1
|
van Vijven M, van Groningen B, Janssen RPA, van der Steen MC, van Doeselaar M, Stefanoska D, van Donkelaar CC, Ito K, Foolen J. Local variations in mechanical properties of human hamstring tendon autografts for anterior cruciate ligament reconstruction do not translate to a mechanically inferior strand. J Mech Behav Biomed Mater 2021; 126:105010. [PMID: 34896765 DOI: 10.1016/j.jmbbm.2021.105010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022]
Abstract
A ruptured anterior cruciate ligament (ACL) is often reconstructed with a multiple-strand autograft of a semitendinosus tendon alone or combined with a gracilis tendon. Up to 10% of patients experience graft rupture. This potentially results from excessive local tissue strains under physiological loading which could either result in direct mechanical failure of the graft or induce mechanobiological weakening. Since the original location in the hamstring tendon cannot be traced back from an autograft rupture site, this study explored whether clinical outcome could be further improved by avoiding specific locations or regions of human semitendinosus and/or gracilis tendons in ACL grafts due to potential mechanical or biochemical inferiority. Additionally, it examined numerically which clinically relevant graft configurations experience the lowest strains - and therefore the lowest rupture risk - when loaded with equal force. Remnant full-length gracilis tendons from human ACL reconstructions and full-length semitendinosus- and ipsilateral gracilis tendons of human cadaveric specimens were subjected to a stress-relaxation test. Locations at high risk of mechanical failure were identified using particle tracking to calculate local axial strains. As biochemical properties, the water-, collagen-, glycosaminoglycan- and DNA content per tissue region (representing graft strands) were determined. A viscoelastic lumped parameter model per tendon region was calculated. These models were applied in clinically relevant virtual graft configurations, which were exposed to physiological loading. Configurations that provided lower stiffness - i.e., experiencing higher strains under equal force - were assumed to be at higher risk of failure. Suitability of the gracilis tendon proper to replace semitendinosus muscle-tendon junction strands was examined. Deviations in local axial strains from the globally applied strain were of similar magnitude as the applied strain. Locations of maximum strains were uniformly distributed over tendon lengths. Biochemical compositions varied between tissue regions, but no trends were detected. Viscoelastic parameters were not significantly different between regions within a tendon, although semitendinosus tendons were stiffer than gracilis tendons. Virtual grafts with a full-length semitendinosus tendon alone or combined with a gracilis tendon displayed the lowest strains, whereas strains increased when gracilis tendon strands were tested for their suitability to replace semitendinosus muscle-tendon junction strands. Locations experiencing high local axial strains - which could increase risk of rupture - were present, but no specific region within any of the investigated graft configurations was found to be mechanically or biochemically deviant. Consequently, no specific tendon region could be indicated to provide a higher risk of rupture for mechanical or biochemical reasons. The semitendinosus tendon provided superior stiffness to a graft compared to the gracilis tendon. Therefore, based on our results it would be recommended to use the semitendinosus tendon, and use the gracilis tendon in cases where further reinforcement of the graft is needed to attain the desired length and cross-sectional area. All these data support current clinical standards.
Collapse
Affiliation(s)
- M van Vijven
- Regenerative Engineering & Materials, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - B van Groningen
- Department of Orthopaedic Surgery & Trauma, Máxima MC: Dominee Theodor Fliednerstraat 1, 5631, BM, Eindhoven, the Netherlands
| | - R P A Janssen
- Regenerative Engineering & Materials, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Department of Orthopaedic Surgery & Trauma, Máxima MC: Dominee Theodor Fliednerstraat 1, 5631, BM, Eindhoven, the Netherlands; Value-Based Health Care, Department of Paramedical Sciences, Fontys University of Applied Sciences, Postbus 347, 5600, AH, Eindhoven, the Netherlands
| | - M C van der Steen
- Department of Orthopaedic Surgery & Trauma, Máxima MC: Dominee Theodor Fliednerstraat 1, 5631, BM, Eindhoven, the Netherlands; Department of Orthopaedic Surgery & Trauma, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623, EJ, Eindhoven, the Netherlands
| | - M van Doeselaar
- Regenerative Engineering & Materials, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - D Stefanoska
- Regenerative Engineering & Materials, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - C C van Donkelaar
- Regenerative Engineering & Materials, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - K Ito
- Regenerative Engineering & Materials, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - J Foolen
- Regenerative Engineering & Materials, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands.
| |
Collapse
|
2
|
Tromp IN, Foolen J, van Doeselaar M, Zhang Y, Chan D, Kruyt MC, Creemers LB, Castelein RM, Ito K. Comparison of annulus fibrosus cell collagen remodeling rates in a microtissue system. J Orthop Res 2021; 39:1955-1964. [PMID: 33222305 PMCID: PMC8451922 DOI: 10.1002/jor.24921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/13/2020] [Accepted: 11/19/2020] [Indexed: 02/04/2023]
Abstract
It has been suggested that curvature progression in adolescent idiopathic scoliosis occurs through irreversible changes in the intervertebral discs. Strains of mice have been identified who differ in their disc wedging response upon extended asymmetrical compression. Annulus fibrosus (AF) tissue remodeling could contribute to the faster disc wedging progression previously observed in these mice. Differences in collagen remodeling capacity of AF cells between these in-bred mice strains were compared using an in vitro microtissue system. AF cells of 8-10-week-old LG/J ("fast-healing") and C57BL/6J ("normal healing") mice were embedded in a microtissue platform and cultured for 48 h. Hereafter, tissues were partially released and cultured for another 96 h. Microtissue surface area and waistcoat contraction, collagen orientation, and collagen content were measured. After 96 h postrelease, microtissues with AF cells of LG/J mice showed more surface area contraction (p < .001) and waistcoat contraction (p = .002) than C57BL/6J microtissues. Collagen orientation did not differ at 24 h after partial release. However, at 96 h, collagen in the microtissues from LG/J AF cells was aligned more than in those from C57BL/6J mice (p < .001). Collagen content did not differ between microtissues at 96 h. AF cells of inbred LG/J mice were better able to remodel and realign their collagen fibers than those from C57BL/6J mice. The remodeling of AF tissue could be contributing to the faster disc wedging progression observed in LG/J mice.
Collapse
Affiliation(s)
- Isabel N Tromp
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jasper Foolen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marina van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ying Zhang
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Moyo C Kruyt
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura B Creemers
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rene M Castelein
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Keita Ito
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|