1
|
Spinelli E, Giani M, Slobod D, Pavlovsky B, di Pierro M, Crotti S, Lissoni A, Foti G, Grasselli G, Mauri T. Physiologic Effects of Extracorporeal Membrane Oxygenation in Patients with Severe Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2024; 210:629-638. [PMID: 38526489 PMCID: PMC11389568 DOI: 10.1164/rccm.202309-1688oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/22/2024] [Indexed: 03/26/2024] Open
Abstract
Rationale: Blood flow rate affects mixed venous oxygenation (SvO2) during venovenous extracorporeal membrane oxygenation (ECMO), with possible effects on the pulmonary circulation and the right heart function. Objectives: To describe the physiologic effects of different levels of SvO2 obtained by changing ECMO blood flow in patients with severe acute respiratory distress syndrome receiving ECMO and controlled mechanical ventilation. Methods: Low (SvO2 target, 70-75%), intermediate (SvO2 target, 75-80%), and high (SvO2 target, >80%) ECMO blood flows were applied for 30 minutes in random order in 20 patients. Mechanical ventilation settings were left unchanged. The hemodynamic and pulmonary effects were assessed with pulmonary artery catheter and electrical impedance tomography. Measurements and Main Results: Cardiac output decreased from low to intermediate and to high blood flow/SvO2 (9.2 [6.2-10.9] vs. 8.3 [5.9-9.8] vs. 7.9 [6.5-9.1] L/min; P = 0.014), as well as mean pulmonary artery pressure (34 ± 6 vs. 31 ± 6 vs. 30 ± 5 mm Hg; P < 0.001) and right ventricular stroke work index (14.2 ± 4.4 vs. 12.2 ± 3.6 vs. 11.4 ± 3.2 g × m/beat/m2; P = 0.002). Cardiac output was inversely correlated with mixed venous and arterial Po2 values (R2 = 0.257; P = 0.031; and R2 = 0.324; P = 0.05). Pulmonary artery pressure was correlated with decreasing mixed venous Po2 (R2 = 0.29; P < 0.001) and with increasing cardiac output (R2 = 0.378; P < 0.007). Measures of [Formula: see text]/[Formula: see text] mismatch did not differ between the three steps. Conclusions: In patients with severe acute respiratory distress syndrome, increased ECMO blood flow rate resulting in higher SvO2 decreases pulmonary artery pressure, cardiac output, and right heart workload.
Collapse
Affiliation(s)
- Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Institute for Scientific Research and Care Foundation Ca' Granda, Maggiore Policlinico Hospital, Milan, Italy
| | - Marco Giani
- Department of Emergency and Intensive Care, Institute for Scientific Research and Care Foundation San Gerardo dei Tintori, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Douglas Slobod
- Department of Critical Care Medicine, McGill University, Montreal, Quebec, Canada
| | - Bertrand Pavlovsky
- Medical Intensive Care Unit, University Hospital of Angers, Angers, France; and
| | - Michela di Pierro
- Department of Emergency and Intensive Care, Institute for Scientific Research and Care Foundation San Gerardo dei Tintori, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Stefania Crotti
- Department of Anesthesia, Critical Care and Emergency, Institute for Scientific Research and Care Foundation Ca' Granda, Maggiore Policlinico Hospital, Milan, Italy
| | - Alfredo Lissoni
- Department of Anesthesia, Critical Care and Emergency, Institute for Scientific Research and Care Foundation Ca' Granda, Maggiore Policlinico Hospital, Milan, Italy
| | - Giuseppe Foti
- Department of Emergency and Intensive Care, Institute for Scientific Research and Care Foundation San Gerardo dei Tintori, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, Monza, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Institute for Scientific Research and Care Foundation Ca' Granda, Maggiore Policlinico Hospital, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Institute for Scientific Research and Care Foundation Ca' Granda, Maggiore Policlinico Hospital, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Magnusdottir SO, Simonsen C, Karbing DS, Rasmussen BS, Kjaergaard B. Hypoxia in the pulmonary vein increases pulmonary vascular resistance independently of oxygen in the pulmonary artery. Animal Model Exp Med 2024; 7:156-165. [PMID: 38506157 PMCID: PMC11079156 DOI: 10.1002/ame2.12402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/10/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Hypoxic pulmonary vasoconstriction (HPV) can be a challenging clinical problem. It is not fully elucidated where in the circulation the regulation of resistance takes place. It is often referred to as if it is in the arteries, but we hypothesized that it is in the venous side of the pulmonary circulation. METHODS In an open thorax model, pigs were treated with a veno-venous extra corporeal membrane oxygenator to either oxygenate or deoxygenate blood passing through the pulmonary vessels. At the same time the lungs were ventilated with extreme variations of inspired air from 5% to 100% oxygen, making it possible to make combinations of high and low oxygen content through the pulmonary circulation. A flow probe was inserted around the main pulmonary artery and catheters in the pulmonary artery and in the left atrium were used for pressure monitoring and blood tests. Under different combinations of oxygenation, pulmonary vascular resistance (PVR) was calculated. RESULTS With unchanged level of oxygen in the pulmonary artery and reduced inspired oxygen fraction lowering oxygen tension from 29 to 6.7 kPa in the pulmonary vein, PVR was doubled. With more extreme hypoxia PVR suddenly decreased. Combinations with low oxygenation in the pulmonary artery did not systematic influence PVR if there was enough oxygen in the inspired air and in the pulmonary veins. DISCUSSION The impact of hypoxia occurs from the alveolar level and forward with the blood flow. The experiments indicated that the regulation of PVR is mediated from the venous side.
Collapse
Affiliation(s)
- Sigridur Olga Magnusdottir
- Biomedical Research LaboratoryAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Carsten Simonsen
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Cardiothoracic SurgeryAalborg University HospitalAalborgDenmark
| | | | - Bodil Steen Rasmussen
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Anesthesia and Intensive CareAalborg University HospitalAalborgDenmark
| | - Benedict Kjaergaard
- Biomedical Research LaboratoryAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
- Department of Cardiothoracic SurgeryAalborg University HospitalAalborgDenmark
| |
Collapse
|
3
|
Dos Santos YDAP, Park VF, Cardozo Junior LCM, Besen BAMP, Mendes PV, Park M. Validation of a low-cost continuous renal replacement therapy dialysate fluid controller for experimental purposes. Intensive Care Med Exp 2024; 12:9. [PMID: 38302808 PMCID: PMC10834914 DOI: 10.1186/s40635-024-00593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/30/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Continuous renal replacement therapy (CRRT) support is crucial for critically ill patients and it is underexplored in specific situations. Experimental CRRT offers a means to gain insights into these scenarios, but the prohibitive cost of CRRT machines limits their accessibility. This study aimed to develop and validate a low-cost and precise dialysate controller for experimental CRRT. RESULTS Our results demonstrate a commendable level of precision in affluent flow control, with a robust correlation (R2 = 0.99) for continuous flow and a strong correlation (R2 = 0.95) for intermittent flow. Additionally, we observed acceptable agreement with a bias = 3.4 mL (upper limit 95% = 43.9 mL and lower limit 95% = - 37 mL) for continuous flow and bias = - 20.9 mL (upper limit 95% = 54 mL and lower limit 95% = - 95.7 mL) for intermittent flow, in this way, offering a precise CRRT dose for the subjects. Furthermore, we achieved excellent precision in the cumulative ultrafiltration net (UFnet), with a bias = - 2.8 mL (upper limit 95% = 6.5 mL and lower limit 95% = - 12 mL). These results remained consistent even at low affluent flow rates of 8, 12, and 20 mL/min, which are compatible with CRRT doses of 25-30 mL/kg for medium-sized animals. Moreover, the acceptable precision of our findings persisted when the dialysate controller was subjected to high filter dialysate chamber pressure for an extended duration, up to 797 min. CONCLUSIONS The low-cost dialysate controller developed and tested in this study offers a precise means of regulating CRRT in experimental settings. Its affordability and accuracy render it a valuable instrument for studying CRRT support in unconventional clinical scenarios, particularly in middle-income countries' experimental ICU laboratories.
Collapse
Affiliation(s)
- Yuri de Albuquerque Pessoa Dos Santos
- Intensive Care Unit, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, SP, Brazil
- Laboratory of Medical Investigation (LIM-51), Emergency Discipline, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Viviane Flor Park
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - Luis Carlos Maia Cardozo Junior
- Intensive Care Unit, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, SP, Brazil
- Laboratory of Medical Investigation (LIM-51), Emergency Discipline, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Bruno Adler Maccagnan Pinheiro Besen
- Intensive Care Unit, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, SP, Brazil
- Laboratory of Medical Investigation (LIM-51), Emergency Discipline, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Pedro Vitale Mendes
- Intensive Care Unit, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, SP, Brazil
- Laboratory of Medical Investigation (LIM-51), Emergency Discipline, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Marcelo Park
- Intensive Care Unit, Hospital das Clínicas, University of São Paulo Medical School, São Paulo, SP, Brazil.
- Laboratory of Medical Investigation (LIM-51), Emergency Discipline, University of São Paulo Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
He H, Jiang J, Xu M, Yuan S, Long Y, Chi Y, Frerichs I, Zhao Z. Saline bolus-based electrical impedance tomography method for rapid bedside assessment of regional lung perfusion during ECMO therapy. Crit Care 2022; 26:266. [PMID: 36064724 PMCID: PMC9443643 DOI: 10.1186/s13054-022-04142-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
|