1
|
Marcus C, Hansen C, Schlimgen C, Eitner-Pchalek J, Schulz J, Hof S, Kuebart A, Truse R, Vollmer C, Bauer I, Picker O, Herminghaus A. Effects of Local Vasodilators and the Autonomic Nervous System on Microcirculation and Mitochondrial Function in Septic Rats. Int J Mol Sci 2024; 25:9305. [PMID: 39273258 PMCID: PMC11394822 DOI: 10.3390/ijms25179305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Systemic vasodilating agents like nitroglycerin (NG) or iloprost (Ilo) show beneficial effects on intestinal microcirculation during sepsis, which could be attenuated by activation of the sympathetic nervous system or systemic side effects of vasodilating agents. This exploratory study aimed to investigate the effects of topically administered vasodilators and the parasympathetic drug carbachol on colonic microcirculatory oxygenation (µHbO2), blood flow (µFlow) and mitochondrial respiration. A total of 120 male Wistar rats were randomly assigned to twelve groups and underwent either colon ascendens stent peritonitis (CASP) or sham surgery. After 24 h, animals received the following therapeutic regimes: (1) balanced full electrolyte solution, (2) carbachol, (3) NG, (4) Ilo, (5) NG + carbachol, and (6) Ilo + carbachol. Mitochondrial respiration was measured in colon homogenates by respirometry. In sham animals, NG (-13.1%*) and Ilo (-10.5%*) led to a decrease in µHbO2. Additional application of carbachol abolished this effect (NG + carbachol: -4.0%, non-significant; Ilo + carbachol: -1.4%, non-significant). In sepsis, carbachol reduced µHbO2 when applied alone (-10.5%*) or in combination with NG (-17.6%*). Thus, the direction and degree of this effect depend on the initial pathophysiologic condition.
Collapse
Affiliation(s)
- Carsten Marcus
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Claudia Hansen
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Charlotte Schlimgen
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jeanne Eitner-Pchalek
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Stefan Hof
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Anne Kuebart
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
2
|
Hof S, Untiedt H, Hübner A, Marcus C, Kuebart A, Herminghaus A, Vollmer C, Bauer I, Picker O, Truse R. Effects of remote ischemic preconditioning on early markers of intestinal injury in experimental hemorrhage in rats. Sci Rep 2024; 14:12960. [PMID: 38839819 PMCID: PMC11153647 DOI: 10.1038/s41598-024-63293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
The maintenance of intestinal integrity and barrier function under conditions of restricted oxygen availability is crucial to avoid bacterial translocation and local inflammation. Both lead to secondary diseases after hemorrhagic shock and might increase morbidity and mortality after surviving the initial event. Monitoring of the intestinal integrity especially in the early course of critical illness remains challenging. Since microcirculation and mitochondrial respiration are main components of the terminal stretch of tissue oxygenation, the evaluation of microcirculatory and mitochondrial variables could identify tissues at risk during hypoxic challenges, indicate an increase of intestinal injury, and improve our understanding of regional pathophysiology during acute hemorrhage. Furthermore, improving intestinal microcirculation or mitochondrial respiration, e.g. by remote ischemic preconditioning (RIPC) that was reported to exert a sufficient tissue protection in various tissues and was linked to mediators with vasoactive properties could maintain intestinal integrity. In this study, postcapillary oxygen saturation (µHbO2), microvascular flow index (MFI) and plasmatic D-lactate concentration revealed to be early markers of intestinal injury in a rodent model of experimental hemorrhagic shock. Mitochondrial function was not impaired in this experimental model of acute hemorrhage. Remote ischemic preconditioning (RIPC) failed to improve intestinal microcirculation and intestinal damage during hemorrhagic shock.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Hendrik Untiedt
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anne Hübner
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Carsten Marcus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anne Kuebart
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Pravastatin Improves Colonic and Hepatic Microcirculatory Oxygenation during Sepsis without Affecting Mitochondrial Function and ROS Production in Rats. Int J Mol Sci 2023; 24:ijms24065455. [PMID: 36982530 PMCID: PMC10052315 DOI: 10.3390/ijms24065455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Microcirculatory and mitochondrial dysfunction are considered the main mechanisms of septic shock. Studies suggest that statins modulate inflammatory response, microcirculation, and mitochondrial function, possibly through their action on peroxisome proliferator-activated receptor alpha (PPAR-α). The aim of this study was to examine the effects of pravastatin on microcirculation and mitochondrial function in the liver and colon and the role of PPAR-α under septic conditions. This study was performed with the approval of the local animal care and use committee. Forty Wistar rats were randomly divided into 4 groups: sepsis (colon ascendens stent peritonitis, CASP) without treatment as control, sepsis + pravastatin, sepsis + PPAR-α-blocker GW6471, and sepsis + pravastatin + GW6471. Pravastatin (200 µg/kg s.c.) and GW6471 (1 mg/kg) were applied 18 h before CASP-operation. 24 h after initial surgery, a relaparotomy was performed, followed by a 90 min observation period for assessment of microcirculatory oxygenation (μHbO2) of the liver and colon. At the end of the experiments, animals were euthanized, and the colon and liver were harvested. Mitochondrial function was measured in tissue homogenates using oximetry. The ADP/O ratio and respiratory control index (RCI) for complexes I and II were calculated. Reactive oxygen species (ROS) production was assessed using the malondialdehyde (MDA)-Assay. Statistics: two-way analysis of variance (ANOVA) + Tukey’s/Dunnett’s post hoc test for microcirculatory data, Kruskal–Wallis test + Dunn’s post hoc test for all other data. In control septic animals µHbO2 in liver and colon deteriorated over time (µHbO2: −9.8 ± 7.5%* and −7.6 ± 3.3%* vs. baseline, respectively), whereas after pravastatin and pravastatin + GW6471 treatment μHbO2 remained constant (liver: µHbO2 pravastatin: −4.21 ± 11.7%, pravastatin + GW6471: −0.08 ± 10.3%; colon: µHbO2 pravastatin: −0.13 ± 7.6%, pravastatin + GW6471: −3.00 ± 11.24%). In both organs, RCI and ADP/O were similar across all groups. The MDA concentration remained unchanged in all groups. Therefore, we conclude that under septic conditions pravastatin improves microcirculation in the colon and liver, and this seems independent of PPAR-α and without affecting mitochondrial function.
Collapse
|
4
|
Regulation of Oxidative Phosphorylation of Liver Mitochondria in Sepsis. Cells 2022; 11:cells11101598. [PMID: 35626633 PMCID: PMC9139457 DOI: 10.3390/cells11101598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
The link between liver dysfunction and decreased mitochondrial oxidative phosphorylation in sepsis has been clearly established in experimental models. Energy transduction is plastic: the efficiency of mitochondrial coupling collapses in the early stage of sepsis but is expected to increase during the recovery phases of sepsis. Among the mechanisms regulating the coupling efficiency of hepatic mitochondria, the slipping reactions at the cytochrome oxidase and ATP synthase seem to be a determining element, whereas other regulatory mechanisms such as those involving proton leakage across the mitochondrial membrane have not yet been formally proven in the context of sepsis. If the dysfunction of hepatic mitochondria is related to impaired cytochrome c oxidase and ATP synthase functions, we need to consider therapeutic avenues to restore their activities for recovery from sepsis. In this review, we discussed previous findings regarding the regulatory mechanism involved in changes in the oxidative phosphorylation of liver mitochondria in sepsis, and propose therapeutic avenues to improve the functions of cytochrome c oxidase and ATP synthase in sepsis.
Collapse
|
5
|
Müllebner A, Herminghaus A, Miller I, Kames M, Luís A, Picker O, Bauer I, Kozlov AV, Duvigneau JC. Tissue Damage, Not Infection, Triggers Hepatic Unfolded Protein Response in an Experimental Rat Peritonitis Model. Front Med (Lausanne) 2022; 9:785285. [PMID: 35372445 PMCID: PMC8965740 DOI: 10.3389/fmed.2022.785285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Abdominal surgery is an efficient treatment of intra-abdominal sepsis. Surgical trauma and peritoneal infection lead to the activation of multiple pathological pathways. The liver is particularly susceptible to injury under septic conditions. Liver function is impaired when pathological conditions induce endoplasmic reticulum (ER) stress. ER stress triggers the unfolded protein response (UPR), aiming at restoring ER homeostasis, or inducing cell death. In order to translate basic knowledge on ER function into the clinical setting, we aimed at dissecting the effect of surgery and peritoneal infection on the progression of ER stress/UPR and inflammatory markers in the liver in a clinically relevant experimental animal model. Methods Wistar rats underwent laparotomy followed by colon ascendens stent peritonitis (CASP) or surgery (sham) only. Liver damage (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and De Ritis values), inflammatory and UPR markers were assessed in livers at 24, 48, 72, and 96 h postsurgery. Levels of inflammatory (IL-6, TNF-α, iNOS, and HO-1), UPR (XBP1, GRP78, CHOP), and apoptosis (BAX/Bcl-XL) mRNA were determined by qPCR. Splicing of XBP1 (XBP1s) was analyzed by gel electrophoresis, p-eIF2α and GRP78 protein levels using the western blots. Results Aspartate aminotransferase levels were elevated 24 h after surgery and thereafter declined with different kinetics in sham and CASP groups. Compared with sham De Ritis ratios were significantly higher in the CASP group, at 48 and 96 h. CASP induced an inflammatory response after 48 h, evidenced by elevated levels of IL-6, TNF-α, iNOS, and HO-1. In contrast, UPR markers XBP1s, p-eIF2α, GRP78, XBP1, and CHOP did not increase in response to infection but paralleled the kinetics of AST and De Ritis ratios. We found that inflammatory markers were predominantly associated with CASP, while UPR markers were associated with surgery. However, in the CASP group, we found a stronger correlation between XBP1s, XBP1 and GRP78 with damage markers, suggesting a synergistic influence of inflammation on UPR in our model. Conclusion Our results indicate that independent mechanisms induce ER stress/UPR and the inflammatory response in the liver. While peritoneal infection predominantly triggers inflammatory responses, the conditions associated with organ damage are predominant triggers of the hepatic UPR.
Collapse
Affiliation(s)
- Andrea Müllebner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria.,Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ingrid Miller
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Kames
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreia Luís
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
| | - Johanna Catharina Duvigneau
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
6
|
Schulz J, Bauer I, Herminghaus A, Picker O, Truse R, Vollmer C. Sub-therapeutic vasopressin but not therapeutic vasopressin improves gastrointestinal microcirculation in septic rats: A randomized, placebo-controlled, blinded trial. PLoS One 2021; 16:e0257034. [PMID: 34555053 PMCID: PMC8460032 DOI: 10.1371/journal.pone.0257034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Sepsis impairs gastrointestinal microcirculation and it is hypothesized that this might increase patient's mortality. Sub-therapeutic vasopressin improves gastric microcirculation under physiologic conditions whereas a therapeutic dosing regimen seems to be rather detrimental. However, the effects of sub-therapeutic vasopressin on gastrointestinal microcirculation in sepsis are largely unknown. Therefore, we conducted this trial to investigate the effect of sub-therapeutic as well as therapeutic vasopressin on gastrointestinal microcirculation in sepsis. METHODS 40 male Wistar rats were randomized into 4 groups. Colon ascendens stent peritonitis (CASP)-surgery was performed to establish mild or moderate sepsis. 24 hours after surgery, animals received either vasopressin with increasing dosages every 30 min (6.75, 13.5 (sub-therapeutic), 27 mU · kg-1 · h-1 (therapeutic)) or vehicle. Microcirculatory oxygenation (μHBO2) of the colon was recorded for 90 min using tissue reflectance spectrophotometry. Intestinal microcirculatory perfusion (total vessel density (TVD; mm/mm2) and perfused vessel density (PVD; mm/mm2)) were measured using incident dark field-Imaging at baseline and after 60 min. RESULTS In mild as well as in moderate septic animals with vehicle-infusion intestinal μHbO2, TVD and PVD remained constant. In contrast, in moderate sepsis, sub-therapeutic vasopressin with 13.5 mU · kg-1 · h-1 elevated intestinal μHBO2 (+ 6.1 ± 5.3%; p < 0.05 vs. baseline) and TVD (+ 5.2 ± 3.0 mm/mm2; p < 0.05 vs. baseline). μHBO2, TVD and PVD were significantly increased compared to moderate sepsis alone. However, therapeutic vasopressin did not change intestinal microcirculation. In mild septic animals sub-therapeutic as well as therapeutic vasopressin had no relevant effect on gastrointestinal microcirculation. Systemic blood pressure remained constant in all groups. CONCLUSION Sub-therapeutic vasopressin improves gastrointestinal microcirculatory oxygenation in moderate sepsis without altering systemic blood pressure. This protective effect seems to be mediated by an enhanced microcirculatory perfusion and thereby increased oxygen supply. In contrast, therapeutic vasopressin did not show this beneficial effect.
Collapse
Affiliation(s)
- Jan Schulz
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, North Rhine-Westphalia, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, North Rhine-Westphalia, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, North Rhine-Westphalia, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, North Rhine-Westphalia, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, North Rhine-Westphalia, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, North Rhine-Westphalia, Germany
| |
Collapse
|
7
|
Schulz J, Kramer S, Kanatli Y, Kuebart A, Bauer I, Picker O, Vollmer C, Truse R, Herminghaus A. Sodium Thiosulfate Improves Intestinal and Hepatic Microcirculation Without Affecting Mitochondrial Function in Experimental Sepsis. Front Immunol 2021; 12:671935. [PMID: 34163476 PMCID: PMC8215355 DOI: 10.3389/fimmu.2021.671935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction In the immunology of sepsis microcirculatory and mitochondrial dysfunction in the gastrointestinal system are important contributors to mortality. Hydrogen sulfide (H2S) optimizes gastrointestinal oxygen supply and mitochondrial respiration predominantly via K(ATP)-channels. Therefore, we tested the hypothesis that sodium thiosulfate (STS), an inducer of endogenous H2S, improves intestinal and hepatic microcirculation and mitochondrial function via K(ATP)-channels in sepsis. Methods In 40 male Wistar rats colon ascendens stent peritonitis (CASP) surgery was performed to establish sepsis. Animals were randomized into 4 groups (1: STS 1 g • kg-1 i.p., 2: glibenclamide (GL) 5 mg • kg-1 i.p., 3: STS + GL, 4: vehicle (VE) i.p.). Treatment was given directly after CASP-surgery and 24 hours later. Microcirculatory oxygenation (µHBO2) and flow (µflow) of the colon and the liver were continuously recorded over 90 min using tissue reflectance spectrophotometry. Mitochondrial oxygen consumption in tissue homogenates was determined with respirometry. Statistic: two-way ANOVA + Dunnett´s and Tukey post - hoc test (microcirculation) and Kruskal-Wallis test + Dunn’s multiple comparison test (mitochondria). p < 0.05 was considered significant. Results STS increased µHbO2 (colon: 90 min: + 10.4 ± 18.3%; liver: 90 min: + 5.8 ± 9.1%; p < 0.05 vs. baseline). Furthermore, STS ameliorated µflow (colon: 60 min: + 51.9 ± 71.1 aU; liver: 90 min: + 22.5 ± 20.0 aU; p < 0.05 vs. baseline). In both organs, µHbO2 and µflow were significantly higher after STS compared to VE. The combination of STS and GL increased colonic µHbO2 and µflow (µHbO2 90 min: + 8.7 ± 11.5%; µflow: 90 min: + 41.8 ± 63.3 aU; p < 0.05 vs. baseline), with significantly higher values compared to VE. Liver µHbO2 and µflow did not change after STS and GL. GL alone did not change colonic or hepatic µHbO2 or µflow. Mitochondrial oxygen consumption and macrohemodynamic remained unaltered. Conclusion The beneficial effect of STS on intestinal and hepatic microcirculatory oxygenation in sepsis seems to be mediated by an increased microcirculatory perfusion and not by mitochondrial respiratory or macrohemodynamic changes. Furthermore, the effect of STS on hepatic but not on intestinal microcirculation seems to be K(ATP)-channel-dependent.
Collapse
Affiliation(s)
- Jan Schulz
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sandra Kramer
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Yasin Kanatli
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Anne Kuebart
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
8
|
Abstract
Colon ascendens stent peritonitis (CASP) is one of the well-established models of experimental abdominal sepsis. In CASP surgery, an open link between the gut lumen and the abdominal cavity is created by placing a stent into the colon ascendens. This mimics well the insufficient intestinal anastomosis. It causes a continuous leakage of the gut contents into the peritoneum and leads therefore to peritonitis and sepsis. The abdominal cavity is opened under general anesthesia and a plastic stent is located through and sutured to the colonic wall. The septic severity in CASP models can be titrated by altering the size of the stent catheter. Therefore, CASP models with small stents sizes are suitable for long-term studies and studies with mild/moderate sepsis severity. Within 24 h, animals develop clinical signs of sepsis. Monitoring of the clinical state, sufficient analgesia, appropriate antibiotics and fluid resuscitation should be performed postoperatively.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
9
|
Herminghaus A, Buitenhuis AJ, Schulz J, Truse R, Vollmer C, Relja B, Bauer I, Picker O. Indomethacin Increases the Efficacy of Oxygen Utilization of Colonic Mitochondria and Uncouples Hepatic Mitochondria in Tissue Homogenates From Healthy Rats. Front Med (Lausanne) 2020; 7:463. [PMID: 32974368 PMCID: PMC7472952 DOI: 10.3389/fmed.2020.00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
- *Correspondence: Anna Herminghaus
| | - Albert J. Buitenhuis
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Inge Bauer
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
10
|
Herminghaus A, Laser E, Schulz J, Truse R, Vollmer C, Bauer I, Picker O. Pravastatin and Gemfibrozil Modulate Differently Hepatic and Colonic Mitochondrial Respiration in Tissue Homogenates from Healthy Rats. Cells 2019; 8:cells8090983. [PMID: 31461874 PMCID: PMC6769625 DOI: 10.3390/cells8090983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023] Open
Abstract
Statins and fibrates are widely used for the management of hypertriglyceridemia but they also have limitations, mostly due to pharmacokinetic interactions or side effects. It is conceivable that some adverse events like liver dysfunction or gastrointestinal discomfort are caused by mitochondrial dysfunction. Data about the effects of statins and fibrates on mitochondrial function in different organs are inconsistent and partially contradictory. The aim of this study was to investigate the effect of pravastatin (statin) and gemfibrozil (fibrate) on hepatic and colonic mitochondrial respiration in tissue homogenates. Mitochondrial oxygen consumption was determined in colon and liver homogenates from 48 healthy rats after incubation with pravastatin or gemfibrozil (100, 300, 1000 μM). State 2 (substrate dependent respiration) and state 3 (adenosine diphosphate: ADP-dependent respiration) were assessed. RCI (respiratory control index)—an indicator for coupling between electron transport chain system (ETS) and oxidative phosphorylation (OXPHOS) and ADP/O ratio—a parameter for the efficacy of OXPHOS, was calculated. Data were presented as a percentage of control (Kruskal–Wallis + Dunn’s correction). In the liver both drugs reduced state 3 and RCI, gemfibrozil-reduced ADP/O (complex I). In the colon both drugs reduced state 3 but enhanced ADP/O. Pravastatin at high concentration (1000 µM) decreased RCI (complex II). Pravastatin and gemfibrozil decrease hepatic but increase colonic mitochondrial respiration in tissue homogenates from healthy rats.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Eric Laser
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
11
|
Herminghaus A, Buitenhuis AJ, Schulz J, Vollmer C, Scheeren TWL, Bauer I, Picker O, Truse R. Propofol improves colonic but impairs hepatic mitochondrial function in tissue homogenates from healthy rats. Eur J Pharmacol 2019; 853:364-370. [PMID: 31009637 DOI: 10.1016/j.ejphar.2019.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/24/2022]
Abstract
Evidence suggests that propofol infusion syndrome (PRIS) is caused by an altered mitochondrial function. The aim of this study was to examine the effects of propofol and the vehicle MCT on mitochondrial function in hepatic and colonic tissue. Mitochondrial oxygen consumption was determined in colon and liver homogenates after incubation with buffer (control), propofol (50, 75, 100, 500 μM) or the carrier substances DMSO and MCT. State 2 (substrate-dependent) and state 3 (ADP-dependent respiration) were assessed. RCI (respiratory control index) - an indicator for coupling between electron transport chain system (ETS) and oxidative phosphorylation (OXPHOS) and ADP/O ratio - a parameter for efficacy of OXPHOS were calculated. Data were presented as % of control. In hepatic mitochondria, 500 μM propofol reduced RCI formulation-independently (propofol/MCT 500 μM: complex I: 66.3 ± 8.7%*, complex II: 75.5 ± 9.2%*; propofol/DMSO 500 μM: complex I: 29.1 ± 8.8%*, complex II: 49.3 ± 15.5%*). 75 μM Propofol/MCT reduced ADP/O for complex I (73.5 ± 27.3%*). DMSO did not affect hepatic mitochondria whereas MCT reduced RCI for complex II (87.2 ± 9.8%*) and ADP/O for complex I (93.7 ± 31.7%*). In colon 50 μM Propofol/MCT increased RCI for complex I and II (complex I: 127.2 ± 10.7%*, complex II: 136.8 ± 33.9%*) and 100 μM Propofol/MCT for complex I (131.4 ± 18.7%*). 500 μM Propofol/DMSO increased ADP/O for complex I (139.4 ± 41.4%*). DMSO did not affect RCI but increased ADP/O for both complexes (complex I: 119.9 ± 25.8%*, complex II: 110.2 ± 14.2%*). MCT increased RCI for complex I (123.0 ± 31.6%*). In hepatic mitochondria propofol uncoupled ETS from OXPHOS formulation-independently and propofol/MCT reduced efficacy of OXPHOS. In colonic mitochondria, propofol/MCT strengthened the coupling and propofol/DMSO enhanced the efficacy of OXPHOS.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - A Johannes Buitenhuis
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Jan Schulz
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Christian Vollmer
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Thomas W L Scheeren
- Department of Anaesthesiology, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.
| | - Inge Bauer
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Olaf Picker
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Richard Truse
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| |
Collapse
|