1
|
Madani P, Hesaraki S, Saeedifar M, Ahmadi Nasab N. The controlled release, bioactivity and osteogenic gene expression of Quercetin-loaded gelatin/tragacanth/ nano-hydroxyapatite bone tissue engineering scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:217-242. [PMID: 35960146 DOI: 10.1080/09205063.2022.2113293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, a Gelatin/Tragacanth/Nano-hydroxyapatite scaffold was fabricated via freeze-drying method. A highly porous scaffold with an average pore diameter of 142 µm and porosity of 86% was found by the micro-computed tomography. The mean compressive strength of the scaffold was about 1.5 MPa, a value in the range of the spongy bone. The scaffold lost 10 wt.% of its initial weight after 28 days soaking in PBS that shows a fair degradation rate for a bone tissue engineering scaffold. Apatite formation ability of the scaffold was confirmed via scanning electron microscopy, X-ray diffraction and Fourier transforming infrared spectroscopy, after 28 days soaking in simulated body fluid. The scaffold was able to deliver 93% of the loaded drug, Quercetin, during 120 h in phosphate-buffered solution, in a sustainable manner. The MTT assay using human bone mesenchymal stem cells showed 84% cell viability of the Quercetin-loaded scaffold. The expression of the osteogenic genes including Col I, Runx-2, BGLAP (gene of osteocalcin), bFGF, SP7 (gene of osterix) and SPP1 (gene of osteopontin) were all upregulated when Quercetin was loaded on the scaffold, which indicates the synergetic effect of the drug and the scaffold.
Collapse
Affiliation(s)
- Parisa Madani
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Saeed Hesaraki
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Maryam Saeedifar
- Biomaterials Group, Department of Nanotechnology & Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Navid Ahmadi Nasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
2
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
3
|
Li W, Wang F, Barnett C, Wang B. A comparative study on fabrication techniques of gelable bone matrix derived from porcine tibia. J Biomed Mater Res B Appl Biomater 2021; 109:2131-2141. [PMID: 33964121 DOI: 10.1002/jbm.b.34860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2021] [Accepted: 04/24/2021] [Indexed: 11/11/2022]
Abstract
Recently, several types of native tissues have been enzymatically digested to prepare hydrogels that have natural-mimic extracellular matrix (ECM) proteins, architecture, and biologic activities. However, the residual detergents and salts remaining in the hydrogel may cause some undesirable effects on compatibility, functionality, and bioactivity of the material. In this study, we enzymatically digested the demineralized and decellularized bone matrix (DDBM) and adopted two common methods that included dialysis against distilled water and acetone precipitation for sample desalting. Efficiency in salt removal, protein preservation, gelation ability, and in vivo biocompatibility and function were compared to the DDBM digest without a desalting treatment. After lyophilization, the dialyzed, precipitated, and non-desalted DDBM digests all exhibited cotton-like texture and were water-soluble; however, only the precipitated DDBM digest could be gelled. We also found that the method of acetone precipitation could effectively remove salt from the DDBM digest while preserving of multiple proteins from the native bone and internal porous structure. A total of 57 proteins were identified by mass spectrometry in the precipitated DDBM digest and the majority of these proteins are critical to overall protein assembly, scaffold structure and stability, and cell-activities. Additionally, the precipitated DDBM digest possessed enhanced biocompatibility and osteointegration in repairing a cranial bone defect in Sprague-Dawley (SD) rat. In conclusion, the soluble, biodegradable, and biocompatible natures of the precipitated DDBM digest allow its usage in bone tissue engineering as a protein carrier because of its resemblance to native bone-like protein composite and operative flexibility.
Collapse
Affiliation(s)
- Wuwei Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Feilong Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian, China
| | - Cleon Barnett
- Department of Physical Sciences, Alabama State University, Montgomery, Alabama, USA
| | - Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Ou M, Huang X. Influence of bone formation by composite scaffolds with different proportions of hydroxyapatite and collagen. Dent Mater 2021; 37:e231-e244. [PMID: 33509634 DOI: 10.1016/j.dental.2020.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/14/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Composite scaffolds with different proportions of hydroxyapatite (HA) and collagen (COL) produced different bone induction results. OBJECTIVE To examine the composite scaffolds with optimal proportion of HA and COL to achieve earlier bone induction and maximum bone formation. METHODS Composite scaffolds with the HA/COL weight ratio of 7:3, 3:7, 5:5 and 9:1 were prepared, as HA powder was added to collagen solution at 130℃ for 48 h. Then, the composites with different proportions of HA/COL were implanted into the extraction socket of right upper central incisor of C57BL/6 J mice. The bone formation of the extraction socket was observed by Hematoxylin-eosin (HE) and Masson-trichrome (Masson) staining at 1 and 2 weeks after operation. Five weeks later, the bone formation of extraction socket was observed by micro computed tomography (micro-CT). After MC3T3-E1 cells were co-cultured with materials of different proportions for 3 days, the number of cells attached on the surface of the materials and entering the materials were counted, and the expression of osteogenic related genes (Runx2, Ocn. Osx and Alp) was detected by reverse transcription polymerase chain reaction (RT-PCR). The composite scaffolds with different proportion of HA/COL with and without mouse bone marrow mesenchymal stem cells (BMMSCs) were implanted into the back of adult mice and cultured subcutaneously for 30 days, and observed histologically by HE and Masson staining. RESULTS After one week implantation with the composite HA/COL scaffolds with the weight ratio of 7:3, 3:7, 5:5 and 9:1, there was no new bone formation in the extraction socket in mouse. However, two weeks later, new bone was firstly observed in the tooth socket with the composite HA/COL scaffolds of 7:3. 5 weeks later, micro-CT scanning showed that the total amount of newly formed bone, trabecular width and bone mineral density of the HA/COL scaffolds of 7:3 were higher than the other HA/COL scaffolds (P < 0.05). After MC3T3-E1 cells were co-cultured with different composite HA/COL scaffolds for 3 days. The number of cells on the surface and inside of the HA/COL scaffolds of 7:3 was more than the other materials, and the difference was statistically significant (P < 0.05). The expression levels of Ocn and Osx of MC3T3-E1 cells were also the highest in the HA/COL scaffolds of 7:3 (P < 0.01). Bone formation was observed in the composite HA/COL scaffold of 7:3 with BMMSCs subcutaneously in mouse for 30 days, while only osteoid formation was observed in the same scaffold without BMMSCs. but bone formation was not detected in the other proportions of the HA/COL scaffolds. SIGNIFICANCE Compared with other proportions of HA/COL, the composite HA/COL scaffolds of 7:3 has stronger ability to promote bone formation, recruit osteoblasts to attach and enter into the scaffolds, and promote the osteogenesis of BMMSCs.
Collapse
Affiliation(s)
- Mingming Ou
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Sparks DS, Savi FM, Saifzadeh S, Schuetz MA, Wagels M, Hutmacher DW. Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies-A Quest for Regenerative Matching Axial Vascularization. Front Bioeng Biotechnol 2020; 7:448. [PMID: 31998712 PMCID: PMC6967032 DOI: 10.3389/fbioe.2019.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalent challenge facing tissue engineering today is the lack of adequate vascularization to support the growth, function, and viability of tissue engineered constructs (TECs) that require blood vessel supply. The research and clinical community rely on the increasing knowledge of angiogenic and vasculogenic processes to stimulate a clinically-relevant vascular network formation within TECs. The regenerative matching axial vascularization approach presented in this manuscript incorporates the advantages of flap-based techniques for neo-vascularization yet also harnesses the in vivo bioreactor principle in a more directed "like for like" approach to further assist regeneration of the specific tissue type that is lost, such as a corticoperiosteal flap in critical sized bone defect reconstruction.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia Medeiros Savi
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Michael A Schuetz
- Department of Orthopaedic Surgery, Royal Brisbane Hospital, Herston, QLD, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia.,Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,ARC Centre for Additive Bio-Manufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
6
|
Zeng JH, Liu SW, Xiong L, Qiu P, Ding LH, Xiong SL, Li JT, Liao XG, Tang ZM. Scaffolds for the repair of bone defects in clinical studies: a systematic review. J Orthop Surg Res 2018; 13:33. [PMID: 29433544 PMCID: PMC5809923 DOI: 10.1186/s13018-018-0724-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/17/2018] [Indexed: 01/06/2023] Open
Abstract
Background This systematic review aims to summarize the clinical studies on the use of scaffolds in the repair of bony defects. Methods The relevant articles were searched through PubMed database. The following keywords and search terms were used: “scaffolds,” “patient,” “clinic,” “bone repair,” “bone regeneration,” “repairing bone defect,” “repair of bone,” “osteanagenesis,” “osteanaphysis,” and “osteoanagenesis.” The articles were screened according to inclusion and exclusion criteria, performed by two reviewers. Results A total of 373 articles were obtained using PubMed database. After screening, 20 articles were identified as relevant for the purpose of this systematic review. We collected the data of biological scaffolds and synthetic scaffolds. There are eight clinical studies of biological scaffolds included collagen, gelatin, and cellular scaffolds for bone healing. In addition, 12 clinical studies of synthetic scaffolds on HAp, TCP, bonelike, and their complex scaffolds for repairing bone defects were involved in this systematic review. Conclusions There are a lot of clinical evidences showed that application of scaffolds had a good ability to facilitate bone repair and osteogenesis. However, the ideal and reliable guidelines are insufficiently applied and the number and quality of studies in this field remain to be improved.
Collapse
Affiliation(s)
- Jian-Hua Zeng
- Department of Orthopaedics, Jiangxi People's Hospital, No.152, Ai guo Road, Nanchang, 330006, China
| | - Shi-Wei Liu
- Department of Orthopaedics, Jiangxi medical college, Nanchang university, Nanchang, China
| | - Long Xiong
- Department of Orthopaedics, Jiangxi People's Hospital, No.152, Ai guo Road, Nanchang, 330006, China.
| | - Peng Qiu
- Department of Orthopaedics, Jiangxi medical college, Nanchang university, Nanchang, China
| | - Ling-Hua Ding
- Department of Orthopaedics, Jiangxi medical college, Nanchang university, Nanchang, China
| | | | - Jing-Tang Li
- Department of Orthopaedics, Jiangxi People's Hospital, No.152, Ai guo Road, Nanchang, 330006, China
| | - Xin-Gen Liao
- Department of Orthopaedics, Jiangxi People's Hospital, No.152, Ai guo Road, Nanchang, 330006, China
| | - Zhi-Ming Tang
- Department of Orthopaedics, Jiangxi People's Hospital, No.152, Ai guo Road, Nanchang, 330006, China
| |
Collapse
|
7
|
Baino F, Fiume E, Miola M, Leone F, Onida B, Laviano F, Gerbaldo R, Verné E. Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E173. [PMID: 29361763 PMCID: PMC5793671 DOI: 10.3390/ma11010173] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/16/2022]
Abstract
This work deals with the synthesis and characterization of novel Fe-containing sol-gel materials obtained by modifying the composition of a binary SiO₂-CaO parent glass with the addition of Fe₂O₃. The effect of different processing conditions (calcination in air vs. argon flowing) on the formation of magnetic crystalline phases was investigated. The produced materials were analyzed from thermal (hot-stage microscopy, differential thermal analysis, and differential thermal calorimetry) and microstructural (X-ray diffraction) viewpoints to assess both the behavior upon heating and the development of crystalline phases. N₂ adsorption-desorption measurements allowed determining that these materials have high surface area (40-120 m²/g) and mesoporous texture with mesopore size in the range of 18 to 30 nm. It was assessed that the magnetic properties can actually be tailored by controlling the Fe content and the environmental conditions (oxidant vs. inert atmosphere) during calcination. The glasses and glass-ceramics developed in this work show promise for applications in bone tissue healing which require the use of biocompatible magnetic implants able to elicit therapeutic actions, such as hyperthermia for bone cancer treatment.
Collapse
Affiliation(s)
- Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Federica Leone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Barbara Onida
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Francesco Laviano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Roberto Gerbaldo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
8
|
Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review. Int J Biol Macromol 2016; 93:1390-1401. [PMID: 27316767 DOI: 10.1016/j.ijbiomac.2016.06.043] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
Bone is a natural composite material consisting of an organic phase (collagen) and a mineral phase (calcium phosphate, especially hydroxyapatite). The strength of bone is attributed to the apatite, while the collagen fibrils are responsible for the toughness and visco-elasticity. The challenge in bone tissue engineering is to develop such biomimetic composite scaffolds, having a balance between biological and biomechanical properties. This review summarizes the current state of the field by outlining composite scaffolds made of gelatin/collagen in combination with bioactive ceramics for bone tissue engineering application.
Collapse
|