1
|
Kim S, So J, Jeon Y, Moon J. Effect of changes in motor skill induced by educational video program to decrease lower-limb joint load during cutting maneuvers: based on musculoskeletal modeling. BMC Musculoskelet Disord 2024; 25:527. [PMID: 38982445 PMCID: PMC11232243 DOI: 10.1186/s12891-024-07642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND This study investigated the effects of changes in motor skills from an educational video program on the kinematic and kinetic variables of the lower extremity joints and knee ligament load. METHODS Twenty male participants (age: 22.2 ± 2.60 y; height: 1.70 ± 6.2 m; weight: 65.4 ± 7.01 kg; BMI: 23.32 ± 2.49 [Formula: see text]) were instructed to run at 4.5 ± 0.2 m/s from a 5 m distance posterior to the force plate, land their foot on the force plate, and perform the cutting maneuver on the left. The educational video program for cutting maneuvers consisted of preparatory posture, foot landing orientation, gaze and trunk directions, soft landing, and eversion angle. The measured variables were the angle, angular velocity of lower extremity joints, ground reaction force (GRF), moment, and anterior cruciate ligament (ACL) and medial collateral ligament (MCL) forces through musculoskeletal modeling. RESULTS After the video feedback, the hip joint angles increased in flexion, abduction, and external rotation (p < 0.05), and the angular velocity increased in extension (p < 0.05). The ankle joint angles increased in dorsiflexion (p < 0.05), and the angular velocity decreased in dorsiflexion (p < 0.05) but increased in abduction (p < 0.05). The GRF increased in the anterior-posterior and medial-lateral directions and decreased vertically (p < 0.05). The hip joint moments decreased in extension and external rotation (p < 0.05) but increased in adduction (p < 0.05). The knee joint moments were decreased in extension, adduction, and external rotation (p < 0.05). The abduction moment of the ankle joint decreased (p < 0.001). There were differences in the support zone corresponding to 64‒87% of the hip frontal moment (p < 0.001) and 32‒100% of the hip horizontal moment (p < 0.001) and differences corresponding to 32‒100% of the knee frontal moment and 21‒100% of the knee horizontal moment (p < 0.001). The GRF varied in the support zone at 44‒95% in the medial-lateral direction and at 17‒43% and 73‒100% in the vertical direction (p < 0.001). CONCLUSIONS Injury prevention feedback reduced the load on the lower extremity joints during cutting maneuvers, which reduced the knee ligament load, mainly on the MCL.
Collapse
Affiliation(s)
- Sungmin Kim
- Institute of School Physical Education, Korea National University of Education, Cheongju, Republic of Korea
| | - Jiho So
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Youngju Jeon
- Digital Health Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jeheon Moon
- Department of Physical Education, Korea National University of Education, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Kal E, Ellmers T, Hogg J, Slutsky-Ganesh AB, Bonnette S, Thomas S, Riehm CD, Myer GD, Diekfuss JA. Optimal Training for Movement Acquisition and Transfer: Does "Externally Focused" Visual Biofeedback Promote Implicit Motor Learning? J Athl Train 2023; 58:648-654. [PMID: 36094615 PMCID: PMC10569250 DOI: 10.4085/1062-6050-0166.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Visual biofeedback has been shown to facilitate injury-resistant movement acquisition in adolescent athletes. Visual biofeedback is typically thought to foster implicit learning by stimulating athletes to focus attention externally (on movement outcome). However, biofeedback may also induce explicit learning if the athlete uses the visual information to consciously guide movement execution (via an internal focus). OBJECTIVE To determine the degree to which athletes reported statements indicating implicit or explicit motor learning after engaging in a visual biofeedback intervention. DESIGN Prospective cohort study. SETTING Three-dimensional motion-analysis laboratory. PATIENTS OR OTHER PARTICIPANTS Twenty-five adolescent female soccer athletes (age = 15.0 ± 1.5 years, height = 165.7 ± 5.9 cm, mass = 59.4 ± 10.6 kg). INTERVENTIONS Standard 6-week neuromuscular training intervention (three 90-minute sessions/wk), with added visual biofeedback sessions (2 sessions/wk). For the biofeedback training, participants performed squatting and jumping movements while interacting with a visual rectangular stimulus that mapped key parameters associated with injury risk. After the last biofeedback session in each week, participants answered open-ended questions to probe learning strategies. MAIN OUTCOME MEASURE(S) Responses to the open-ended questions were categorized as externally focused (ie, on movement outcome, suggestive of implicit learning), internally focused (ie, on movement itself, suggestive of explicit learning), mixed focus, or other. RESULTS A total of 171 open-ended responses were collected. Most of the responses that could be categorized (39.2%) were externally focused (41.8%), followed by mixed (38.8%) and internally focused (19.4%). The frequency of externally focused statements increased from week 1 (18%) to week 6 (50%). CONCLUSIONS Although most statements were externally focused (suggesting implicit learning), the relatively large proportion of internal- and mixed-focus statements suggested that many athletes also engaged in explicit motor learning, especially in early practice sessions. Therefore, biofeedback may affect motor learning through a mixture of implicit and explicit learning.
Collapse
Affiliation(s)
- Elmar Kal
- College of Health, Medicine and Life Sciences, Brunel University London, United Kingdom
- Centre for Cognitive Neuroscience, Brunel University London, United Kingdom
| | - Toby Ellmers
- College of Health, Medicine and Life Sciences, Brunel University London, United Kingdom
- Centre for Cognitive Neuroscience, Brunel University London, United Kingdom
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom
| | - Jennifer Hogg
- Department of Health and Human Performance, University of Tennessee, Chattanooga
| | - Alexis B. Slutsky-Ganesh
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA
- Emory Sports Medicine Center, Atlanta, GA
- Department of Kinesiology, University of North Carolina, Greensboro
| | - Scott Bonnette
- Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, OH
| | - Staci Thomas
- Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, OH
| | - Christopher D. Riehm
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA
- Emory Sports Medicine Center, Atlanta, GA
| | - Gregory D. Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA
- Emory Sports Medicine Center, Atlanta, GA
- Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, OH
| | - Jed A. Diekfuss
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA
- Emory Sports Medicine Center, Atlanta, GA
| |
Collapse
|
3
|
Wohl TR, Criss CR, Grooms DR. Visual Perturbation to Enhance Return to Sport Rehabilitation after Anterior Cruciate Ligament Injury: A Clinical Commentary. Int J Sports Phys Ther 2021; 16:552-564. [PMID: 33842051 PMCID: PMC8016421 DOI: 10.26603/001c.21251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/10/2020] [Indexed: 01/13/2023] Open
Abstract
Anterior cruciate ligament (ACL) tears are common traumatic knee injuries causing joint instability, quadriceps muscle weakness and impaired motor coordination. The neuromuscular consequences of injury are not limited to the joint and surrounding musculature, but may modulate central nervous system reorganization. Neuroimaging data suggest patients with ACL injuries may require greater levels of visual-motor and neurocognitive processing activity to sustain lower limb control relative to healthy matched counterparts. Therapy currently fails to adequately address these nuanced consequences of ACL injury, which likely contributes to impaired neuromuscular control when visually or cognitively challenged and high rates of re-injury. This gap in rehabilitation may be filled by visual perturbation training, which may reweight sensory neural processing toward proprioception and reduce the dependency on vision to perform lower extremity motor tasks and/or increase visuomotor processing efficiency. This clinical commentary details a novel approach to supplement the current standard of care for ACL injury by incorporating stroboscopic glasses with key motor learning principles customized to target visual and cognitive dependence for motor control after ACL injury. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- Timothy R Wohl
- Honors Tutorial College, Ohio University, Athens, OH, USA; Division of Physical Therapy, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, USA
| | - Cody R Criss
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Grover Center, Athens, OH, USA; Translational Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Grover Center, Athens, OH, USA; Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, USA; Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, USA
| |
Collapse
|
4
|
Diekfuss JA, Grooms DR, Bonnette S, DiCesare CA, Thomas S, MacPherson RP, Ellis JD, Kiefer AW, Riley MA, Schneider DK, Gadd B, Kitchen K, Barber Foss KD, Dudley JA, Yuan W, Myer GD. Real-time biofeedback integrated into neuromuscular training reduces high-risk knee biomechanics and increases functional brain connectivity: A preliminary longitudinal investigation. Psychophysiology 2020; 57:e13545. [PMID: 32052868 DOI: 10.1111/psyp.13545] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022]
Abstract
Prospective evidence indicates that functional biomechanics and brain connectivity may predispose an athlete to an anterior cruciate ligament injury, revealing novel neural linkages for targeted neuromuscular training interventions. The purpose of this study was to determine the efficacy of a real-time biofeedback system for altering knee biomechanics and brain functional connectivity. Seventeen healthy, young, physically active female athletes completed 6 weeks of augmented neuromuscular training (aNMT) utilizing real-time, interactive visual biofeedback and 13 served as untrained controls. A drop vertical jump and resting state functional magnetic resonance imaging were separately completed at pre- and posttest time points to assess sensorimotor adaptation. The aNMT group had a significant reduction in peak knee abduction moment (pKAM) compared to controls (p = .03, d = 0.71). The aNMT group also exhibited a significant increase in functional connectivity between the right supplementary motor area and the left thalamus (p = .0473 after false discovery rate correction). Greater percent change in pKAM was also related to increased connectivity between the right cerebellum and right thalamus for the aNMT group (p = .0292 after false discovery rate correction, r2 = .62). No significant changes were observed for the controls (ps > .05). Our data provide preliminary evidence of potential neural mechanisms for aNMT-induced motor adaptations that reduce injury risk. Future research is warranted to understand the role of neuromuscular training alone and how each component of aNMT influences biomechanics and functional connectivity.
Collapse
Affiliation(s)
- Jed A Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Scott Bonnette
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher A DiCesare
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Staci Thomas
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ryan P MacPherson
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| | - Jonathan D Ellis
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Adam W Kiefer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Exercise Science and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
| | - Michael A Riley
- Center for Cognition, Action & Perception, Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Brooke Gadd
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Katie Kitchen
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kim D Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan A Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory D Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,College of Medicine, University of Cincinnati, Cincinnati, OH, USA.,Department of Pediatrics and Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA.,The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| |
Collapse
|