1
|
Kartal A, Robba C, Helmy A, Wolf S, Aries MJH. How to Define and Meet Blood Pressure Targets After Traumatic Brain Injury: A Narrative Review. Neurocrit Care 2024; 41:369-385. [PMID: 38982005 PMCID: PMC11377672 DOI: 10.1007/s12028-024-02048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) poses a significant challenge to healthcare providers, necessitating meticulous management of hemodynamic parameters to optimize patient outcomes. This article delves into the critical task of defining and meeting continuous arterial blood pressure (ABP) and cerebral perfusion pressure (CPP) targets in the context of severe TBI in neurocritical care settings. METHODS We narratively reviewed existing literature, clinical guidelines, and emerging technologies to propose a comprehensive approach that integrates real-time monitoring, individualized cerebral perfusion target setting, and dynamic interventions. RESULTS Our findings emphasize the need for personalized hemodynamic management, considering the heterogeneity of patients with TBI and the evolving nature of their condition. We describe the latest advancements in monitoring technologies, such as autoregulation-guided ABP/CPP treatment, which enable a more nuanced understanding of cerebral perfusion dynamics. By incorporating these tools into a proactive monitoring strategy, clinicians can tailor interventions to optimize ABP/CPP and mitigate secondary brain injury. DISCUSSION Challenges in this field include the lack of standardized protocols for interpreting multimodal neuromonitoring data, potential variability in clinical decision-making, understanding the role of cardiac output, and the need for specialized expertise and customized software to have individualized ABP/CPP targets regularly available. The patient outcome benefit of monitoring-guided ABP/CPP target definitions still needs to be proven in patients with TBI. CONCLUSIONS We recommend that the TBI community take proactive steps to translate the potential benefits of personalized ABP/CPP targets, which have been implemented in certain centers, into a standardized and clinically validated reality through randomized controlled trials.
Collapse
Affiliation(s)
- Ahmet Kartal
- University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Sciences, University of Genoa, Genoa, Italy
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel J H Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
- Institute of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| |
Collapse
|
2
|
Svedung Wettervik T, Hånell A, Lewén A, Enblad P. Should Patients with Traumatic Brain Injury with Significant Contusions be Treated with Different Neurointensive Care Targets? Neurocrit Care 2024; 41:511-522. [PMID: 38506969 PMCID: PMC11377649 DOI: 10.1007/s12028-024-01954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/01/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Patients with traumatic brain injury (TBI) with large contusions make up a specific TBI subtype. Because of the risk of brain edema worsening, elevated cerebral perfusion pressure (CPP) may be particularly dangerous. The pressure reactivity index (PRx) and optimal cerebral perfusion pressure (CPPopt) are new promising perfusion targets based on cerebral autoregulation, but they reflect the global brain state and may be less valid in patients with predominant focal lesions. In this study, we aimed to investigate if patients with TBI with significant contusions exhibited a different association between PRx, CPP, and CPPopt in relation to functional outcome compared to those with small/no contusions. METHODS This observational study included 385 patients with moderate to severe TBI treated at a neurointensive care unit in Uppsala, Sweden. The patients were classified into two groups: (1) significant contusions (> 10 mL) and (2) small/no contusions (but with extra-axial or diffuse injuries). The percentage of good monitoring time (%GMT) with intracranial pressure > 20 mm Hg; PRx > 0.30; CPP < 60 mm Hg, within 60-70 mm Hg, or > 70 mm Hg; and ΔCPPopt less than - 5 mm Hg, ± 5 mm Hg, or > 5 mm Hg was calculated. Outcome (Glasgow Outcome Scale-Extended) was assessed after 6 months. RESULTS Among the 120 (31%) patients with significant contusions, a lower %GMT with CPP between 60 and 70 mm Hg was independently associated with unfavorable outcome. The %GMTs with PRx and ΔCPPopt ± 5 mm Hg were not independently associated with outcome. Among the 265 (69%) patients with small/no contusions, a higher %GMT of PRx > 0.30 and a lower %GMT of ΔCPPopt ± 5 mm Hg were independently associated with unfavorable outcome. CONCLUSIONS In patients with TBI with significant contusions, CPP within 60-70 mm Hg may improve outcome. PRx and CPPopt, which reflect global cerebral pressure autoregulation, may be useful in patients with TBI without significant focal brain lesions but seem less valid for those with large contusions. However, this was an observational, hypothesis-generating study; our findings need to be validated in prospective studies before translating them into clinical practice.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden.
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
3
|
Jeffcote T, Lu KY, Lewis P, Gantner D, Battistuzzo CR, Udy AA. Brain tissue oxygen monitoring in moderate-to-severe traumatic brain injury: Physiological determinants, clinical interventions and current randomised controlled trial evidence. CRIT CARE RESUSC 2024; 26:204-209. [PMID: 39355499 PMCID: PMC11440050 DOI: 10.1016/j.ccrj.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 10/03/2024]
Abstract
Modern intensive care for moderate-to-severe traumatic brain injury (msTBI) focuses on managing intracranial pressure (ICP) and cerebral perfusion pressure (CPP). This approach lacks robust clinical evidence and often overlooks the impact of hypoxic injuries. Emerging monitoring modalities, particularly those capable of measuring brain tissue oxygen, represent a promising avenue for advanced neuromonitoring. Among these, brain tissue oxygen tension (PbtO2) shows the most promising results. However, there is still a lack of consensus regarding the interpretation of PbtO2 in clinical practice. This review aims to provide an overview of the pathophysiological rationales, monitoring technology, physiological determinants, and recent clinical trial evidence for PbtO2 monitoring in the management of msTBI.
Collapse
Affiliation(s)
- Toby Jeffcote
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kuan-Ying Lu
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Philip Lewis
- Office of the Deputy Vice-Chancellor, Enterprise and Engagement, Monash University, Australia
| | - Dashiell Gantner
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Camila R Battistuzzo
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Andrew A Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Kunapaisal T, Lele AV, Gomez C, Moore A, Theard MA, Vavilala MS. Effect of Increasing Blood Pressure on Brain Tissue Oxygenation in Adults After Severe Traumatic Brain Injury. Crit Care Med 2024; 52:e332-e340. [PMID: 38299970 DOI: 10.1097/ccm.0000000000006211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
OBJECTIVES To examine if increasing blood pressure improves brain tissue oxygenation (PbtO 2 ) in adults with severe traumatic brain injury (TBI). DESIGN Retrospective review of prospectively collected data. SETTING Level-I trauma center teaching hospital. PATIENTS Included patients greater than or equal to 18 years of age and with severe (admission Glasgow Coma Scale [GCS] score < 9) TBI who had advanced neuromonitoring (intracranial blood pressure [ICP], PbtO 2 , and cerebral autoregulation testing). INTERVENTIONS The exposure was mean arterial pressure (MAP) augmentation with a vasopressor, and the primary outcome was a PbtO 2 response. Cerebral hypoxia was defined as PbtO 2 less than 20 mm Hg (low). MAIN RESULTS MAP challenge test results conducted between ICU admission days 1-3 from 93 patients (median age 31; interquartile range [IQR], 24-44 yr), 69.9% male, White ( n = 69, 74.2%), median head abbreviated injury score 5 (IQR 4-5), and median admission GCS 3 (IQR 3-5) were examined. Across all 93 tests, a MAP increase of 25.7% resulted in a 34.2% cerebral perfusion pressure (CPP) increase and 16.3% PbtO 2 increase (no MAP or CPP correlation with PbtO 2 [both R2 = 0.00]). MAP augmentation increased ICP when cerebral autoregulation was impaired (8.9% vs. 3.8%, p = 0.06). MAP augmentation resulted in four PbtO 2 responses (normal and maintained [group 1: 58.5%], normal and deteriorated [group 2: 2.2%; average 45.2% PbtO 2 decrease], low and improved [group 3: 12.8%; average 44% PbtO 2 increase], and low and not improved [group 4: 25.8%]). The average end-tidal carbon dioxide (ETCO 2 ) increase of 5.9% was associated with group 2 when cerebral autoregulation was impaired ( p = 0.02). CONCLUSIONS MAP augmentation after severe TBI resulted in four distinct PbtO 2 response patterns, including PbtO 2 improvement and cerebral hypoxia. Traditionally considered clinical factors were not significant, but cerebral autoregulation status and ICP responses may have moderated MAP and ETCO 2 effects on PbtO 2 response. Further study is needed to examine the role of MAP augmentation as a strategy to improve PbtO 2 in some patients.
Collapse
Affiliation(s)
- Thitikan Kunapaisal
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, WA
| | - Abhijit V Lele
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, WA
| | - Courtney Gomez
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | - Anne Moore
- Cerebrovascular Laboratory, Harborview Medical Center, Seattle, WA
| | - Marie Angele Theard
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, WA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, WA
| |
Collapse
|
5
|
Gomez A, Froese L, Griesdale D, Thelin EP, Raj R, van Iperenburg L, Tas J, Aries M, Stein KY, Gallagher C, Bernard F, Kramer AH, Zeiler FA. Prognostic value of near-infrared spectroscopy regional oxygen saturation and cerebrovascular reactivity index in acute traumatic neural injury: a CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Cohort Study. Crit Care 2024; 28:78. [PMID: 38486211 PMCID: PMC10938687 DOI: 10.1186/s13054-024-04859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Near-infrared spectroscopy regional cerebral oxygen saturation (rSO2) has gained interest as a raw parameter and as a basis for measuring cerebrovascular reactivity (CVR) due to its noninvasive nature and high spatial resolution. However, the prognostic utility of these parameters has not yet been determined. This study aimed to identify threshold values of rSO2 and rSO2-based CVR at which outcomes worsened following traumatic brain injury (TBI). METHODS A retrospective multi-institutional cohort study was performed. The cohort included TBI patients treated in four adult intensive care units (ICU). The cerebral oxygen indices, COx (using rSO2 and cerebral perfusion pressure) as well as COx_a (using rSO2 and arterial blood pressure) were calculated for each patient. Grand mean thresholds along with exposure-based thresholds were determined utilizing sequential chi-squared analysis and univariate logistic regression, respectively. RESULTS In the cohort of 129 patients, there was no identifiable threshold for raw rSO2 at which outcomes were found to worsen. For both COx and COx_a, an optimal grand mean threshold value of 0.2 was identified for both survival and favorable outcomes, while percent time above - 0.05 was uniformly found to have the best discriminative value. CONCLUSIONS In this multi-institutional cohort study, raw rSO2was found to contain no significant prognostic information. However, rSO2-based indices of CVR, COx and COx_a, were found to have a uniform grand mean threshold of 0.2 and exposure-based threshold of - 0.05, above which clinical outcomes markedly worsened. This study lays the groundwork to transition to less invasive means of continuously measuring CVR.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Donald Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Levi van Iperenburg
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Jeanette Tas
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Clare Gallagher
- Section of Neurosurgery, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Andreas H Kramer
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Trofimov AO, Trofimova KA, Nemoto EM, Semyachkina-Glushkovskaya O, Bragina OA, Bragin DE. Comparison of Secondary Ischaemia Incidence, Intracranial Pressure, and Cerebrovascular Reactivity Dynamics During Intrahospital Transportation of Severe TBI Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:61-65. [PMID: 39400801 DOI: 10.1007/978-3-031-67458-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The aims of the study were to evaluate posttraumatic cerebral ischaemia (PTCI) incidence in severe traumatic brain injury (TBI) patients and to assess the intracranial pressure (ICP) and cerebrovascular reactivity dynamics during intrahospital transportation (IT). MATERIALS A total of 153 severe TBI patients and 182 IT were included. The mean Glasgow Coma Scale (GCS) score was 6.7 ± 2.1. ICP and arterial pressure were invasively monitored, and an improved pressure reactivity index (iPRx) was calculated from the measured parameters. Statistical analysis was done using Student's t-criterion and Wilcoxon criterion where appropriate. RESULTS Perfusion computed tomography (PCT) revealed a neuroimaging PTCI pattern in all 153 severe TBI patients (100%). In 58 patients (37.9%), ischaemia extended to both hemispheres; in 95 patients (62.1%), it affected only one hemisphere. The mean ICP during IT was significantly higher (26.1 ± 13.5 mm Hg, p < 0.001) than before the IT (19.9 ± 5.3 mm Hg). All patients had increased ICP, especially during vertical movement in an elevator (maximum 75.2 mm Hg). CONCLUSION PTCI was detected in all severe TBI patients in coma. The IT of comatose severe TBI patients leads to a significant increase in ICP and iPRx.
Collapse
Affiliation(s)
- Alex O Trofimov
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Kseniia A Trofimova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Edwin M Nemoto
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Olga A Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Denis E Bragin
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
7
|
Tsigaras ZA, Weeden M, McNamara R, Jeffcote T, Udy AA. The pressure reactivity index as a measure of cerebral autoregulation and its application in traumatic brain injury management. CRIT CARE RESUSC 2023; 25:229-236. [PMID: 38234328 PMCID: PMC10790019 DOI: 10.1016/j.ccrj.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/19/2024]
Abstract
Severe traumatic brain injury (TBI) is a major cause of morbidity and mortality globally. The Brain Trauma Foundation guidelines advocate for the maintenance of a cerebral perfusion pressure (CPP) between 60 and 70 mmHg following severe TBI. However, such a uniform goal does not account for changes in cerebral autoregulation (CA). CA refers to the complex homeostatic mechanisms by which cerebral blood flow is maintained, despite variations in mean arterial pressure and intracranial pressure. Disruption to CA has become increasingly recognised as a key mediator of secondary brain injury following severe TBI. The pressure reactivity index is calculated as the degree of statistical correlation between the slow wave components of mean arterial pressure and intracranial pressure signals and is a validated dynamic marker of CA status following brain injury. The widespread acceptance of pressure reactivity index has precipitated the consideration of individualised CPP targets or an optimal cerebral perfusion pressure (CPPopt). CPPopt represents an alternative target for cerebral haemodynamic optimisation following severe TBI, and early observational data suggest improved neurological outcomes in patients whose CPP is more proximate to CPPopt. The recent publication of a prospective randomised feasibility study of CPPopt guided therapy in TBI, suggests clinicians caring for such patients should be increasingly familiar with these concepts. In this paper, we present a narrative review of the key landmarks in the development of CPPopt and offer a summary of the evidence for CPPopt-based therapy in comparison to current standards of care.
Collapse
Affiliation(s)
| | - Mark Weeden
- St George Hospital, Kogarah, NSW 2217, Australia
| | - Robert McNamara
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, WA 6001, Australia
- School of Medicine, Curtin University, Bentley, WA 6102, Australia
| | - Toby Jeffcote
- The Alfred Hospital, Melbourne, VIC 3004, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC 3003, Australia
| | - Andrew A. Udy
- The Alfred Hospital, Melbourne, VIC 3004, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC 3003, Australia
| |
Collapse
|
8
|
Balzi APDCC, Otsuki DA, Andrade L, Paiva W, Souza FL, Aureliano LGC, Malbouisson LMS. Can a Therapeutic Strategy for Hypotension Improve Cerebral Perfusion and Oxygenation in an Experimental Model of Hemorrhagic Shock and Severe Traumatic Brain Injury? Neurocrit Care 2023; 39:320-330. [PMID: 37535176 DOI: 10.1007/s12028-023-01802-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Restoration of brain tissue perfusion is a determining factor in the neurological evolution of patients with traumatic brain injury (TBI) and hemorrhagic shock (HS). In a porcine model of HS without neurological damage, it was observed that the use of fluids or vasoactive drugs was effective in restoring brain perfusion; however, only terlipressin promoted restoration of cerebral oxygenation and lower expression of edema and apoptosis markers. It is unclear whether the use of vasopressor drugs is effective and beneficial during situations of TBI. The objective of this study is to compare the effects of resuscitation with saline solution and terlipressin on cerebral perfusion and oxygenation in a model of TBI and HS. METHODS Thirty-two pigs weighing 20-30 kg were randomly allocated into four groups: control (no treatment), saline (60 ml/kg of 0.9% NaCl), terlipressin (2 mg of terlipressin), and saline plus terlipressin (20 ml/kg of 0.9% NaCl + 2 mg of terlipressin). Brain injury was induced by lateral fluid percussion, and HS was induced through pressure-controlled bleeding, aiming at a mean arterial pressure (MAP) of 40 mmHg. After 30 min of circulatory shock, resuscitation strategies were initiated according to the group. The systemic and cerebral hemodynamic and oxygenation parameters, lactate levels, and hemoglobin levels were evaluated. The data were subjected to analysis of variance for repeated measures. The significance level established for statistical analysis was p < 0.05. RESULTS The terlipressin and saline plus terlipressin groups showed an increase in MAP that lasted until the end of the experiment (p < 0.05). There was a notable increase in intracranial pressure in all groups after starting treatment for shock. Cerebral perfusion pressure and cerebral oximetry showed no improvement after hemodynamic recovery in any group. The groups that received saline at resuscitation had the lowest hemoglobin concentrations after treatment. CONCLUSIONS The treatment of hypotension in HS with saline and/or terlipressin cannot restore cerebral perfusion or oxygenation in experimental models of HS and severe TBI. Elevated MAP raises intracranial pressure owing to brain autoregulation dysfunction caused by TBI.
Collapse
Affiliation(s)
- Ana Paula de Carvalho Canela Balzi
- Anesthesiology Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
- Divisão de Anestesia do ICHC, UTI Cirúrgica Pediátrica, Av. Enéas Carvalho de Aguiar, 255 - 8° Andar, Cerqueira César, São Paulo, SP, 05403-900, Brazil.
| | - Denise Aya Otsuki
- Medical Research Laboratory -LIM-08, Anesthesiology Department, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucia Andrade
- Nephrology Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Wellingson Paiva
- Neurosurgery Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Lima Souza
- Medical Research Laboratory, Nephrology Department, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Guilherme Cernaglia Aureliano
- Pathology Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Marcelo Sá Malbouisson
- Anesthesiology Department, Hospital das Clinicas SP, School of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 255, Cerqueira César, São Paulo, SP, 05403-000, Brazil
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Svedung Wettervik T, Beqiri E, Bögli SY, Placek M, Guilfoyle MR, Helmy A, Lavinio A, O'Leary R, Hutchinson PJ, Smielewski P. Brain tissue oxygen monitoring in traumatic brain injury: part I-To what extent does PbtO 2 reflect global cerebral physiology? Crit Care 2023; 27:339. [PMID: 37653526 PMCID: PMC10472704 DOI: 10.1186/s13054-023-04627-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The primary aim was to explore the association of global cerebral physiological variables including intracranial pressure (ICP), cerebrovascular reactivity (PRx), cerebral perfusion pressure (CPP), and deviation from the PRx-based optimal CPP value (∆CPPopt; actual CPP-CPPopt) in relation to brain tissue oxygenation (pbtO2) in traumatic brain injury (TBI). METHODS A total of 425 TBI patients with ICP- and pbtO2 monitoring for at least 12 h, who had been treated at the neurocritical care unit, Addenbrooke's Hospital, Cambridge, UK, between 2002 and 2022 were included. Generalized additive models (GAMs) and linear mixed effect models were used to explore the association of ICP, PRx, CPP, and CPPopt in relation to pbtO2. PbtO2 < 20 mmHg, ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, and ∆CPPopt < - 5 mmHg were considered as cerebral insults. RESULTS PbtO2 < 20 mmHg occurred in median during 17% of the monitoring time and in less than 5% in combination with ICP > 20 mmHg, PRx > 0.30, CPP < 60 mmHg, or ∆CPPopt < - 5 mmHg. In GAM analyses, pbtO2 remained around 25 mmHg over a large range of ICP ([0;50] mmHg) and PRx [- 1;1], but deteriorated below 20 mmHg for extremely low CPP below 30 mmHg and ∆CPPopt below - 30 mmHg. In linear mixed effect models, ICP, CPP, PRx, and ∆CPPopt were significantly associated with pbtO2, but the fixed effects could only explain a very small extent of the pbtO2 variation. CONCLUSIONS PbtO2 below 20 mmHg was relatively frequent and often occurred in the absence of disturbances in ICP, PRx, CPP, and ∆CPPopt. There were significant, but weak associations between the global cerebral physiological variables and pbtO2, suggesting that hypoxic pbtO2 is often a complex and independent pathophysiological event. Thus, other variables may be more crucial to explain pbtO2 and, likewise, pbtO2 may not be a suitable outcome measure to determine whether global cerebral blood flow optimization such as CPPopt therapy is successful.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden.
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefan Yu Bögli
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michal Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Andrea Lavinio
- Neurosciences and Trauma Critical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Ronan O'Leary
- Neurosciences and Trauma Critical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|