents. Surgical excision is sometimes an option, but can be limited by common location of disease at the root of the small bowel mesentery. Palliative surgical treatments are often considered in management of desmoid disease. Intestinal transplantation for severe desmoid disease is an emerging and promising option, though long-term data on efficacy and survival is limited.
Collapse
Affiliation(s)
- Joshua Sommovilla
- Department of Colon and Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- Sanford R Weiss MD Center for Hereditary Colorectal Neoplasia, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Dale Shepard
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - David Liska
- Department of Colon and Rectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
- Sanford R Weiss MD Center for Hereditary Colorectal Neoplasia, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
4
|
Schäfer J, Wenck N, Janik K, Linnert J, Stingl K, Kohl S, Nagel-Wolfrum K, Wolfrum U. The Usher syndrome 1C protein harmonin regulates canonical Wnt signaling. Front Cell Dev Biol 2023; 11:1130058. [PMID: 36846582 PMCID: PMC9944737 DOI: 10.3389/fcell.2023.1130058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Human Usher syndrome (USH) is the most common form of hereditary combined deaf-blindness. USH is a complex genetic disorder, and the pathomechanisms underlying the disease are far from being understood, especially in the eye and retina. The USH1C gene encodes the scaffold protein harmonin which organizes protein networks due to binary interactions with other proteins, such as all USH proteins. Interestingly, only the retina and inner ear show a disease-related phenotype, although USH1C/harmonin is almost ubiquitously expressed in the human body and upregulated in colorectal cancer. We show that harmonin binds to β-catenin, the key effector of the canonical Wnt (cWnt) signaling pathway. We also demonstrate the interaction of the scaffold protein USH1C/harmonin with the stabilized acetylated β-catenin, especially in nuclei. In HEK293T cells, overexpression of USH1C/harmonin significantly reduced cWnt signaling, but a USH1C-R31* mutated form did not. Concordantly, we observed an increase in cWnt signaling in dermal fibroblasts derived from an USH1C R31*/R80Pfs*69 patient compared with healthy donor cells. RNAseq analysis reveals that both the expression of genes related to the cWnt signaling pathway and cWnt target genes were significantly altered in USH1C patient-derived fibroblasts compared to healthy donor cells. Finally, we show that the altered cWnt signaling was reverted in USH1C patient fibroblast cells by the application of Ataluren, a small molecule suitable to induce translational read-through of nonsense mutations, hereby restoring some USH1C expression. Our results demonstrate a cWnt signaling phenotype in USH establishing USH1C/harmonin as a suppressor of the cWnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicole Wenck
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Janik
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katarina Stingl
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology and Photoreceptor Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany,*Correspondence: Uwe Wolfrum,
| |
Collapse
|
5
|
Zou Z, Ye G, Xu S, Liu W, Wang W. Case report: Intra-abdominal aggressive fibromatosis: A rare cause of hyperemesis. Front Surg 2023; 10:1108225. [PMID: 36896261 PMCID: PMC9989300 DOI: 10.3389/fsurg.2023.1108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Rationale Aggressive fibromatosis is a rare and locally infiltrative monoclonal fibroblastic proliferation with lack of metastatic potential. We describe a rare case of intra-abdominal aggressive fibromatosis on young female with hyperemesis. Patient concerns A 23-year-old female was admitted with hyperemesis and loss of weight. Diagnoses According to imaging findings and immunohistology findings, a diagnosis of intra-abdominal aggressive fibromatosis was formulated. Outcomes After the surgery, no evidence of local recurrence was noted during the 6 months of follow-up. Lessons AF may explain why pregnant women may have severe hyperemesis.
Collapse
Affiliation(s)
- Zilin Zou
- The Affiliated Changsha Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Guannan Ye
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| | - Saiqun Xu
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| | - Wei Liu
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| | - Weining Wang
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, China
| |
Collapse
|
6
|
Abstract
BACKGROUND Desmoid disease is a leading cause of morbidity and mortality in patients with familial adenomatous polyposis. Abdominal desmoid disease usually follows total proctocolectomy with IPAA or total abdominal colectomy with ileorectal anastomosis. Sex, extraintestinal manifestations, and a 3'-mutation location have been identified as risk factors, but surgical risk factors are poorly understood. We hypothesized that pouch construction creates a higher risk of desmoid formation due to the increased stretch of the small-bowel mesentery. OBJECTIVE This study aimed to investigate the surgical risk factors for desmoid formation. DESIGN This was a retrospective, single-center, registry-based cohort study. SETTINGS This study was conducted at a single academic institution with a prospectively maintained hereditary colorectal cancer database between 1995 and 2015. PATIENTS All patients with familial polyposis (total 345) who underwent either proctocolectomy with a pouch or colectomy with an ileorectal anastomosis during the study period and met inclusion criteria were selected. MAIN OUTCOME MEASURES The development of symptomatic abdominal desmoid disease was the primary end point. Associations between desmoid formation and resection type, surgical approach, and other patient factors were analyzed. RESULTS A total of 172 (49%) patients underwent proctocolectomy/ileoanal pouch, whereas 173 (51%) underwent total colectomy/ileorectal anastomosis. Overall, 100 (28.9%) developed symptomatic desmoids after surgery. On univariable analysis, open surgery and pouch surgery were associated with desmoid development, along with extracolonic manifestations, family history of desmoids, mutation location, and a high desmoid risk score. On multivarible analysis, proctocolectomy with pouch was most strongly associated with desmoid disease ( p < 0.01). LIMITATIONS This study was limited by its retrospective nature, the lack of uniform desmoid screening, and the variable duration of follow-up. Unanalyzed confounding factors include polyposis severity and number of surgeries. CONCLUSIONS Patients with polyposis who underwent total proctocolectomy with pouch by any approach had significantly greater risk of developing desmoid disease than total colectomy with ileorectal anastomosis, even when accounting for other risk factors. See Video Abstract at http://links.lww.com/DCR/B822 .RESULTADOS DE LOS PACIENTES SOMETIDOS A RESECCIÓN INTESTINAL ELECTIVA ANTES Y DESPUÉS DE LA IMPLEMENTACIÓN DE UN PROGRAMA DE DETECCIÓN Y TRATAMIENTO DE ANEMIA. ANTECEDENTES Se sabe que los pacientes anémicos que se someten a una cirugía electiva de cáncer colorrectal tienen tasas significativamente más altas de complicaciones posoperatorias y peores resultados. OBJETIVO Mejorar las tasas de detección y tratamiento de la anemia en pacientes sometidos a resecciones electivas de colon y recto a través de una iniciativa de mejora de calidad. DISEO Comparamos una cohorte histórica de pacientes antes de la implementación de nuestro programa de detección de anemia y mejora de la calidad del tratamiento con una cohorte prospectiva después de la implementación. ENTORNO CLINICO Hospital de atención terciaria. PACIENTES Todos los pacientes adultos con un nuevo diagnóstico de cáncer de colon o recto sin evidencia de enfermedad metastásica entre 2017 y 2019. INTERVENCIONES Detección de anemia y programa de mejora de la calidad del tratamiento. PRINCIPALES MEDIDAS DE RESULTADO El resultado primario fue el costo hospitalario por ingreso. RESULTADOS Un total de 84 pacientes se sometieron a resección electiva de colon o recto antes de la implementación de nuestro proyecto de mejora de calidad de la anemia y 88 pacientes se sometieron a cirugía después. En la cohorte previa a la implementación, 44/84 (55,9 %) presentaban anemia en comparación con 47/99 (54,7 %) en la cohorte posterior a la implementación. Las tasas de detección (25 % a 86,4 %) y tratamiento (27,8 % a 63,8 %) aumentaron significativamente en la cohorte posterior a la implementación. El costo total medio por admisión se redujo significativamente en la cohorte posterior a la implementación (costo medio $16 827 vs. $25 796, p = 0,004); esta reducción significativa se observó incluso después de ajustar los factores de confusión relevantes (proporción de medias: 0,74, IC del 95 %: 0,65 a 0,85). El vínculo mecánico entre el tratamiento de la anemia y la reducción de costos sigue siendo desconocido. No hubo diferencias significativas en las tasas de transfusión de sangre, complicaciones o mortalidad entre los grupos. LIMITACIONES El diseño de antes y después está sujeto a sesgos temporales y de selección. CONCLUSIONES Demostramos la implementación exitosa de un programa de detección y tratamiento de anemia. Este programa se asoció con un costo por admisión significativamente reducido. Este trabajo demuestra el valor y los beneficios posibles de la implementación de un programa de detección y tratamiento de la anemia. Consulte Video Resumen en http://links.lww.com/DCR/C15 . (Traducción- Dr. Francisco M. Abarca-Rendon ).
Collapse
|
7
|
Lyu H, Zhou X, Qian Y, Liu X, Gopinathan G, Pandya M, Qin C, Luan X, Diekwisch TGH. Long-acting PFI-2 small molecule release and multilayer scaffold design achieve extensive new formation of complex periodontal tissues with unprecedented fidelity. Biomaterials 2022; 290:121819. [PMID: 36209579 DOI: 10.1016/j.biomaterials.2022.121819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/20/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
The faithful engineering of complex human tissues such as the bone/soft tissue/mineralized tissue interface in periodontal tissues requires innovative molecular cues in conjunction with tailored scaffolds. To address the loss of periodontal bone and connective tissues following periodontal disease, we have generated a polydopamine and collagen coated electrospun PLGA-PCL (PP) scaffold enriched with the small molecule mediator PFI-2 (PP-PFI-pDA-COL-PFI). In vitro 3D studies using PDL progenitors revealed that the PP-PFI-pDA-COL-PFI scaffold substantially enhanced Alizarin Red staining, increased Ca/P ratios 4-fold, and stimulated cell proliferation more than 12-fold compared to PP-controls, suggestive of its potential for mineralized tissue engineering. When applied in our experimental periodontitis model, the PP-PFI-pDA-COL-PFI scaffold resulted in a substantial 34% reduction in alveolar bone defect height, a 25% root-length gain in periodontal attachment, and the formation of highly ordered regenerated acellular cementum twice as thick as in controls. Explaining the mechanism of PFI-2 mineralized tissue regeneration in periodontal tissues, PFI-2 inhibited SETD7-mediated β-Catenin protein methylation and increased β-Catenin nuclear localization. Together, dual-level PFI-2 incorporation into a degradable, dopamine/collagen coated PLGA/PCL scaffold backbone resulted in the regeneration of the tripartite periodontal complex with unprecedented fidelity, including periodontal attachment and new formation of mineralized tissues in inflamed periodontal environments.
Collapse
Affiliation(s)
- Huling Lyu
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Xuefeng Zhou
- UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunzhu Qian
- UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA; Center for Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Gokul Gopinathan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Mirali Pandya
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xianghong Luan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA
| | - Thomas G H Diekwisch
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, TX, USA; UIC College of Dentistry, Department of Oral Biology, Chicago, IL, USA.
| |
Collapse
|
8
|
The Role of Pharmacotherapeutic Agents in Children with Desmoid Tumors. Paediatr Drugs 2022; 24:433-445. [PMID: 35902507 DOI: 10.1007/s40272-022-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 10/16/2022]
Abstract
Desmoid tumors (DT) are rare fibroblastic, soft-tissue tumors that do not metastasize but can aggressively infiltrate tissues causing significant chronic discomfort and/or functional impairment. In the pediatric population, the incidence of DT is greatest during infancy and adolescence but can occur at any age. Dysregulated β-catenin, most commonly resulting from mutations in either CTNNB1 or germline APC (adenomatous polyposis coli) drives DT. Most cases are sporadic but some are associated with predisposition syndromes such as familial adenomatous polyposis (FAP). Historically, treatment has been surgery. However, the recurrence rate after surgery can be high. Various systemic cytotoxic chemotherapy regimens used in other soft-tissue sarcomas have been applied to DT with differing results. Given the chronic and rarely life-threatening nature of this disease and the potential short- and long-term toxicity of these regimens, especially in children, alternative non-cytotoxic interventions have been investigated. Molecularly targeted agents such as tyrosine kinase and gamma secretase inhibitors have shown activity against DT. Innovative local control therapies are being employed as alternatives to surgery and radiation. Periods of prolonged stability and spontaneous regression in the absence of therapy in some patients has prompted wider adoption of an upfront active surveillance approach in the appropriate setting. This review will briefly summarize the epidemiology, pathophysiology, and clinical presentation of DT in children, then focus on historical, current, and future pharmacotherapeutic management and finally, propose areas for future study.
Collapse
|
9
|
Modern genetic and immunological aspects of the pathogenesis of impaired consolidation of fractures (literature review). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this article is to analyze the genetic and immunological mechanisms of the development of fracture consolidation disorders at the present scientific stage.Materials and methods. The search for literary sources was carried out in the open electronic databases of scientific literature PubMed and eLIBRARY. Search depth – 10 years.Results. The review analyzes the literature data on the current state of the study of the molecular genetic mechanisms of reparative regeneration including the development of fracture consolidation disorders. The mechanisms of the most important links of pathogenesis which most often lead to various violations of the processes of bone tissue repair are considered.Conclusion. The process of bone tissue repair is multifaceted, and many factors are involved in its implementation, however, we would like to note that the leading role in the course of reparative regeneration is played by a personalized genetically programmed response to this pathological condition. Nevertheless, despite the undeniable progress of modern medicine in studying the processes of bone recovery after a fracture, there are still many “white” spots in this issue, which dictates the need for further comprehensive study in order to effectively treat patients with impaired consolidation.
Collapse
|
10
|
Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Β-Catenin Pathway. Int J Mol Sci 2022; 23:ijms23105593. [PMID: 35628403 PMCID: PMC9146119 DOI: 10.3390/ijms23105593] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simulated microgravity (SMG) inhibits osteoblast differentiation (OBD) and induces bone loss via the inhibition of the Wnt/β-catenin pathway. However, the mechanism by which SMG alters the Wnt/β-catenin pathway is unknown. We previously demonstrated that SMG altered the focal adhesion kinase (FAK)-regulated mTORC1, AMPK and ERK1/2 pathways, leading to the inhibition of tumor cell proliferation/metastasis and promoting cell apoptosis. To examine whether FAK similarly mediates SMG-dependent changes to Wnt/β-catenin in osteoblasts, we characterized mouse MC3T3-E1 cells cultured under clinostat-modeled SMG (µg) conditions. Compared to cells cultured under ground (1 g) conditions, SMG reduces focal adhesions, alters cytoskeleton structures, and down-regulates FAK, Wnt/β-catenin and Wnt/β-catenin-regulated molecules. Consequently, protein-2 (BMP2), type-1 collagen (COL1), alkaline-phosphatase activity and matrix mineralization are all inhibited. In the mouse hindlimb unloading (HU) model, SMG-affected tibial trabecular bone loss is significantly reduced, according to histological and micro-computed tomography analyses. Interestingly, the FAK activator, cytotoxic necrotizing factor-1 (CNF1), significantly suppresses all of the SMG-induced alterations in MC3T3-E1 cells and the HU model. Therefore, our data demonstrate the critical role of FAK in the SMG-induced inhibition of OBD and bone loss via the Wnt/β-catenin pathway, offering FAK signaling as a new therapeutic target not only for astronauts at risk of OBD inhibition and bone loss, but also osteoporotic patients.
Collapse
|
11
|
McLean TD, Duchi S, Di Bella C. Molecular Pathogenesis of Sporadic Desmoid Tumours and Its Implications for Novel Therapies: A Systematised Narrative Review. Target Oncol 2022; 17:223-252. [PMID: 35446005 PMCID: PMC9217905 DOI: 10.1007/s11523-022-00876-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
Sporadic desmoid-type fibromatosis is a rare, fibroblastic soft-tissue neoplasm with local aggressiveness but no metastatic potential. Aberrant Wnt/β-catenin signalling has been extensively linked to desmoid pathogenesis, although little is known about other molecular drivers and no established treatment approach exists. We aimed to summarise the current literature regarding the molecular pathogenesis of sporadic desmoid-type fibromatosis and to discuss the effects of both current and emerging novel therapies targeting these mechanisms. A literature search was conducted of MEDLINE® ALL and EMBASE databases for published studies (2000–August 2021) using keywords related to ‘fibromatosis aggressive’, ‘immunohistochemistry’, ‘polymerase chain reaction’ and ‘mutation’. Articles were included if they examined the role of proteins in sporadic or extra-abdominal human desmoid-type fibromatosis pathogenesis. Searching identified 1684 articles. Following duplicate removal and eligibility screening, 36 were identified. After a full-text screen, 22 were included in the final review. At least 47% of desmoid-type fibromatosis cases displayed aberrant β-catenin immunoreactivity amongst ten studies. Cyclin D1 overexpression occurred in at least 40% of cases across five studies. Six studies reported oestrogen receptor-β expression with a range of 7.4–90%. Three studies implicated matrix metalloproteinases, with one study demonstrating vascular endothelial growth factor overexpression. One study explored the positive relationship between cyclooxygenase-2 and platelet-derived growth factor receptor-β. Aberrant Wnt/β-catenin signalling is a well-established pathogenic driver that may be targeted via downstream modulation. Growth factor signalling is best appreciated through the clinical trial effects of multi-targeted tyrosine kinase inhibitors, whilst oestrogen receptor expression data may only offer a superficial insight into oestrogen signalling. Finally, the tumour microenvironment presents multiple potential novel therapeutic targets. Sporadic desmoid tumours are rare soft-tissue neoplasms that arise from connective tissues in the chest wall, head, neck and limbs. Whilst lacking metastatic potential, uncertainty surrounding their locally aggressive growth and unpredictable recurrence complicates treatment approaches. At the molecular level, alterations in the Wnt/β-catenin signalling pathway, a fundamental coordinator of cell growth and development, have been strongly linked to desmoid tumour development. Beyond this, however, little is known about other molecular drivers. In the case of progressive or life-threatening disease, complex treatment decisions are made regarding the use of surgery, radiotherapy or systemic treatment modalities. Of the targeted systemic therapies, a lack of comparative clinical studies further complicates medical treatment decision making as no definitive treatment approach exists. Therefore, this review aimed to summarise the literature regarding the molecular drivers of desmoid tumour pathogenesis and to discuss the current and emerging novel therapies targeting such mechanisms. Utilising findings from human desmoid tissue samples, we present the rationale for targeting downstream mediators of the central Wnt/β-catenin pathway and outline potential treatment targets in the tumour microenvironment. We also highlight the knowledge gained from clinical drug trials targeting desmoid growth factor signalling and present the potentially superficial insight provided by oestrogen receptor expression profiles on the role of oestrogen signalling in desmoid pathogenesis. In doing so, this work may assist in the eventual development of an evidence-based treatment approach for sporadic desmoid tumours.
Collapse
Affiliation(s)
- Thomas D McLean
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Serena Duchi
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia.,Biofab 3D, Aikenhead Centre for Medical Discovery, Melbourne, VIC, Australia
| | - Claudia Di Bella
- Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital Melbourne, VIC, Australia
| |
Collapse
|
12
|
Identification, Culture and Targeting of Cancer Stem Cells. Life (Basel) 2022; 12:life12020184. [PMID: 35207472 PMCID: PMC8879966 DOI: 10.3390/life12020184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance, tumor progression, and metastasis are features that are frequently seen in cancer that have been associated with cancer stem cells (CSCs). These cells are a promising target in the future of cancer therapy but remain largely unknown. Deregulation of pathways that govern stemness in non-tumorigenic stem cells (SCs), such as Notch, Wnt, and Hedgehog pathways, has been described in CSC pathogenesis, but it is necessary to conduct further studies to discover potential new therapeutic targets. In addition, some markers for the identification and characterization of CSCs have been suggested, but the search for specific CSC markers in many cancer types is still under development. In addition, methods for CSC cultivation are also under development, with great heterogeneity existing in the protocols used. This review focuses on the most recent aspects of the identification, characterization, cultivation, and targeting of human CSCs, highlighting the advances achieved in the clinical implementation of therapies targeting CSCs and remarking those potential areas where more research is still required.
Collapse
|
13
|
WNT-5a and SOST Levels in Gingival Crevicular Fluid Depend on the Inflammatory and Osteoclastogenic Activities of Periodontal Tissues. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57080788. [PMID: 34440994 PMCID: PMC8399934 DOI: 10.3390/medicina57080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022]
Abstract
Background and Objectives: Wnt signaling leads to stimulation of osteoblasts and it reduces osteoclastogenesis and bone resorption via the regulation of the osteprotegrin and receptor activator of nuclear factor kappa-Β ligan (RANKL). Wnt signaling pathways are regulated by their physiological antagonists such as sclerostin (SOST) as well as WNT-5a. The aim of this study was to determine the total amount of Sclerostin and WNT-5a in the gingival crevicular fluid (GCF) in sites with a continuum from a healthy to diseased periodontium. Materials and Methods: In this cross-sectional study, a total of 20 patients with generalized periodontitis, 10 subjects with gingivitis as well as 14 individuals with a healthy periodontium were recruited upon clinical and radiographic periodontal examination. In patients diagnosed with periodontitis, GCF samples were collected from periodontitis, gingivitis and healthy sites, while gingivitis patients provided samples from gingivitis and healthy sites. In healthy patients, only healthy sites were sampled. Protein total amount of SOST and WNT-5a were quantified by sandwich enzyme-linked immunosorbent assay (ELISA). Results: A total of 108 GCF samples were collected from a total of 44 individuals. When all periodontitis (n = 51), gingivitis (n = 12) and healthy (n = 45) sites were analyzed regardless of the patient diagnosis, periodontitis sites demonstrated significantly elevated WNT-5a total amounts (p = 0.03) when compared to gingivitis sites. Gingivitis sites demonstrated a trend of more total SOST (p = 0.09) when compared to periodontitis and healthy sites. Within each patient diagnostic category, sites showed similar SOST and WNT-5a total amounts (p > 0.05). Conclusions: WNT-5a levels in GCF depend on the stage of periodontitis sites. SOST trended higher in the GCF of gingivitis sites but similar in chronic periodontitis and healthy sites. WNT-5a and SOST play a crucial role in periodontal tissue remodeling and depend on the inflammatory and osteoclastogenic activities.
Collapse
|
14
|
Rationale for the use of tyrosine kinase inhibitors in the treatment of paediatric desmoid-type fibromatosis. Br J Cancer 2021; 124:1637-1646. [PMID: 33723397 PMCID: PMC8110972 DOI: 10.1038/s41416-021-01320-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
In children with desmoid-type fibromatosis (DTF) in whom disease progression occurs after an initial watch-and-wait strategy, prolonged low-dose chemotherapy using vinblastine and methotrexate (VBL-MTX) is currently the standard of care. These conventional drugs have been prospectively evaluated but their efficacy and safety profiles are limited, and alternative therapeutic options are therefore essential. Based on the results of clinical trials, the use of tyrosine kinase inhibitors (TKIs) in the treatment of DTF is currently considered only in adult patients. TKIs such as imatinib show superior therapeutic efficacy to VBL-MTX and tolerable short-term side effects for the treatment of adult DFT, supporting the concept of the use of TKIs for the treatment of paediatric DFT. Moreover, new-generation TKIs, such as pazopanib and sorafenib, have shown improved therapeutic efficacy compared to imatinib in adult non-comparative studies. A tolerable safety profile of TKI therapy in children with disease entities other than DTF, such as leukaemia, has been reported. However, the efficacy and, in particular, the long-term safety of TKIs, including childhood-specific aspects such as growth and fertility, for the treatment of children with DTF should be investigated prospectively, as DFT therapy requires long-term drug exposure.
Collapse
|
15
|
Dong S, Li J, Zhang X. Tumor protein p53-induced nuclear protein 2 modulates osteogenic differentiation of human adipose derived stem/stromal cells by activating Wnt/β-catenin signaling. Am J Transl Res 2020; 12:6853-6867. [PMID: 33194077 PMCID: PMC7653607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Human adipose derived stem/stromal cells (hASCs) are frequently used as seed cells in bone tissue engineering. These cells have good osteogenic properties in various in vivo and in vitro models. Tumor protein p53-induced nuclear protein 2 (TP53INP2) regulates apoptosis, autophagy, and cell differentiation. However, whether TP53INP2 regulates osteogenic differentiation of hASCs has not been sufficiently studied. Herein, we explored this topic using siRNA experiments, osteogenic induction, quantitative real-time PCR (qRT-PCR) and western blot analysis. We found that siRNA decreased mRNA levels of osteoblast-specific genes in TP53INP2 cells. Western blots showed that RUNX2 protein expression decreased in siRNA-TP53INP2 cells at day 3, 7, and 21 after osteogenic induction. The level of β-catenin, LC3 and the LC3-II/LC3-I ratio in siRNA-TP53INP2 cells was decreased at day 3 and 7 after osteogenic induction. Further, treatment with lithium chloride (LiCl), an activator of Wnt signaling pathway, induced partial recovery of protein expression of β-catenin and RUNX2 (osteoblast-specific factor 2) in TP53INP2 knockdown cells. Collectively, these results show that TP53INP2 promotes osteogenic differentiation of hASCs by activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shi Dong
- College of Stomatology, Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical UniversityChongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing, China
| |
Collapse
|
16
|
Shokrani B, Brim H, Hydari T, Afsari A, Lee E, Nouraie M, Sherif Z, Ashktorab H. Analysis of β-catenin association with obesity in African Americans with premalignant and malignant colorectal lesions. BMC Gastroenterol 2020; 20:274. [PMID: 32811441 DOI: 10.1186/s12876-020-01412-x.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/07/2020] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND African Americans (AA) are at high risk for Colorectal Cancer (CRC). Studies report a 30-60% increase in CRC risk with physical inactivity, obesity and metabolic syndrome. Activation of the WNT/β-catenin (CTNNB1) signaling pathway plays a critical role in colorectal carcinogenesis. Accumulating evidence also indicates a role of WNT-CTNNB1 signaling in obesity and metabolic diseases. AIM To examine the association between obesity, β-Catenin expression and colonic lesions in African Americans. METHODS We reviewed the pathology records of 152 colorectal specimens from 2010 to 2012 (46 CRCs, 74 advanced adenomas and 32 normal colon tissues). Tissue Microarrays (TMA) were constructed from these samples. Immunohistochemistry (IHC) for CTNNB1 (β-Catenin; clone β-Catenin-1) was performed on the constructed TMAs. The IHC results were evaluated by 2 pathologists and the nuclear intensity staining was scored from 0 to 4. BMI, sex, age, location of the lesion and other demographic data were obtained. RESULTS Positive nuclear staining in normal, advanced adenoma and CRC was 0, 24 and 41%, respectively (P < 0.001). CRC was asso ciated with positive status for nuclear CTNNB1 intensity (adjusted OR: 3.40, 95%CI = 1.42-8.15, P = 0.006 for positive nuclear staining) compared to non-CRC samples (Normal or advanced adenoma). Nuclear staining percentage has a fair diagnostic ability for CRC with an AUC of 0.63 (95%CI = 0.55-0.71). Overweight/obese patients (BMI > 25) did not show a significant difference in (p = 0.3) nuclear CTNNB1 staining (17% positive in normal weight vs. 27% positive in overweight/obese). The association between nuclear intensity and CRC was not different between normal and overweight patients (P for interaction = 0.6). The positive nuclear CTNNB1status in CRC stage III and IV (35% of all CRC) was not different from stage I and II (50% vs. 36%, respectively, P = 0.4). CONCLUSION In our study, advanced adenoma and CRC were associated with activation of β-catenin in physically fit, overweight and obese patients. Thus, obesity and WNT/β-Catenin pathway seem to be independent in African American patients. WNT/β-Catenin signaling pathway has a potential to be used as an effector in colon carcinogenic transformation. Whether or not BMI is a modifier of this pathway needs to be investigated further.
Collapse
Affiliation(s)
- Babak Shokrani
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA.
| | - Hassan Brim
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Tahmineh Hydari
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Ali Afsari
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Edward Lee
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburg, Pittsburg, PA, USA
| | - Zaki Sherif
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA
| | - Hassan Ashktorab
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA.
| |
Collapse
|
17
|
Shokrani B, Brim H, Hydari T, Afsari A, Lee E, Nouraie M, Sherif Z, Ashktorab H. Analysis of β-catenin association with obesity in African Americans with premalignant and malignant colorectal lesions. BMC Gastroenterol 2020; 20:274. [PMID: 32811441 PMCID: PMC7433356 DOI: 10.1186/s12876-020-01412-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND African Americans (AA) are at high risk for Colorectal Cancer (CRC). Studies report a 30-60% increase in CRC risk with physical inactivity, obesity and metabolic syndrome. Activation of the WNT/β-catenin (CTNNB1) signaling pathway plays a critical role in colorectal carcinogenesis. Accumulating evidence also indicates a role of WNT-CTNNB1 signaling in obesity and metabolic diseases. AIM To examine the association between obesity, β-Catenin expression and colonic lesions in African Americans. METHODS We reviewed the pathology records of 152 colorectal specimens from 2010 to 2012 (46 CRCs, 74 advanced adenomas and 32 normal colon tissues). Tissue Microarrays (TMA) were constructed from these samples. Immunohistochemistry (IHC) for CTNNB1 (β-Catenin; clone β-Catenin-1) was performed on the constructed TMAs. The IHC results were evaluated by 2 pathologists and the nuclear intensity staining was scored from 0 to 4. BMI, sex, age, location of the lesion and other demographic data were obtained. RESULTS Positive nuclear staining in normal, advanced adenoma and CRC was 0, 24 and 41%, respectively (P < 0.001). CRC was asso ciated with positive status for nuclear CTNNB1 intensity (adjusted OR: 3.40, 95%CI = 1.42-8.15, P = 0.006 for positive nuclear staining) compared to non-CRC samples (Normal or advanced adenoma). Nuclear staining percentage has a fair diagnostic ability for CRC with an AUC of 0.63 (95%CI = 0.55-0.71). Overweight/obese patients (BMI > 25) did not show a significant difference in (p = 0.3) nuclear CTNNB1 staining (17% positive in normal weight vs. 27% positive in overweight/obese). The association between nuclear intensity and CRC was not different between normal and overweight patients (P for interaction = 0.6). The positive nuclear CTNNB1status in CRC stage III and IV (35% of all CRC) was not different from stage I and II (50% vs. 36%, respectively, P = 0.4). CONCLUSION In our study, advanced adenoma and CRC were associated with activation of β-catenin in physically fit, overweight and obese patients. Thus, obesity and WNT/β-Catenin pathway seem to be independent in African American patients. WNT/β-Catenin signaling pathway has a potential to be used as an effector in colon carcinogenic transformation. Whether or not BMI is a modifier of this pathway needs to be investigated further.
Collapse
Affiliation(s)
- Babak Shokrani
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA.
| | - Hassan Brim
- grid.257127.40000 0001 0547 4545Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060 USA
| | - Tahmineh Hydari
- grid.257127.40000 0001 0547 4545Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060 USA
| | - Ali Afsari
- grid.257127.40000 0001 0547 4545Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060 USA
| | - Edward Lee
- grid.257127.40000 0001 0547 4545Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060 USA
| | - Mehdi Nouraie
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburg, Pittsburg, PA USA
| | - Zaki Sherif
- grid.257127.40000 0001 0547 4545Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060 USA
| | - Hassan Ashktorab
- Department of Medicine, Department of Pathology and Cancer Center, Howard University College of Medicine, 2041 Georgia Avenue, N.W, Washington, D.C, 20060, USA.
| |
Collapse
|
18
|
Xie M, Chen Y, Wei W, He X, Li X, Lian L, Lan P. Does ileoanal pouch surgery increase the risk of desmoid in patients with familial adenomatous polyposis? Int J Colorectal Dis 2020; 35:1599-1605. [PMID: 32435838 DOI: 10.1007/s00384-020-03578-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Patients with familial adenomatous polyposis (FAP) may undergo either ileorectal anastomosis (IRA) or ileal pouch anal anastomosis (IPAA) depending on the degree of rectal involvement. Desmoid tumors (DTs) may arise postoperatively. Whether IPAA is associated with a higher risk of DTs as compared with IRA remains controversial. The purpose of this study was to determine whether IPAA increased the risk of DTs by analyzing the published data that compared IRA and IPAA as the primary treatment for FAP. METHODS A metaanalysis was performed to analyze the published data between 1989 and 2019. IRA and IPAA were compared with respect to the incidence of DTs. RESULTS Eight retrospective studies with a total of 1072 patients were identified: 491 underwent IPAA and 581 IRA. There was no significant difference in the incidence of DTs between IPAA and IRA (11.81% vs. 9.47%, OR 0.95, P = 0.85). Meanwhile, the overall complication (42.97% vs. 36.76%, OR 1.32, P = 0.11), incidence of cancer (4.88% vs. 8.37%, OR 0.28, P = 0.26), and overall mortality (0.33% vs. 5.20%, OR 0.49, P = 0.53) were comparable too. CONCLUSION Ileoanal pouch surgery is associated with similar risk of desmoid in patients with FAP after surgery.
Collapse
Affiliation(s)
- Minghao Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongle Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China
| | - Wancheng Wei
- Department of General Surgery, The People's Hospital of Gaozhou, Gaozhou, Guangdong, China
| | - Xiaowen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China
| | - Xianzhe Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China.,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Er Heng Rd., Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Krakhotkin DV, Chernylovskyi VA, Mottrie A, Greco F, Bugaev RA. New insights into the pathogenesis of Peyronie's disease: A narrative review. Chronic Dis Transl Med 2020; 6:165-181. [PMID: 32885153 PMCID: PMC7451633 DOI: 10.1016/j.cdtm.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Peyronie's disease (PD) is a benign, progressive fibrotic disorder characterized by scar or plaques within the tunica albuginea (TA) of the penis. This study provides new insights into the pathogenesis of PD based on data from different studies regarding the roles of cytokines, cell signaling pathways, biochemical mechanisms, genetic factors responsible for fibrogenesis. A growing body of literature has shown that PD is a chronically impaired, localized, wound healing process within the TA and the Smith space. It is caused by the influence of different pathological stimuli, most often the effects of mechanical stress during sexual intercourse in genetically sensitive individuals with unusual anatomical TA features, imbalanced matrix metalloproteinase/tissue inhibitor of metalloproteinase (MMP/TIMP), and suppressed antioxidant systems during chronic inflammation. Other intracellular signal cascades are activated during fibrosis along with low expression levels of their negative regulators and transforming growth factor-β1 signaling. The development of multikinase agents with minimal side effects that can block several signal cell pathways would significantly improve fibrosis in PD tissues by acting on common downstream mediators.
Collapse
Affiliation(s)
- Denis V Krakhotkin
- Outpatient Department, Central District Hospital, Kamenolomni, Rostov Region, Russia
| | | | - Alexandre Mottrie
- Department of Urology, Onze Lieve Vrouw Hospital, Aalst, Belgium.,ORSI Academy, Melle, Belgium
| | | | - Ruslan A Bugaev
- Outpatient Department, Central District Hospital, Kamenolomni, Rostov Region, Russia
| |
Collapse
|
20
|
Lerner N, Schreiber‐Avissar S, Beit‐Yannai E. Extracellular vesicle-mediated crosstalk between NPCE cells and TM cells result in modulation of Wnt signalling pathway and ECM remodelling. J Cell Mol Med 2020; 24:4646-4658. [PMID: 32168427 PMCID: PMC7176886 DOI: 10.1111/jcmm.15129] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/14/2020] [Accepted: 02/16/2020] [Indexed: 12/27/2022] Open
Abstract
Primary open-angle glaucoma is a leading cause of irreversible blindness, often associated with increased intraocular pressure. Extracellular vesicles (EVs) carry a specific composition of proteins, lipids and nucleotides have been considered as essential mediators of cell-cell communication. Their potential impact for crosstalk between tissues responsible for aqueous humour production and out-flow is largely unknown. The study objective was to investigate the effects of EVs derived from non-pigmented ciliary epithelium (NPCE) primary cells on the expression of Wnt proteins in a human primary trabecular meshwork (TM) cells and define the mechanism underlying exosome-mediated regulation that signalling pathway. Consistent with the results in TM cell line, EVs released by both primary NPCE cells and NPCE cell line showed diminished pGSK3β phosphorylation and decreased cytosolic levels of β-catenin in primary TM cells. At the molecular level, we showed that NPCE exosome treatment downregulated the expression of positive GSKβ regulator-AKT protein but increased the levels of GSKβ negative regulator-PP2A protein in TM cells. NPCE exosome protein analysis revealed 584 miRNAs and 182 proteins involved in the regulation of TM cellular processes, including WNT/β-catenin signalling pathway, cell adhesion and extracellular matrix deposition. We found that negative modulator of Wnt signalling miR-29b was abundant in NPCE exosomal samples and treatment of TM cells with NPCE EVs significantly decreased COL3A1 expression. Suggesting that miR-29b can be responsible for decreased levels of WNT/β-catenin pathway. Overall, this study highlights a potential role of EVs derived from NPCE cells in modulating ECM proteins and TM canonical Wnt signalling.
Collapse
Affiliation(s)
- Natalie Lerner
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Sofia Schreiber‐Avissar
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Elie Beit‐Yannai
- Clinical Biochemistry and Pharmacology DepartmentBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
21
|
Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28:795-817. [PMID: 32189104 DOI: 10.1007/s10787-020-00698-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
|
22
|
Padwal M, Liu L, Margetts PJ. The role of WNT5A and Ror2 in peritoneal membrane injury. J Cell Mol Med 2020; 24:3481-3491. [PMID: 32052562 PMCID: PMC7131918 DOI: 10.1111/jcmm.15034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 01/07/2023] Open
Abstract
Patients on peritoneal dialysis are at risk of developing peritoneal fibrosis and angiogenesis, which can lead to dysfunction of the peritoneal membrane. Recent evidence has identified cross‐talk between transforming growth factor beta (TGFB) and the WNT/β‐catenin pathway to induce fibrosis and angiogenesis. Limited evidence exists describing the role of non‐canonical WNT signalling in peritoneal membrane injury. Non‐canonical WNT5A is suggested to have different effects depending on the receptor environment. WNT5A has been implicated in antagonizing canonical WNT/β‐catenin signalling in the presence of receptor tyrosine kinase‐like orphan receptor (Ror2). We co‐expressed TGFB and WNT5A using adenovirus and examined its role in the development of peritoneal fibrosis and angiogenesis. Treatment of mouse peritoneum with AdWNT5A decreased the submesothelial thickening and angiogenesis induced by AdTGFB. WNT5A appeared to block WNT/β‐catenin signalling by inhibiting phosphorylation of glycogen synthase kinase 3 beta (GSK3B) and reducing levels of total β‐catenin and target proteins. To examine the function of Ror2, we silenced Ror2 in a human mesothelial cell line. We treated cells with AdWNT5A and observed a significant increase in fibronectin compared with AdWNT5A alone. We also analysed fibronectin and vascular endothelial growth factor (VEGF) in a TGFB model of mesothelial cell injury. Both fibronectin and VEGF were significantly increased in response to Ror2 silencing when cells were exposed to TGFB. Our results suggest that WNT5A inhibits peritoneal injury and this is associated with a decrease in WNT/β‐catenin signalling. In human mesothelial cells, Ror2 is involved in regulating levels of fibronectin and VEGF.
Collapse
Affiliation(s)
- Manreet Padwal
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Limin Liu
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Peter J Margetts
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Fadaka AO, Klein A, Pretorius A. In silico identification of microRNAs as candidate colorectal cancer biomarkers. Tumour Biol 2019; 41:1010428319883721. [PMID: 31718480 DOI: 10.1177/1010428319883721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The involvement of microRNA in cancers plays a significant role in their pathogenesis. Specific expressions of these non-coding RNAs also serve as biomarkers for early colorectal cancer diagnosis, but their laboratory/molecular identification is challenging and expensive. The aim of this study was to identify potential microRNAs for colorectal cancer diagnosis using in silico approach. Sequence similarity search was employed to obtain the candidate microRNA from the datasets, and three target prediction software were employed to determine their target genes. To determine the involvement of these microRNAs in colorectal cancer, the microRNA gene list obtained was used alongside with colorectal cancer expressed genes from gbCRC and CoReCG databases for gene intersection analysis. The involvement of these genes in the cancer subtype was further strengthened with the DAVID database. KEGG and Gene Ontology were used for the pathway and functional analysis, while STRING was employed for the interactions of protein network and further visualized by Cytoscape. The cBioPortal database was used to prioritize the target genes; prognostic and expression analysis were finally performed on the candidate microRNAs and the prioritized targets. This study, therefore, identified five candidate microRNAs, two hub genes (CTNNB1 and epidermal growth factor receptor), and seven significant target genes associated with colorectal cancer. The molecular validation studies are ongoing to ascertain the biological fitness of these findings.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashley Pretorius
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
24
|
Lei C, Yao Y, Shen B, Liu J, Pan Q, Liu N, Li L, Huang J, Long Z, Shao L. Columbamine suppresses the proliferation and malignization of colon cancer cells via abolishing Wnt/β-catenin signaling pathway. Cancer Manag Res 2019; 11:8635-8645. [PMID: 31572013 PMCID: PMC6764743 DOI: 10.2147/cmar.s209861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colon cancer is one of the most common malignancies worldwide. Because of the side effects and defects in tolerance of chemotherapy, it is necessary to discover new drugs for colon cancer treatment. Columbamine has been identified as an effective anti-osteosarcoma compound with only minor side effects. In this study, we analyzed the anticancer effect of columbamine on colon cancer. METHODS Human colon cancer cell lines were treatment with columbamine. MTT assay, colony formation assay, apoptosis detection and tumorigenicity assay were performed to detect the protective effect of columbamine on colon cancer development. Western blot assay and luciferase reporter assay were conducted to investigate the potential mechanism of the columbamine treatment. RESULTS Columbamine significantly inhibited the proliferation, migration, invasion process of colon cancer cells, and dramatically promoted the apoptosis rate of colon cancer cells to further suppress the development of colon cancer to tumor. Both the signaling transducing and key factors expression of Wnt/β-catenin signaling pathway were obviously repressed by columbamine treatment in a dose-dependent manner. CONCLUSION The present study indicated that columbamine exerts its anti-tumor effect in colon cancer cells through abolishing Wnt/β-catenin signaling pathway. Columbamine may be a new therapy compound for colon cancer.
Collapse
Affiliation(s)
- Changjiang Lei
- Department of General Surgery, Fifth Hospital in Wuhan, Wuhan, Hubei430050, People’s Republic of China
| | - Yao Yao
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, Hubei430050, People’s Republic of China
| | - Bin Shen
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing314001, Zhejiang, People’s Republic of China
| | - Junru Liu
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, Hubei430050, People’s Republic of China
| | - Qingyun Pan
- Department of Blood Endocrinology, The Fifth Hospital of Wuhan, Wuhan, Hubei430050, People’s Republic of China
| | - Ning Liu
- Department of General Surgery, Fifth Hospital in Wuhan, Wuhan, Hubei430050, People’s Republic of China
| | - Lei Li
- Department of General Surgery, Fifth Hospital in Wuhan, Wuhan, Hubei430050, People’s Republic of China
| | - Jianbin Huang
- Department of General Surgery, Fifth Hospital in Wuhan, Wuhan, Hubei430050, People’s Republic of China
| | - Zhixiong Long
- Department of Oncology, The Fifth Hospital of Wuhan, Wuhan, Hubei430050, People’s Republic of China
| | - Liwei Shao
- Department of General Surgery, Fifth Hospital in Wuhan, Wuhan, Hubei430050, People’s Republic of China
| |
Collapse
|
25
|
Pederzoli F, Joice G, Salonia A, Bivalacqua TJ, Sopko NA. Regenerative and engineered options for urethroplasty. Nat Rev Urol 2019; 16:453-464. [PMID: 31171866 DOI: 10.1038/s41585-019-0198-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
Surgical correction of urethral strictures by substitution urethroplasty - the use of grafts or flaps to correct the urethral narrowing - remains one of the most challenging procedures in urology and is frequently associated with complications, restenosis and poor quality of life for the affected individual. Tissue engineering using different cell types and tissue scaffolds offers a promising alternative for tissue repair and replacement. The past 30 years of tissue engineering has resulted in the development of several therapies that are now in use in the clinic, especially in treating cutaneous, bone and cartilage defects. Advances in tissue engineering for urethral replacement have resulted in several clinical applications that have shown promise but have not yet become the standard of care.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gregory Joice
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Trinity J Bivalacqua
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nikolai A Sopko
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
26
|
Li GQ, Fang YX, Liu Y, Meng FR, Wu X, Zhang CW, Zhang Y, Liu D, Gao B. MALAT1-Driven Inhibition of Wnt Signal Impedes Proliferation and Inflammation in Fibroblast-Like Synoviocytes Through CTNNB1 Promoter Methylation in Rheumatoid Arthritis. Hum Gene Ther 2019; 30:1008-1022. [PMID: 30909750 DOI: 10.1089/hum.2018.212] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) participate in the pathogenesis of rheumatoid arthritis (RA). Emerging evidence has highlighted the role of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and its potential involvement in RA. In this study, we test the hypothesis that the MALAT1 might inhibit proliferation and inflammatory response of FLSs in RA. The expression of MALAT1 was examined in synovial tissues from patients with RA. The effect of MALAT1 on cultured FLSs was analyzed by introducing overexpressed MALAT1 or short hairpin RNA (shRNA) against MALAT1. To validate whether methylation of CTNNB1 promoter was affected by MALAT1 alternation, we assessed the recruitment of DNA methyltransferases to CTNNB1 promoter. In cultured FLSs with shRNA-mediated CTNNB1 knockdown or activated Wnt signaling, we found the interaction between CTNNB1 and Wnt signaling. MALAT1 expression was reduced in synovial tissues of RA. MALAT1 could bind to CTNNB1 promoter region and recruit methyltransferase to promote CTNNB1 promoter methylation, thereby inhibiting CTNNB1. Notably, MALAT1 could suppress the transcription and expression of CTNNB1, thereby modulating the Wnt signaling pathway. Silenced MALAT1 stimulated the nucleation of β-catenin and the secretion of inflammatory cytokines including interleukin-6, interleukin-10, and tumor necrosis factor-α. Additionally, shRNA-mediated MALAT1 silencing elevated proliferation and suppressed apoptosis of FLSs accompanied. These findings provide evidence for the inhibitory effect of MALAT1 on proliferation and inflammation of FLSs by promoting CTNNB1 promoter methylation and inhibiting the Wnt signaling pathway. Therefore, this study provides a candidate therapeutic target for RA.
Collapse
Affiliation(s)
- Guo-Qing Li
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China
| | - Yu-Xuan Fang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Ying Liu
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Fan-Ru Meng
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Xia Wu
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Chun-Wang Zhang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China.,2Clinical Medical College, Dalian Medical University, Dalian, P.R. China
| | - Yu Zhang
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China
| | - Dan Liu
- 1Department of Rheumatology, Affiliated Hospital of Yangzhou University, Yangzhou, P.R. China
| | - Bo Gao
- 3Department of Rheumatology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, P.R. China
| |
Collapse
|
27
|
Timbergen MJM, Smits R, Grünhagen DJ, Verhoef C, Sleijfer S, Wiemer EAC. Activated Signaling Pathways and Targeted Therapies in Desmoid-Type Fibromatosis: A Literature Review. Front Oncol 2019; 9:397. [PMID: 31165043 PMCID: PMC6534064 DOI: 10.3389/fonc.2019.00397] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Desmoid-type fibromatosis (DTF) is a rare, soft tissue tumor of mesenchymal origin which is characterized by local infiltrative growth behavior. Besides “wait and see,” surgery and radiotherapy, several systemic treatments are available for symptomatic patients. Recently, targeted therapies are being explored in DTF. Unfortunately, effective treatment is still hampered by the limited knowledge of the molecular mechanisms that prompt DTF tumorigenesis. Many studies focus on Wnt/β-catenin signaling, since the vast majority of DTF tumors harbor a mutation in the CTNNB1 gene or the APC gene. The established role of the Wnt/β-catenin pathway in DTF forms an attractive therapeutic target, however, drugs targeting this pathway are still in an experimental stage and not yet available in the clinic. Only few studies address other signaling pathways which can drive uncontrolled growth in DTF such as: JAK/STAT, Notch, PI3 kinase/AKT, mTOR, Hedgehog, and the estrogen growth regulatory pathways. Evidence for involvement of these pathways in DTF tumorigenesis is limited and predominantly based on the expression levels of key pathway genes, or on observed clinical responses after targeted treatment. No clear driver role for these pathways in DTF has been identified, and a rationale for clinical studies is often lacking. In this review, we highlight common signaling pathways active in DTF and provide an up-to-date overview of their therapeutic potential.
Collapse
Affiliation(s)
- Milea J M Timbergen
- Department of Surgical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands.,Department of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Dirk J Grünhagen
- Department of Surgical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
28
|
Wnt targets genes are not differentially expressed in desmoid tumors bearing different activating β-catenin mutations. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2019; 45:691-698. [DOI: 10.1016/j.ejso.2018.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 11/21/2022]
|
29
|
Ferrari N, Ranftl R, Chicherova I, Slaven ND, Moeendarbary E, Farrugia AJ, Lam M, Semiannikova M, Westergaard MCW, Tchou J, Magnani L, Calvo F. Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nat Commun 2019; 10:130. [PMID: 30631061 PMCID: PMC6328607 DOI: 10.1038/s41467-018-07987-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Aggressive behaviours of solid tumours are highly influenced by the tumour microenvironment. Multiple signalling pathways can affect the normal function of stromal fibroblasts in tumours, but how these events are coordinated to generate tumour-promoting cancer-associated fibroblasts (CAFs) is not well understood. Here we show that stromal expression of Dickkopf-3 (DKK3) is associated with aggressive breast, colorectal and ovarian cancers. We demonstrate that DKK3 is a HSF1 effector that modulates the pro-tumorigenic behaviour of CAFs in vitro and in vivo. DKK3 orchestrates a concomitant activation of β-catenin and YAP/TAZ. Whereas β-catenin is dispensable for CAF-mediated ECM remodelling, cancer cell growth and invasion, DKK3-driven YAP/TAZ activation is required to induce tumour-promoting phenotypes. Mechanistically, DKK3 in CAFs acts via canonical Wnt signalling by interfering with the negative regulator Kremen and increasing cell-surface levels of LRP6. This work reveals an unpredicted link between HSF1, Wnt signalling and YAP/TAZ relevant for the generation of tumour-promoting CAFs.
Collapse
Affiliation(s)
- Nicola Ferrari
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge, CB4 0QA, United Kingdom
| | - Romana Ranftl
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ievgeniia Chicherova
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Neil D Slaven
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Aaron J Farrugia
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Maxine Lam
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Maria Semiannikova
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Marie C W Westergaard
- Center for Cancer Immune Therapy, Department of Hematology, Herlev Hospital, University of Copenhagen, 2730, Herlev, Denmark
| | - Julia Tchou
- Abramson Cancer Center and the Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Fernando Calvo
- Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK.
- Instituto de Biomedicina y Biotecnologia de Cantabria, c/ Albert Einstein 22, E39011, Santander, Spain.
| |
Collapse
|
30
|
Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, Chelliah MP, Li J, Harati K, Wallner C, Rein S, Pförringer D, Reumuth G, Grieb G, Mouraret S, Dadras M, Wagner JM, Cha JY, Siemers F, Lehnhardt M, Behr B. Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far. Front Cell Dev Biol 2019; 6:170. [PMID: 30666305 PMCID: PMC6330281 DOI: 10.3389/fcell.2018.00170] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling plays a central regulatory role across a remarkably diverse range of functions during embryonic development, including those involved in the formation of bone and cartilage. Wnt signaling continues to play a critical role in adult osteogenic differentiation of mesenchymal stem cells. Disruptions in this highly-conserved and complex system leads to various pathological conditions, including impaired bone healing, autoimmune diseases and malignant degeneration. For reconstructive surgeons, critically sized skeletal defects represent a major challenge. These are frequently associated with significant morbidity in both the recipient and donor sites. The Wnt pathway is an attractive therapeutic target with the potential to directly modulate stem cells responsible for skeletal tissue regeneration and promote bone growth, suggesting that Wnt factors could be used to promote bone healing after trauma. This review summarizes our current understanding of the essential role of the Wnt pathway in bone regeneration and repair.
Collapse
Affiliation(s)
- Khosrow S Houschyar
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christian Tapking
- Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, United States.,Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Daniel Popp
- Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, United States.,Division of Hand, Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Dominik Duscher
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Malcolm P Chelliah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Jingtao Li
- State Key Laboratory of Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kamran Harati
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Susanne Rein
- Department of Plastic and Hand Surgery-Burn Center-Clinic St. Georg, Leipzig, Germany
| | - Dominik Pförringer
- Clinic and Policlinic of Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Georg Reumuth
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Sylvain Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States.,Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 - Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes M Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Jungul Y Cha
- Orthodontic Department, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Frank Siemers
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Schattner A, Huszar M, Adi M. Unexpected Hydronephrosis: Mesenteric Fibromatosis. Am J Med 2018; 131:e383-e384. [PMID: 29730360 DOI: 10.1016/j.amjmed.2018.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ami Schattner
- Department of Medicine; Kaplan Medical Center, Rehovot and the Faculty of Medicine, Hebrew University and Hadassah Medical School, Jerusalem, Israel.
| | - Monica Huszar
- Department of Pathology, Kaplan Medical Center, Rehovot and the Faculty of Medicine, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| | - Meital Adi
- Department of Imaging, Kaplan Medical Center, Rehovot and the Faculty of Medicine, Hebrew University and Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
32
|
Enzo MV, Cattelan P, Rastrelli M, Tosi A, Rossi CR, Hladnik U, Segat D. Growth rate and myofibroblast differentiation of desmoid fibroblast-like cells are modulated by TGF-β signaling. Histochem Cell Biol 2018; 151:145-160. [DOI: 10.1007/s00418-018-1718-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
|
33
|
Patalano S, Rodríguez-Nieves J, Colaneri C, Cotellessa J, Almanza D, Zhilin-Roth A, Riley T, Macoska J. CXCL12/CXCR4-Mediated Procollagen Secretion Is Coupled To Cullin-RING Ubiquitin Ligase Activation. Sci Rep 2018; 8:3499. [PMID: 29472636 PMCID: PMC5823879 DOI: 10.1038/s41598-018-21506-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/06/2018] [Indexed: 01/07/2023] Open
Abstract
Tissue fibrosis is mediated by the actions of multiple pro-fibrotic proteins that can induce myofibroblast phenoconversion through diverse signaling pathways coupled predominantly to Smads or MEK/Erk proteins. The TGFβ/TGFβR and CXCL12/CXCR4 axes induce myofibroblast phenoconversion independently through Smads and MEK/Erk proteins, respectively. To investigate these mechanisms at the genetic level, we have now elucidated the TGFβ/TGFβR and CXCL12/CXCR4 transcriptomes in human fibroblasts. These transcriptomes are largely convergent, and up-regulate transcripts encoding proteins known to promote myofibroblast phenoconversion. These studies also revealed a molecular signature unique to CXCL12/CXCR4 axis activation for COPII vesicle formation, ubiquitination, and Golgi/ER localization/targeting. In particular, both CUL3 and KLHL12, key members of the Cullin-RING (CRL) ubiquitin ligase family of proteins involved in procollagen transport from the ER to the Golgi, were highly up-regulated in CXCL12-, but repressed in TGFβ-, treated cells. Up-regulation of CUL3 and KLHL12 was correlated with higher procollagen secretion by CXCL12-treated cells, and this affect was ablated upon treatment with inhibitors specific for CXCR4 or CUL3 and repressed by TGFβ/TGFβR axis activation. The results of these studies show that activation of the CXCL12/CXCR4 axis uniquely facilitates procollagen I secretion through a COPII-vesicle mediated mechanism to promote production of the ECM characteristic of fibrosis.
Collapse
Affiliation(s)
- Susan Patalano
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - José Rodríguez-Nieves
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Cory Colaneri
- Department of Biology, University of Massachusetts Boston, Boston, United States
| | - Justin Cotellessa
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Diego Almanza
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Alisa Zhilin-Roth
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Todd Riley
- Department of Biology, University of Massachusetts Boston, Boston, United States
| | - Jill Macoska
- Department of Biology, University of Massachusetts Boston, Boston, United States. .,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States.
| |
Collapse
|
34
|
A Metabolomics Pilot Study on Desmoid Tumors and Novel Drug Candidates. Sci Rep 2018; 8:584. [PMID: 29330550 PMCID: PMC5766559 DOI: 10.1038/s41598-017-18921-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Desmoid tumors (aggressive fibromatosis) are locally invasive soft tissue tumors that lack the ability to metastasize. There are no directed therapies or standard treatment plan, and chemotherapeutics, radiation, and surgery often have temporary effects. The majority of desmoid tumors are related to T41A and S45F mutations of the beta-catenin encoding gene (CTNNB1). Using broad spectrum metabolomics, differences were investigated between paired normal fibroblast and desmoid tumor cells from affected patients. There were differences identified, also, in the metabolomics profiles associated with the two beta-catenin mutations, T41A and S45F. Ongoing drug screening has identified currently available compounds which inhibited desmoid tumor cellular growth by more than 50% but did not affect normal fibroblast proliferation. Two drugs were investigated in this study, and Dasatinib and FAK Inhibitor 14 treatments resulted in unique metabolomics profiles for the normal fibroblast and desmoid tumor cells, in addition to the T41A and S45F. The biochemical pathways that differentiated the cell lines were aminoacyl-tRNA biosynthesis in mitochondria and cytoplasm and signal transduction amino acid-dependent mTORC1 activation. This study provides preliminary understanding of the metabolic differences of paired normal and desmoid tumors cells, their response to desmoid tumor therapeutics, and new pathways to target for therapy.
Collapse
|
35
|
Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018; 123:135-154. [PMID: 28757325 PMCID: PMC5742037 DOI: 10.1016/j.addr.2017.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
In recent decades, there have been tremendous improvements in burn care that have allowed patients to survive severe burn injuries that were once fatal. However, a major limitation of burn care currently is the development of hypertrophic scars in approximately 70% of patients. This significantly decreases the quality of life for patients due to the physical and psychosocial symptoms associated with scarring. Current approaches to manage scarring include surgical techniques and non-surgical methods such as laser therapy, steroid injections, and compression therapy. These treatments are limited in their effectiveness and regularly fail to manage symptoms. As a result, the development of novel treatments that aim to improve outcomes and quality of life is imperative. Drug delivery that targets the molecular cascades of wound healing to attenuate or prevent hypertrophic scarring is a promising approach that has therapeutic potential. In this review, we discuss current treatments for scar management after burn injury, and how drug delivery targeting molecular signaling can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.
| | - Yusef Yousuf
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada; Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada.
| |
Collapse
|
36
|
The EpSSG NRSTS 2005 treatment protocol for desmoid-type fibromatosis in children: an international prospective case series. THE LANCET CHILD & ADOLESCENT HEALTH 2017; 1:284-292. [DOI: 10.1016/s2352-4642(17)30045-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
|
37
|
Abstract
The canonical Wnt/β-catenin signaling pathway, an important modulator of progenitor cell proliferation and differentiation, is highly regulated for the maintenance of critical biological homeostasis. Decades of studies in cancer genetics and genomics have demonstrated that multiple genes encoding key proteins in this signaling pathway serve as targets for recurrent mutational alterations. Among these proteins, β-catenin and adenomatosis polyposis coli (APC) are two key nodes. β-catenin contributes in transporting extracellular signals for nuclear programming. Mutations of the CTNNB1 gene that encodes β-catenin occur in a wide spectrum of cancers. These mutations alter the spatial characteristics of the β-catenin protein, leading to drastic reprogramming of the nuclear transcriptional network. Among the outcomes of this reprogramming are increased cell proliferation, enhanced immunosuppression, and disruption of metabolic regulation. Herein we review the current understanding of CTNNB1 mutations, their roles in tumorigenesis and discuss their possible therapeutic implications for cancer.
Collapse
|
38
|
Mullin NK, Mallipeddi NV, Hamburg-Shields E, Ibarra B, Khalil AM, Atit RP. Wnt/β-catenin Signaling Pathway Regulates Specific lncRNAs That Impact Dermal Fibroblasts and Skin Fibrosis. Front Genet 2017; 8:183. [PMID: 29209359 PMCID: PMC5702388 DOI: 10.3389/fgene.2017.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Wnt/β-catenin signaling is required for embryonic dermal fibroblast cell fate, and dysregulation of this pathway is sufficient to promote fibrosis in adult tissue. The downstream modulators of Wnt/β-catenin signaling required for controlling cell fate and dermal fibrosis remain poorly understood. The discovery of regulatory long non-coding RNAs (lncRNAs) and their pivotal roles as key modulators of gene expression downstream of signaling cascades in various contexts prompted us to investigate their roles in Wnt/β-catenin signaling. Here, we have identified lncRNAs and protein-coding RNAs that are induced by β-catenin activity in mouse dermal fibroblasts using next generation RNA-sequencing. The differentially expressed protein-coding mRNAs are enriched for extracellular matrix proteins, glycoproteins, and cell adhesion, and many are also dysregulated in human fibrotic tissues. We identified 111 lncRNAs that are differentially expressed in response to activation of Wnt/β-catenin signaling. To further characterize the role of mouse lncRNAs in this pathway, we validated two novel Wnt signaling- Induced Non-Coding RNA (Wincr) transcripts referred to as Wincr1 and Wincr2. These two lncRNAs are highly expressed in mouse embryonic skin and perinatal dermal fibroblasts. Furthermore, we found that Wincr1 expression levels in perinatal dermal fibroblasts affects the expression of key markers of fibrosis (e.g., Col1a1 and Mmp10), enhances collagen contraction, and attenuates collective cell migration. Our results show that β-catenin signaling-responsive lncRNAs may modulate dermal fibroblast behavior and collagen accumulation in dermal fibrosis, providing new mechanistic insights and nodes for therapeutic intervention.
Collapse
Affiliation(s)
- Nathaniel K Mullin
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Nikhil V Mallipeddi
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Emily Hamburg-Shields
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Beatriz Ibarra
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Ahmad M Khalil
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
39
|
Guo Y, Sun L, Xiao L, Gou R, Fang Y, Liang Y, Wang R, Li N, Liu F, Tang L. Aberrant Wnt/Beta-Catenin Pathway Activation in Dialysate-Induced Peritoneal Fibrosis. Front Pharmacol 2017; 8:774. [PMID: 29163160 PMCID: PMC5670149 DOI: 10.3389/fphar.2017.00774] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/13/2017] [Indexed: 01/15/2023] Open
Abstract
Peritoneal dialysis (PD)-associated peritoneal fibrosis is a chronic progress which induces ultrafiltration failure. It remains a challenge to prevent the progression of PD-associated fibrosis in clinic practice. Wnt/β-catenin pathway plays important role in many severe fibrotic diseases, here we investigated its contribution to the development of peritoneal damage. We isolated mesothelial cells (MC) from the effluent of PD patients and found that the expressions of Wnt1, Wnt5a, β-catenin, and LEF1 were increased in patients with more than 1-year PD compared with patients who just started with PD (<1 month). The elevated expressions of Wnts and β-catenin were accompanied with changes in the expressions of E-cadherin, α-SMA, COL-I, and FN mRNA and proteins, which are known related to mesothelial-mesenchymal transition (MMT). In addition, treatment with high glucose significantly increased the expression of Wnt1, Wnt5a, β-catenin, and LEF1 as well as the expression of α-SMA, COL-I, and FN in human peritoneal mesothelial cells (HPMC), whereas the expression of E-cadherin was reduced. Dickkopf-1 (DKK-1) is an endogenous inhibitor of Wnt/β-catenin signaling. Overexpression of DKK1 transgene significantly decreased the expression of β-catenin and attenuated the process of MMT as indicated by the decreased expression of α-SMA, COL-I, and FN and the increased expression of E-cadherin. Furthermore, TGF-β1 treatment significantly activated the Wnt/β-catenin pathway in HPMCs, while DKK1 blocked the TGF-β1-induced Wnt signaling activation and significantly inhibited the process of MMT. These data suggest that the canonical Wnt/β-catenin pathway plays an important role in the MMT and fibrosis induced by PD.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudong Fang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiqiang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Fuyou Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Tang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Tropea S, Mocellin S, Stramare R, Bonavina MG, Rossi CR, Rastrelli M. Desmoid Fibromatosis of the Abdominal Wall: Surgical Resection and Reconstruction with Biological Matrix Egis®. Case Rep Oncol 2017; 10:205-211. [PMID: 28413398 PMCID: PMC5346936 DOI: 10.1159/000458436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 11/19/2022] Open
Abstract
Desmoid tumor is a rare monoclonal fibroblast proliferation that is regarded as benign. The clinical management of desmoid tumors is very complex and requires a multidisciplinary approach because of the unpredictable disease course. For those cases localized in the anterior abdominal wall, symptomatic and unresponsive to medical treatment, radical resection and reconstruction with a prosthetic device are indicated. We present here a case of desmoid fibromatosis of the left anterolateral abdominal wall with a marked increase of the mass that required a large excision followed by reconstruction with biological matrix. The fact that it can be incorporated in patient tissue without a fibrotic response and that it can resist future infections, together with a very competetive price, made the new collagen matrix Egis<sup>®</sup> our first choice.
Collapse
Affiliation(s)
- Saveria Tropea
- Surgical Oncology Unit, Veneto Insitute of Oncology, IOV-IRCCS, Padua, Italy
- *Saveria Tropea, MD Surgical Oncology Unit, Veneto Insitute of Oncology IOV-IRCCS IT-35128 Padua (Italy) E-Mail
| | - Simone Mocellin
- Surgical Oncology Unit, Veneto Insitute of Oncology, IOV-IRCCS, Padua, Italy
| | | | | | | | - Marco Rastrelli
- Surgical Oncology Unit, Veneto Insitute of Oncology, IOV-IRCCS, Padua, Italy
| |
Collapse
|
41
|
Papillary thyroid carcinoma with nodular fasciitis-like stroma and β-catenin mutations should be renamed papillary thyroid carcinoma with desmoid-type fibromatosis. Mod Pathol 2017; 30:236-245. [PMID: 27713418 DOI: 10.1038/modpathol.2016.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022]
Abstract
Various histological variants of papillary thyroid carcinoma have been reported, some with clinical implications, some with peculiar, sometimes misleading morphologies. One of these rare and poorly characterized variants is papillary thyroid carcinoma with nodular fasciitis-like stroma, of which fewer than 30 cases have been documented, mostly as isolated reports. It is a dual tumor comprising a malignant epithelial proliferation that harbors typical features of conventional papillary thyroid carcinoma, admixed with a prominent mesenchymal proliferation resembling nodular fasciitis or fibromatosis. Thus, the terms papillary thyroid carcinoma with nodular fasciitis-like stroma and papillary thyroid carcinoma with fibromatosis-like stroma are used interchangeably; however, the former term suggests a self-limited and regressing disease, whereas the latter one suggests a recurrent and potentially aggressive one. Better genetic and ultrastructural characterization could lead to more appropriate terminology and management. We performed detailed clinicopathological and molecular analyses of two cases of PTC with prominent mesenchymal proliferation that developed in the thyroid gland of two male patients aged 34 and 48. In both cases, the epithelial component harbored a heterozygous somatic activating BRAF mutation (p.V600E). Also, in both cases, the mesenchymal component showed typical aberrant nuclear and cytoplasmic immunoreactivity for β-catenin and harbored a heterozygous somatic activating mutation in the corresponding CTNNB1 gene (p.S45P). This mutation has never been reported in thyroid stroma; in other tissues, it is typical of desmoid-type fibromatosis rather than nodular fasciitis-like stroma. We therefore propose that in cases of papillary thyroid carcinoma with a prominent mesenchymal component, mutations in CTNNB1 should be sought; when they are present, the term 'papillary thyroid carcinoma with desmoid-type fibromatosis' should be used. As the mesenchymal component of these tumors is not expected to concentrate radioactive iodine, special considerations apply to clinical evaluation and follow-up, which should be brought to the attention of the treating specialist.
Collapse
|
42
|
Xie R, Xu Y, Fan S, Song Y. Identification of Differentially Expressed Genes in Pelvic Organ Prolapse by RNA-Seq. Med Sci Monit 2016; 22:4218-4225. [PMID: 27818488 PMCID: PMC5110227 DOI: 10.12659/msm.900224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Pelvic organ prolapse (POP) brings major health issues for women, affecting 40% of postmenopausal women, and directly affects bladder and bowel function, as well as quality of life. In light of the projected growth in demand for care for pelvic floor disorders, determining the etiology and progression of POP has important public health implications. Material/Methods Uterosacral ligaments (USLs) samples of POP patients and normal controls were enrolled for RNA-Seq, and functional annotation analysis and Protein-Protein interaction (PPI) networks construction were performed for differentially expressed genes (DEGs). Results A total of 81 DEGs were identified between POP and normal control, and distinctly classify all samples into normal and POP group by hierarchical clustering. Sixty-six DEGs demonstrated the same expression pattern among the POP samples with different stages. For those DEGs, canonical Wnt receptor signaling pathway was the most significantly enriched GO term (P value=3.33E-07), and neuroactive ligand-receptor interaction was the most significantly enriched pathway (P value=1.24E-03). In The PPI networks of 81 dysregulated genes, significant hub proteins contained TOP2A (Degree=54), KCNA5 (Degree=22) and PLA2G2A (Degree=19), suggesting their important role in the development of POP. Conclusions This RNA-seq analysis identified a POP signature of 81 genes, and some ECM-related genes, including COMP, NDP, and SNAI2 might participate in the pathology of POP and be applied as potential therapeutic targets.
Collapse
Affiliation(s)
- Ruoyun Xie
- Department of Urology, Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Ying Xu
- Department of Obstetrics and Gynecology, 476th Clinical Department of Fuzhou General Hospital, Fuzhou, Fujian, China (mainland)
| | - Shuixiu Fan
- Department of Obstetrics and Gynecology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian, China (mainland)
| | - Yanfeng Song
- Department of Obstetrics and Gynecology, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
43
|
Rydell-Törmänen K, Zhou XH, Hallgren O, Einarsson J, Eriksson L, Andersson-Sjöland A, Westergren-Thorsson G. Aberrant nonfibrotic parenchyma in idiopathic pulmonary fibrosis is correlated with decreased β-catenin inhibition and increased Wnt5a/b interaction. Physiol Rep 2016; 4:4/5/e12727. [PMID: 26997628 PMCID: PMC4823602 DOI: 10.14814/phy2.12727] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), an insidious disease with grave prognosis, is characterized by heterogeneous fibrosis with densely fibrotic areas surrounded by nonfibrotic normal‐looking tissue, believed to reflect a temporal development. The etiology is incompletely elucidated, but aberrant wound healing is believed to be involved. Embryonic signaling pathways, including Wnt signaling, are reactivated in wound healing, and we therefore aimed to investigate Wnt signaling, and hypothesized that Wnt signaling would correspond to degree of fibrosis. Material from 10 patients with IPF were included (four diagnostic biopsies and six donated lungs) and compared to healthy controls (n = 7). We investigated markers of Wnt signaling (β‐catenin, Wnt3a, ICAT, Wnt5a/b, DAAM1 and NLK) histologically in lung parenchyma with variable degree of fibrosis. Our results suggest that Wnt signaling is significantly altered (P < 0.05) already in normal‐looking parenchyma. The expression of Wnt3a and ICAT decreased (both P < 0.01) in IPF compared to healthy lungs, whereas β‐catenin, Wnt5a/b, DAAM1 and NLK increased (P < 0.05 for all). ICAT is further decreased in dense fibrosis compared to normal‐looking parenchyma in IPF (P < 0.001). On the basis of our results, we conclude that from a Wnt perspective, there is no normal parenchyma in IPF, and Wnt signaling corresponds to degree of fibrosis. In addition, β‐catenin and Wnt5a appears coupled, and decreased inhibition of β‐catenin may be involved. We suggest that the interaction between β‐catenin, ICAT, and Wnt5a/b may represent an important research area and potential target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Xiao-Hong Zhou
- Department of BioSciences, RIA iMed, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Oskar Hallgren
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden Respiratory Medicine and Allergology, Department Clinical Sciences, Lund University, Lund, Sweden
| | - Jonas Einarsson
- Respiratory Medicine and Allergology, Department Clinical Sciences, Lund University, Lund, Sweden Department Respiratory Medicine and Allergology, Skåne University Hospital, Lund, Sweden
| | - Leif Eriksson
- Lung Biology, Department Experimental Medical Science, Lund University, Lund, Sweden Respiratory Medicine and Allergology, Department Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
44
|
Schwetye KE, Joseph NM, Al-Kateb H, Rich KM, Schmidt RE, Perry A, Gutmann DH, Dahiya S. Gliosarcomas lackBRAFV600Emutation, but a subset exhibit β-catenin nuclear localization. Neuropathology 2016; 36:448-455. [DOI: 10.1111/neup.12293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine E. Schwetye
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis MO USA
| | - Nancy M. Joseph
- Department of Pathology; University of California-San Francisco; San Francisco CA USA
| | - Hussam Al-Kateb
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis MO USA
| | - Keith M. Rich
- Department of Neurosurgery; Washington University School of Medicine; St. Louis MO USA
| | - Robert E. Schmidt
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis MO USA
| | - Arie Perry
- Department of Pathology; University of California-San Francisco; San Francisco CA USA
| | - David H. Gutmann
- Department of Neurology; Washington University School of Medicine; St. Louis MO USA
| | - Sonika Dahiya
- Department of Pathology and Immunology; Washington University School of Medicine; St. Louis MO USA
| |
Collapse
|
45
|
Pietilä I, Prunskaite-Hyyryläinen R, Kaisto S, Tika E, van Eerde AM, Salo AM, Garma L, Miinalainen I, Feitz WF, Bongers EMHF, Juffer A, Knoers NVAM, Renkema KY, Myllyharju J, Vainio SJ. Wnt5a Deficiency Leads to Anomalies in Ureteric Tree Development, Tubular Epithelial Cell Organization and Basement Membrane Integrity Pointing to a Role in Kidney Collecting Duct Patterning. PLoS One 2016; 11:e0147171. [PMID: 26794322 PMCID: PMC4721645 DOI: 10.1371/journal.pone.0147171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022] Open
Abstract
The Wnts can be considered as candidates for the Congenital Anomaly of Kidney and Urinary Tract, CAKUT diseases since they take part in the control of kidney organogenesis. Of them Wnt5a is expressed in ureteric bud (UB) and its deficiency leads to duplex collecting system (13/90) uni- or bilateral kidney agenesis (10/90), hypoplasia with altered pattern of ureteric tree organization (42/90) and lobularization defects with partly fused ureter trunks (25/90) unlike in controls. The UB had also notably less tips due to Wnt5a deficiency being at E15.5 306 and at E16.5 765 corresponding to 428 and 1022 in control (p<0.02; p<0.03) respectively. These changes due to Wnt5a knock out associated with anomalies in the ultrastructure of the UB daughter epithelial cells. The basement membrane (BM) was malformed so that the BM thickness increased from 46.3 nm to 71.2 nm (p<0.01) at E16.5 in the Wnt5a knock out when compared to control. Expression of a panel of BM components such as laminin and of type IV collagen was also reduced due to the Wnt5a knock out. The P4ha1 gene that encodes a catalytic subunit of collagen prolyl 4-hydroxylase I (C-P4H-I) in collagen synthesis expression and the overall C-P4H enzyme activity were elevated by around 26% due to impairment in Wnt5a function from control. The compound Wnt5a+/-;P4ha1+/- embryos demonstrated Wnt5a-/- related defects, for example local hyperplasia in the UB tree. A R260H WNT5A variant was identified from renal human disease cohort. Functional studies of the consequence of the corresponding mouse variant in comparison to normal ligand reduced Wnt5a-signalling in vitro. Together Wnt5a has a novel function in kidney organogenesis by contributing to patterning of UB derived collecting duct development contributing putatively to congenital disease.
Collapse
Affiliation(s)
- Ilkka Pietilä
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Susanna Kaisto
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elisavet Tika
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albertien M. van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antti M. Salo
- Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Leonardo Garma
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Wout F. Feitz
- Department of Urology, Radboudumc Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ernie M. H. F. Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - André Juffer
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Nine V. A. M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johanna Myllyharju
- Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
46
|
Wei D, Zeng Y, Xing X, Liu H, Lin M, Han X, Liu X, Liu J. Proteome Differences between Hepatitis B Virus Genotype-B- and Genotype-C-Induced Hepatocellular Carcinoma Revealed by iTRAQ-Based Quantitative Proteomics. J Proteome Res 2016; 15:487-98. [PMID: 26709725 DOI: 10.1021/acs.jproteome.5b00838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is the main cause of hepatocellular carcinoma (HCC) in southeast Asia where HBV genotype B and genotype C are the most prevalent. Viral genotypes have been reported to significantly affect the clinical outcomes of HCC. However, the underlying molecular differences among different genotypes of HBV virus infected HCC have not been revealed. Here, we applied isobaric tags for relative and absolute quantitation (iTRAQ) technology integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify the proteome differences between the HBV genotypes B- and C-induced HCC. In brief, a total of 83 proteins in the surrounding noncancerous tissues and 136 proteins in the cancerous tissues between HBV genotype-B- and genotype-C-induced HCC were identified, respectively. This information revealed that there might be different molecular mechanisms of the tumorigenesis and development of HBV genotypes B- and C-induced HCC. Furthermore, our results indicate that the two proteins ARFIP2 and ANXA1 might be potential biomarkers for distinguishing the HBV genotypes B- and C-induced HCC. Thus, the quantitative proteomic analysis revealed molecular differences between the HBV genotypes B- and C-induced HCC, and might provide fundamental information for further deep study.
Collapse
Affiliation(s)
- Dahai Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University , Fuzhou 350007, People's Republic of China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Hongzhi Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Minjie Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Xiao Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100081, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University , Fuzhou 350025, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University , Fuzhou 350007, People's Republic of China
| |
Collapse
|
47
|
Kwak HJ, Park DW, Seo JY, Moon JY, Kim TH, Sohn JW, Shin DH, Yoon HJ, Park SS, Kim SH. The Wnt/β-catenin signaling pathway regulates the development of airway remodeling in patients with asthma. Exp Mol Med 2015; 47:e198. [PMID: 26655831 PMCID: PMC4686695 DOI: 10.1038/emm.2015.91] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023] Open
Abstract
Airway remodeling is a key characteristic of chronic asthma, particularly in patients with a fixed airflow limitation. The mechanisms underlying airway remodeling are poorly understood, and no therapeutic option is available. The Wnt/β-catenin signaling pathway is involved in various physiological and pathological processes, including fibrosis and smooth muscle hypertrophy. In this study, we investigated the roles of Wnt/β-catenin signaling in airway remodeling in patients with asthma. Wnt7a mRNA expression was prominent in induced sputum from patients with asthma compared with that from healthy controls. Next, we induced a chronic asthma mouse model with airway remodeling features, including subepithelial fibrosis and airway smooth muscle hyperplasia. Higher expression of Wnt family proteins and β-catenin was detected in the lung tissue of mice with chronic asthma compared to control mice. Blocking β-catenin expression with a specific siRNA attenuated airway inflammation and airway remodeling. Decreased subepithelial fibrosis and collagen accumulation in the β-catenin siRNA-treated mice was accompanied by reduced expression of transforming growth factor-β. We further showed that suppressing β-catenin in the chronic asthma model inhibited smooth muscle hyperplasia by downregulating the tenascin C/platelet-derived growth factor receptor pathway. Taken together, these findings demonstrate that the Wnt/β-catenin signaling pathway is highly expressed and regulates the development of airway remodeling in chronic asthma.
Collapse
Affiliation(s)
- Hyun Jung Kwak
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dong Won Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ji-Young Seo
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ji-Yong Moon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Tae Hyung Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jang Won Sohn
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Dong Ho Shin
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Joo Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sung Soo Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sang-Heon Kim
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Application of Wnt Pathway Inhibitor Delivering Scaffold for Inhibiting Fibrosis in Urethra Strictures: In Vitro and in Vivo Study. Int J Mol Sci 2015; 16:27659-76. [PMID: 26610467 PMCID: PMC4661908 DOI: 10.3390/ijms161126050] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Objective: To evaluate the mechanical property and biocompatibility of the Wnt pathway inhibitor (ICG-001) delivering collagen/poly(l-lactide-co-caprolactone) (P(LLA-CL)) scaffold for urethroplasty, and also the feasibility of inhibiting the extracellular matrix (ECM) expression in vitro and in vivo. Methods: ICG-001 (1 mg (2 mM)) was loaded into a (P(LLA-CL)) scaffold with the co-axial electrospinning technique. The characteristics of the mechanical property and drug release fashion of scaffolds were tested with a mechanical testing machine (Instron) and high-performance liquid chromatography (HPLC). Rabbit bladder epithelial cells and the dermal fibroblasts were isolated by enzymatic digestion method. (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay) and scanning electron microscopy (SEM) were used to evaluate the viability and proliferation of the cells on the scaffolds. Fibrolasts treated with TGF-β1 and ICG-001 released medium from scaffolds were used to evaluate the anti-fibrosis effect through immunofluorescence, real time PCR and western blot. Urethrography and histology were used to evaluate the efficacy of urethral implantation. Results: The scaffold delivering ICG-001 was fabricated, the fiber diameter and mechanical strength of scaffolds with inhibitor were comparable with the non-drug scaffold. The SEM and MTT assay showed no toxic effect of ICG-001 to the proliferation of epithelial cells on the collagen/P(LLA-CL) scaffold with ICG-001. After treatment with culture medium released from the drug-delivering scaffold, the expression of Collagen type 1, 3 and fibronectin of fibroblasts could be inhibited significantly at the mRNA and protein levels. In the results of urethrography, urethral strictures and fistulas were found in the rabbits treated with non-ICG-001 delivering scaffolds, but all the rabbits treated with ICG-001-delivering scaffolds showed wide caliber in urethras. Histology results showed less collagen but more smooth muscle and thicker epithelium in urethras repaired with ICG-001 delivering scaffolds. Conclusion: After loading with the Wnt signal pathway inhibitor ICG-001, the Collagen/P(LLA-CL) scaffold could facilitate a decrease in the ECM deposition of fibroblasts. The ICG-001 delivering Collagen/P(LLA-CL) nanofibrous scaffold seeded with epithelial cells has the potential to be a promising substitute material for urethroplasty. Longer follow-up study in larger animals is needed in the future.
Collapse
|